
CMSC 858F: Algorithmic Lower Bounds

Fall 2014

3-SAT and NP-Hardness

Instructor: Mohammad T. Hajiaghayi
Scribe: Philip Dasler

September 23, 2014

The most important NP-Complete (logic) problem family!

1 SAT = Satisfiability

The Satisfiability problem (introduced by Cook in 1971 [2] and again by Levin
in 1973 [11]1), asks the following question: given a boolean formula F (AND,
NOT, and OR) over n variables x1, . . . , xn, does there exist a set of assignments
for each variable xi such that F is TRUE.

This problem is well studied and is a well known example of an NP-Complete
problem.

2 Circuit SAT

The formula to be satisfied can also be expressed as a circuit of logic gates
(allows re-use).

x1
x2

x3

1This citation is to a survey in English which translates the original Russian paper. You
can find the Russian version here if you’re curious.

1

http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=ppi&paperid=914&option_lang=rus


Scribe: Philip Dasler
3-SAT and NP-Hardness Date: 09/23/2014

3 CNF SAT [2]

CNF = Conjunctive Normal Form

• The formula consists of a conjunction (logical AND) of clauses

• Each clause is a disjunction (logical OR) of literals

• Each literal ∈ {xi, xi}

• A CNF formula can also be represented as a bipartite graph. One set
contains the variables, the other set contains the clauses, and edges are
drawn from variables to the clauses they are in. In this case, there are
two types of edges, representing positive and negative literals, respectively.

x1 x2 x3 x4

(x1 ∨ x2 ∨ x4) (x2 ∨ x3 ∨ x4)

• The first set can contain all of the literals rather than the variables. If so,
literals of the same variable (the positive and the negative) must have an
edge between them (making this technically not bipartite).

x1 x2 x3 x4

(x1 ∨ x2 ∨ x4) (x2 ∨ x3 ∨ x4)

x1 x2 x3 x4

Note that if the bipartite graph between clauses and variables is planar; the
problem is called planar CNF (type 1).

If the bipartite graph between clauses and literals plus all edges (xi, xi) forms
a planar graph, the problem is called planar CNF (type 2).

Both versions are NP-Complete by a reduction from 3-SAT (by uncrossing
the edge-crosses).

Very useful to prove NP-Hardness of problems on planar graphs and geo-
metric planar graphs.

3.1 3-SAT [2]

Each clause is an OR of exactly 3 variables, i.e., the degree of each clause is 3.

2



Scribe: Philip Dasler
3-SAT and NP-Hardness Date: 09/23/2014

3.1.1 3-SAT-5 [5]

Each variable occurs in ≤ 5 clauses.

3.1.2 Monotone 3-SAT [7]

Each clause consists of either 3 positive literals or 3 negative literals. There is
no mixing of “signs”.

4 Polynomial-Time Variants of SAT

: All of the above variants of SAT are NP-Complete, but beware of the polynomial-
time variants below!

4.1 2-SAT

• Each clause is the logical OR of two literals

• The satisfiability of a formula in this form can be determined in polynomial
time

• First, notice that each clause is of the form (x∨ y), but this is equivalent
to (x =⇒ y) or (y =⇒ x)

• This causes implication chains where we can guess a value for x, forcing
assignments for the rest of the values.

• To solve in polynomial time, first try TRUE as an assignment for x and
if the formula is satisfied, you’re work is done. If not, try FALSE. If the
formula is still not satisfied, then it must not be satisfiable.

P Q P =⇒ Q

T T T
T F F
F T T
F F T

BUT ...

4.1.1 MAX 2-SAT [6]

A simple modification to the 2-SAT problem will make it NP-Complete. The
MAX 2-SAT problem asks for a satisfying assignment of the variables that
maximizes the number of TRUE clauses. As always, we can turn an optimization
problem into a decision problem by assigning a bounding variable (e.g., can we
make more than K clauses TRUE?).

