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1 Overview

In this lecture, ”Approximation Preserving Reductions” and ”Gap Preserving
Reduction” are introduced, followed by some examples from APR reduction.

2 Definitions

The first definition here is Approximation Preserving Reduction(APR
reduction). Approximation Preserving Reduction from problem A to B in
general means if we can well-approximate B, we can well-approximate A as
well. Indeed, there are more than eight notions of approximation preserving
reductions differing only in some details.

Definition 1 Let π1 and π2 be two minimization problems. An Approxima-
tion (factor) Preserving Reduction from π1 to π2 consists of two poly-time com-
putable functions f, g such that

1. For any instance I1 of π1, I2 = f(I1) is an instance of π2 such that
OPTπ2(I2) ≤ OPTπ1(I1).

2. For any feasible solution S2 of I2, S1 = g(I1, S2) (g maps S2 into an
instance of I1) we have Costπ1(I1, S1) ≤ Costπ2(I2, S2).

Note that OPTπ2(I2) ≤ OPTπ1(I1) ≤ Costπ1(I1, S1) ≤ Costπ2(I2, S2). There-
fore, if there is an approximation factor ∆ for π2 then there is an approximation
factor ∆ for π1 as well.

Costπ2(I2, S2)

OPTπ2(I2)
≤ ∆⇒ Costπ1(I1, S1)

OPTπ1(I1)
≤ ∆ (1)
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Similarly, if there is no ∆-approximation for π1, then there is no ∆-approximation
for π2.

Note : If π1 and π2 are maximization problems we should have OPTπ2(I2) ≥
OPTπ1(I1) and Costπ1(I1, S1) ≥ Costπ2(I2, S2).

Another useful reduction is Gap Preserving Reduction specially because
of PCP theorem.

Definition 2 Let P and P ′ be maximization problems. A Gap Preserving
Reduction from P to P ′ is a polynomial-time algorithm which given an instance
I of P with |I| = n produces an instance I ′ of P ′ with size n ′ such that if

1. OPT(I) ≥ h(n) then OPT(I ′) ≥ h ′(n ′)

2. OPT(I) ≤ h(n)
g(n) then OPT(I ′) ≤ h ′(n ′)

g ′(n ′)

for some functions g, h, g ′, h ′ with g(n) ≥ 1 and g ′(n ′) ≥ 1.
For minimization problems the above two conditions change to the following

two conditions:

1. OPT(I) ≤ h(n) then OPT(I ′) ≤ h ′(n ′)

2. OPT(I) ≥ h(n)g(n) then OPT(I ′) ≥ h ′(n ′)g ′(n ′)

Observe that if Gap−Pg(n) is hard and thus approximating P within factor
g(n) is hard, then Gap−P ′

g ′(n ′) is also hard (and thus approximating P within

factor g ′(n ′) is hard)

3 PCP, Unique Games Conjecture and Other
Theorems

Theorem 1 PCP Theorem{Raz’98}: For every ε > 0, there is an instance of
Max-Rep with n ≤ 1

εO(1) (recall that in Max-Rep we have 2n sets of k cardinality
each) such that it is NP-hard to distinguish between the following two cases:

1. There is a solution which covers all super-edges.

2. In every solution we can cover at most ε fraction of super-edges.

Theorem 2 Unique Games Conjecture{Khot’02}: For every 0 < ε < 1
2

, there
is a Unique Games instance such that it is NP-hard to distinguish between the
following two cases:

1. There is a solution which covers at least 1− ε fraction of super-edges.

2. In every solution we can cover at most ε fraction of super-edges.
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Note that if UGC is correct (though there is some doubt about it at least
in this very strong form), then every gap-preserving reduction/approximation
preserving reduction using that gives us inapproximability results. Proving in-
approximability is often done as follows:

UGC, PCP
Gap−preserving
−−−−−−−−−−−−→

reduction
some problems

APRreduction
−−−−−−−−−−−→ other problems

A fundamental and quite difficult result which is equivalent to PCP theorem
(and in fact derived from it) is as follows.

Theorem 3 : There exists constant ε0 such that it is NP-hard to distinguish
the following two cases for Max-3SAT problem:

1. The given input instance is satisfiable.

2. At most 1− ε0 fraction of the clauses are satisfiable in every assignment.

Theorem above says Max-3SAT is APX-hard. Using this theorem we can
get 7

8
-inapproximability result for 3-Sat but then the gap is not between all

satisfiability and 7
8

-satisfiability.
Another useful consequence of PCP is the following theorem :

Theorem 4 : Unless NP ⊆ DTIME(O(npolylog(n))), it is hard

1. For Max-Rep to distinguish the following two cases

(a) We cover all super edges

(b) We can cover at most 1

2log
1−ε(n)

fraction of super-edges.

2. For Min-Rep to distinguish the following two cases

(a) There is a solution of size 2k(i.e. exactly one vertex from each set).

(b) To cover all super-edges we need at least 2k2log
1−ε(n) fraction of

super-edges.

Note that by the above theorem both Min-Rep and Max-Rep cannot be approxi-

mated within ration 2log
1−ε(n) for any fixed ε > 0 unlessNP ⊆ DTIME(O(npolylog(n))).

Theorem 5 If it is NP-hard for Max-3SAT problem to distinguish between
these two cases

1. Satisfy all clauses.

2. Satisfy only a c-fraction of the clauses.

Then there is no approximation factor better than 1
c

for Max-3SAT.