3



Scribe: Philip Dasler
3-SAT and NP-Hardness Date: 09/23/2014

4.2 Horn SAT

A Horn SAT formula is one in which each clause has ≤ 1 positive literals. For
example, a Horn Clause may take the form x ∨ y ∨ z ∨ w. However, thanks
to DeMorgan’s Law, this is equivalent to ¬(x ∧ y ∧ z) ∨ w. This, in turn, is
equivalent to (x∧y∧ z) =⇒ w, leading to an implication change, making this
a generalization of 2-SAT and thus solvable in polynomial time.

4.3 Dual Horn SAT

In Dual Horn SAT, each clause has ≤ 1 negative literal. This can be reduced
to Horn SAT by negating everything (both the literals and the final variable
assignment), making it solvable in polynomial time.

5 DNF

DNF = Disjunctive Normal Form

• The formula consists of a disjunction (logical OR) of clauses

• Each clause is a conjunction (logical AND) of literals

• Each literal ∈ {xi, xi}

• To satisfy a formula it is sufficient to satisfy a single clause, which is done
as long as there are no contradictions, i.e., a clause cannot include both the
positive and negative literals of a variable. Thus, it is essentially trivial.

• Attempting to make the formula FALSE instead is, essentially, the dual
of a CNF SAT problem.

6 Alternative Clauses for 3-SAT

6.1 1-in-3-SAT [10]

Exactly 1 of 3 literals in a clause is TRUE.

6.1.1 “Monotone” 1-in-3-SAT

Similar to 1-in-3-SAT, though no negations are allowed, i.e., all literals are
positive. This formulation was omitted by Schaefer.

BUT...

4



Scribe: Philip Dasler
3-SAT and NP-Hardness Date: 09/23/2014

6.1.2 “Monotone” Not Exactly 1-in-3-SAT [10]

• Again, all literals are positive.

• “Not Exactly” means that only 0, 2, or 3 variables in a clause may be
TRUE

• I.e., xi =⇒ (xj ∨ xk) → Dual Horn SAT

• Additionally, x1 must be assigned the value TRUE (otherwise you could
just make everything FALSE)

• Polynomial

6.2 NAE 3-SAT [10]

• NAE = Not All Equal

• The 3 literals in a clause may not all be assigned the same value

• I.e., FFF and TTT are forbidden assignments in a clause, whereas only
FFF is forbidden in 3-SAT

• this leads to a nice symmetry between TRUE and FALSE

6.2.1 “Monotone” NAE 3-SAT

• No negations, all literals are positive.

• Also omitted by Schaefer.

• Also NP-Complete

Of all of the problems listed above, the most important ones to remember
are: 3-SAT, 1-in-3-SAT, and NAE 3-Sat.

7 Shaefer’s Dichotomy Theorem [10] (A Univer-
sal Theorem)

• A formula = AND of clauses

• general clause = relation on variables (with implicit truth tables, similar
to a type in C++ or having an oracle).

– assume in CNF
=⇒ AND of subclauses

• SAT is polynomial if either:

5



Scribe: Philip Dasler
3-SAT and NP-Hardness Date: 09/23/2014

– setting all variables to TRUE or all variables to FALSE satisfies all
relations,

– OR - subclauses are all Horn or all Dual Horn,

– OR - relations are all 2-CNF (subclause sizes ≤ 2, i.e., 2-SAT case),

– OR - every relation can be expressed as a system of linear equations
over Z2.

x1 ⊕ x2 ⊕ x3 ⊕ x4 = 0or1

where ⊕ = XOR. This can be solved via Gaussian elimination.

• If none of the above are true, then SAT is NP-Complete!

8 2-Colorable Perfect Matching [10]

• given a planar 3-regular graph (i.e., a graph in which the degree of each
vertex is 3).

• 2-color the vertices such that every vertex has exactly 1 same-colored
neighbor. special case of 2-in-4-SAT

Red

Red

Red Edge

(planarity and 3-regular are left as an exercise)

Theorem 1 There is a reduction from Monotone NAE 3-Sat to 2-Colorable
Perfect Matching [10].