Proof: Say there is an α-approximation algorithm such that α > 1
c
. Run this

algorithm on Max-3SAT instance. If we are in case 1 that is all the clauses can
be satisfied, the algorithm would satisfy more than c − fraction. Therefore, if
less than c-fraction of the clauses are satisfied we are in case 2. Thus, we are in
case 1 iff more than c-fraction of the clauses are satisfied.
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Figure 1: APR reduction from Set Cover to Node Weighted Steiner Tree

4 APR reduction Examples

4.1 Example 1: APR reduction from Set Cover to Node
Weighted Steiner Tree

Definition 3 Node Weighted Steiner Tree Given graph G = (V, E) with
weights on its nodes, a subset of V marked as terminal and a node r ∈ V as
root, We want to choose a set of nodes of minimum weight such that all the
terminals are connected to the root.

Reduction: Construct a graph from the given set cover instance I1 as follow.
Consider a vertex corresponding to each set with same weight. Add a vertex
corresponding to each element with weight zero. Connect each element to the
sets it belongs to. Add a root with weight zero connected to all sets. See
figure 1 for illustration. The vertices corresponding to the elements are the
set of terminals. This is an instance I2 of Node Weighted Steiner Tree. Note
that I2 = f(I1) if we assume f to be the algorithm for constructing this graph.
Assume we have the optimum solution to I1. Then choose the corresponding
nodes to the sets in I2 along with the set of terminals and the root. Each element
is at least in one chosen set and therefore, each terminal is at least connected
to one of root’s neighbors. This gives a solution of the exact same cost in I2 as
optimum of I1; i.e, OPTπ2(I2) ≤ OPTπ1(I1).

Now suppose you have a solution S2 of I2. Similarly, choose all the sets
corresponding to the chosen vertices to obtain solution S1 = g(I1, S2) of I1.
With the same reasoning we can argue that S1 is a valid solution for set cover
instance and Costπ1(I1, S1) = Costπ2(I2, S2). This completes the reduction.
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Figure 2: APR reduction from Min Rep to Directed Steiner Forest

Since there is no logn-approximation for Set Cover problem, there is no
logn-approximation for Node Weighted Steiner Tree as well.

Note : There is no APR reduction from Min Rep to Edge Weighted Steiner
Forest from. In fact Edge Weighted Steiner Forest problem has 1.39-approximation.

4.2 Example 2: APR reduction from Min Rep to Directed
Steiner Forest

Assume you have the Min Rep instance graph. Direct all the edges from set
A = ∪ki=1Ai to set B = ∪ki=1Bi with weight 0 to get a weighted directed graph.
Also add 2k nodes (where k is the number of sets in each part of the Min
Rep instance) a1, a2, . . . , ak and b1, b2, . . . , bk such that for any i ∈ [k], ai
has a directed edge to all vertices in Ai with weight 1 and all vertices in Bi
have directed edges to bi with weight 1. Figure 2 illustrates this reduction.
Require all pairs (ai, bj) in directed steiner forest instance iff there is a superedge
between Ai and Bj. It is easy to see that for each solution to an instance of Min
Rep, we have an exact same cost solution to the corresponding Directed Steiner
Forest instance and vice versa.

4.3 Example 3: APR reduction from Dominating Set to
Set Cover

Let I1 be an instance of the Dominating Set problem. Build I2, an instance
of Set Cover problem, by considering one element and one set for each vertex
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Figure 3: APR reduction from Group Steiner Tree to Directed Steiner Tree

in I1. The set corresponding to vertex v in I1 instance contains all the ele-
ments corresponding to v and its neighbors and has the same cost as the vertex
weight. For an optimal solution of Dominating Set problem, choose all the sets
corresponding to the chosen vertices to obtain a solution of I2 of the exact same
cost. Similarly, a solution to I2 can be changed to a same cost solution of I1 by
choosing the vertices corresponding to the chosen sets in I2.

Dominating Set problem is logn-hard to approximate and so is Set Cover
problem by this reduction.

4.4 Example 4: APR reduction from Group Steiner Tree
to Directed Steiner Tree

An instance I2 of Directed Steiner Tree is constructed from an instance I1 of
Group Steiner Tree as follows. Direct all the edges of the graph G of I1 in both
directions with the same weight as the undirected graph. The root remains the
same. Add vertex gi for each group i in G and connect it with a directed zero-
cost edge to all vertices in group i and add gi to the set of terminals. Figure
3 shows how the reduction is done. The optimal solution in I1 can be changed
into a same cost solution of I2 by choosing the same set of edges plus all the
edges originating from gi for any group i. On the other hand, any solution of
I2 has at least one vertex of group i connected to the root and thus is a same
cost solution of I1 as well. This completes APR reduction.

4.5 Example 5: APR reduction from Max-3SAT to Inde-
pendent Set

Let φ be an instance of the Max-3SAT problem. Let C1, . . . , Cm be the set of
clauses in φ and x1, x2, . . . , xn be the set of variables in φ. Construct graph Gφ
as follows. Add three nodes per clause (one node for each literal in the clause)
and connect them to get a triangle for each clause. We also add an edge between
two nodes corresponding to xi and x̄i if they are from two different clauses. In
this setting, OPTMax−3SAT (φ) = OPTInd Set(Gφ). Figure 4 shows edges for
two clauses.
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Figure 4: APR reduction from Max-3SAT to Independent Set

Since according to PCP, Max-3-SAT is APX-hard, so is independent set.
Also the reduction implies that there is a gap between OPT = m and OPT <
(1− ε0)m for independent set and thus it is a gap-preserving reduction as well.
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