6



Scribe: Philip Dasler
3-SAT and NP-Hardness Date: 09/23/2014

Proof: The proof is based on two
key gadgets, as illustrated in the
image on the right, taken directly
from the paper by Schaefer [10].
Figure 1(a) is a gadget used to
represents the individual clauses
in a 3-SAT formula. A vertex
is created for each literal, which
are all linked with an edge. Ad-
ditionally, an intermediate vertex
is added in the center to which
each variable is linked. In this
way, one cannot set each variable
to the same color.
The second gadget, illustrated in
Figure 1(b), is a copy gadget. In
this case, the color of n1 must be
equal to n2.
Finally, figure 1(c) illustrates the
reduction of A to a 2-Colorable
Perfect Matching problem.

Some fun games can be proved to be NP-Complete via reduction from 3-SAT,
e.g. Push-1 [8].

Image of a Push-1 (Sokoban) game taken from Wikipedia - Sokoban.

You may see Erik’s class for high-level ideas. The hardness of other games
can proven as well, such as:

• Super Mario Bros.

• Legend of Zelda

• Metroid

• Donkey Kong Country

• Pokemon

7

http://en.wikipedia.org/wiki/Sokoban


Scribe: Philip Dasler
3-SAT and NP-Hardness Date: 09/23/2014

9 Cryptarithms/Alphametics [9]

• given a formula x + y = z with each number written in base b (which
should be some f(n) to be interesting) and encoded with “letters” by an
unknown bijection between {0, 1, . . . , b− 1} and letters

• goal: feasable? / recover bijection

• strongly NP-Complete [3].

Cryptarithm rules:

• each letter represents a unique digit

• often numbers must not start with zero

• often the solution is unique

Example:

9 5 6 7
+ 1 0 8 5
1 0 6 5 2

Can also be represented as:

a b c d
+ e f g b
e f c b h

Or:

S E N D
+ M O R E
M O N E Y

9.1 Reduction from 3-SAT

To reduce from 3-SAT, a long equation is created that represents the clauses,
variables, and the boolean nature of the SAT problem. First, the rightmost
three columns are set thusly:

0 p 0
0 p 0
1 q 0

Here the letters 0 and 1 are forced to be 0 and 1 for any mod.
Next, for each pair of literals vi and vi, the portion below is added to the

left side of the formula:

0 di 0 1 yi 0 ci yi 0 bi yi 0 ai 0
0 ei 0 di yi 0 ci yi 0 bi yi 0 ai 0
vi 0 ei zi 0 di zi 0 vi zi 0 bi ai 0

8



Scribe: Philip Dasler
3-SAT and NP-Hardness Date: 09/23/2014

Thus, for the variable gadget:

bi = 2ai

vi = 2bi + C (where C = carry(yi + yi) ∈ {0, 1})

= 4ai + C ≡ C(mod4)

di = 2ci + C

ei = di + 1+ C

= 2ci + 1+ 2C

vi = di + ei

= 4ci + 1+ 3C

≡ 3C+ 1 ≡ 1− C(mod4)

Next, for each clause add:

0uab 0 va 0 1 ri 0 gi wi 0 fi 0
0 vc 0 vb 0hi ri 0 gi wi 0 fi 0
0 ti 0uab 0 ti si 0hi xi 0gi 0

Thus, for the clause gadget:

gi = 2fi

hi = 2gi + {0, 1}

= 4fi + {0, 1}

ti = hi + 1+ {0, 1}

= 4fi + 1+ {0, 1, 2}

= 4fi + {1, 2, 3}

va + vb + vc = ti ≡ {1, 2, 3}(mod4)

The reduction is good for NP-Completeness for any mod multiple of 4, but
we still need a solution for the puzzle from a satisfying solution, e.g. uniqueness
issues.

9.2 Simplified Reduction From 1-in-3-SAT

• Variable gadget: just vi, no vi (monotone)

• Clause gadget:

gi = 2fi

hi = 2gi

= 4fi

ti = hi + 1

= 4fi + 1

va + vb + vc = ti

= 4fi + 1 ≡ 1(mod4)

9



Scribe: Philip Dasler
3-SAT and NP-Hardness Date: 09/23/2014

9.3 3-SAT Solvable =⇒ Cryptorithm Solvable

• distinguish ai, bi, ci, di, . . . by value mod 128 (one class for each variable)

• e.g., below are possible choices for each variable:

vi ≡ 8(mod128) if TRUE

≡ 9(mod128) if FALSE

ai ≡ {2, 34, 66, 98}(mod128)

bi ≡ {4, 68}

• set
⌊

vi

128

⌋
and

⌊
vi

128

⌋
∈ [0, (2n)3]

– such that we have distinct sums of triples for all clauses

– It was proven that for any k there is a set of k numbers all between
1 . . . k3 such that their sum in triples are distinct (we can use powers
of 2 but the base would be in O(4n) and not good for strong NP-
Hardness)[1].

• easy proof of polynomial range (based on fusion trees):

– if < i set by induction, vi must avoid vj+ vk− vl− vm− vp < (2n)5

choices
=⇒ (2n)5 suffices

=⇒ strongly NP-hard

• The final result would be in base (2n)33.128 = 3072n3 (see [3] and its
revision [4] for all of the details).

A Notes

It is unknown whether or not the graph isomorphism problem is NP-Complete.
Because of this, researchers have defined a new class GI, the set of problems
which are polynomial-time reducible to the graph isomorphism problem. If the
graph isomorphism problem is solvable in polynomial time, then GI would be
equal to P.

References

[1] SC Bose and S Chowla. Report inst. theory of numbers, 1959.

[2] Stephen A. Cook. The complexity of theorem-proving procedures. In Pro-
ceedings of the Third Annual ACM Symposium on Theory of Computing,
STOC ’71, pages 151–158, New York, NY, USA, 1971. ACM.

10



Scribe: Philip Dasler
3-SAT and NP-Hardness Date: 09/23/2014

[3] D Eppstein. On the np-completeness of cryptarithms. ACM SIGACT News,
18(3):38–40, 1987.

[4] David Eppstein. On the np-completeness of cryptarithms. Computer Sci-
ence Department, Columbia University, URL: http://www. ics. uci. edu/˜
eppstein/pubs/Epp-SN-87. pdf, pages 06–8, 2000.

[5] Uriel Feige. A threshold of ln n for approximating set cover. JOURNAL
OF THE ACM, 45:314–318, 1998.

[6] M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified NP-
complete graph problems. Theoretical Computer Science, 1(3):237–267,
February 1976.

[7] E Mark Gold. Complexity of automaton identification from given data.
Information and Control, 37(3):302–320, June 1978.

[8] Michael Hoffmann. Motion planning amidst movable square blocks: Push-*
is np-hard, 2000.

[9] Joseph S Madachy. Madachy’s Mathematical Recreations. Dover Publica-
tions, 1979.

[10] Thomas J. Schaefer. The complexity of satisfiability problems. In Pro-
ceedings of the Tenth Annual ACM Symposium on Theory of Computing,
STOC ’78, pages 216–226, New York, NY, USA, 1978. ACM.

[11] B.A Trakhtenbrot. A survey of russian approaches to perebor (brute-force
searches) algorithms. Annals of the History of Computing, 6(4):384–400,
October 1984.

11


	SAT = Satisfiability
	Circuit SAT
	CNF SAT Cook:1971
	3-SAT Cook:1971
	3-SAT-5 Feige98athreshold
	Monotone 3-SAT goldcomplexity1978


	Polynomial-Time Variants of SAT
	2-SAT
	MAX 2-SAT gareysimplified1976

	Horn SAT
	Dual Horn SAT

	DNF
	Alternative Clauses for 3-SAT
	1-in-3-SAT Schaefer:1978
	``Monotone'' 1-in-3-SAT
	``Monotone'' Not Exactly 1-in-3-SAT Schaefer:1978

	NAE 3-SAT Schaefer:1978
	``Monotone'' NAE 3-SAT


	Shaefer's Dichotomy Theorem Schaefer:1978 (A Universal Theorem)
	2-Colorable Perfect Matching Schaefer:1978
	Cryptarithms/Alphametics madachy1979madachy
	Reduction from 3-SAT
	Simplified Reduction From 1-in-3-SAT
	3-SAT Solvable -3mu Cryptorithm Solvable

	Notes

