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1 Overview

In this lecture, we go over the basics of Fixed Parameter Tractable (FPT) prob-
lems. We define the related concept of Kernelization, introduce an appropriate
notion for reduction in parameterized complexity, giving various examples along
the way. We conclude with W-Hierarchy, which represents various complexity
classes restricted to parameterized problems.

2 Fixed Parameter Tractability

Loosely speaking our algorithmic goals can be classified into three broad cate-
gories:

1. Obtaining exact and optimal solution

2. Computing the solution fast, i.e. in poly time.

3. Tackling hard problems, i.e. NP-hard problems

Unless P = NP we have to satisfy ourselves with any two out of the three
goals. Most of the early undergrad algorithms like matching, shortest path
etc. are exact and fast. To tackle hard problems and obtain a fast solution
we use approximation algorithms, PTAS etc. FPT or fixed parameter tractable
algorithms come to our rescue when we need to tackle hard problems yet obtain
an optimal solution. The idea behind fixed-parameter tractability is to take an
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NP-hard problem, and to try to separate out the complexity into two pieces
- some piece that is polynomial in the size of the input, and another piece
that depends on some ”parameter” to the problem. Many problems have the
following form: given an object x of size n and a nonnegative integer k, does x
have some property that depends on k? We call such a problem parameterized.

Definition 1 A parameterized problem L{n, k} is fixed-parameter tractable if it
has a running time of f(k) · nO(1), where f is an arbitrary function depending
only on k. The corresponding complexity class is called FPT .

Theorem 1 k− vertexcover is in FPT

Proof: We recall k − vertexcover is the problem of deciding whether a given
graph G ≡ (V, E) has a vertex cover of size k. We begin by observing the
following simple fact.

Observation 1 Let (u, v) ∈ E G has a vertex cover of size k iff at least one of
G− u or G− v has a vertex cover of size ≤ k− 1
Let VC(G, k) denote the boolean version of the k− vertexcover problem. From
the above observation it follows VC(G, k) = VC(G−u, k−1)∨VC(G−v, k−1).
We note the base cases: VC(H, 0) is false for non empty H and true for empty
H. All of the base cases and the operations G − u can be done in O(n) time.
hence we can find VC(G,K) in 2kn time as there are k levels of recursion and
each recursion takes O(n) time.
The best known vertex cover FPT algorithm runs in O(1.2378k + kn) [1].

FPT algorithm having a running time of O
(
nk

)
is generally considered bad,

e.g. k − clique problem. Running time of 2kn or in general f(k)n is good for
e.g. k − vertexcover problem. Having a sub-exponential running time in the
parameter k is considered great for example, k−vertexcover problem on planar

graphs has a 2O(
√
k)nO(1) time algorithm.

3 Kernelization

Definition 2 Kenelization is the procedure of reducing a problem X{n, k} down
to X{f(k), g(k)} using only nO(1) preprocessing time.

We say a problem has a kernel if it can be kernelized. From the definition,
having a kernel implies a running time of nO(1) + f(k). But in fact we know
something much stronger.

Theorem 2 A parameterized problem has a kernel if and only if it is fixed
parameter tractable

In general f(k) can be exponential but a good kernel should be polynomial
or even linear in k.

Next we look at a simple kernelization for the vertex cover problem.
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• First add any vertex of degree more than k to the vertex cover and remove
the edges incident upon them, as otherwise we would need at least k + 1
vertices to cover edges incident on it.

• Now find a maximal matching(a set of edges H without common vertices
which is maximal i.e. no edges can be added to H)

Note that the size of the maximal matching cannot be more than k otherwise
we would need more than k vertices to cover these edges in the matching. Also
each vertex has to be the neighbor of at least one of the vertex in the matching
(by maximality). Now the maximum degree of any vertex in the matching is
k. Hence the size of the kernel is 2k2 or O(k2). The currently best known
kernelization algorithm in terms of the number of vertices is due to Lampis
(2011) [2] and achieves 2k− c log k vertices for any fixed constant c.

It is not possible, in this problem, to find a kernel of size O(log k), unless
P = NP, for such a kernel would lead to a polynomial-time algorithm for the NP-
hard vertex cover problem. However, much stronger bounds on the kernel size
can be proven in this case: unless coNP ⊆ NP/poly (believed to be unlikely),
for every ε > 0 it is impossible in polynomial time to find kernels with O(k2−ε)
edges [3]. It is unknown for vertex cover whether kernels with (2− ε)k vertices
for some ε > 0 would have any unlikely complexity-theoretic consequences.

4 FPT hardness or parameterized Complexity

To build a complexity theory for parameterized problems, we need two things

• An appropriate notion of reduction (poly time reductions are not helpful)

• An appropriate hypothesis

To see why polynomial time reductions are not good we consider the following
example. It is easy to see that a graph G has an independent set of size k (a set
of k vertices with no edges between them) if and only if it has a vertex cover
of size n− k. This transforms an independent set of instance (G, k) to a vertex
cover problem of instance (G,n − k) through a poly time reduction. However
vertex− cover is in FPT but independent− set is not known to be in FPT.

4.1 parameterized reduction

Let (X, k) be an instance of parametric problem P. We consider φ as a param-
eterized reduction from P to Q if

• φ(X) can be computed in time f(k) · |X|O(1)

• φ(X) is a yes instance of Q ⇐⇒ X is a yes instance of P.

• If k is the parameter of the instance X and k ′ the parameter of instance
φ(X) then k ′ ≤ g(k) for some function g.
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Note that by the above definition if there is a parametric reduction from
problem P toQ andQ is FPT then P is also FPT. Transforming independent set(G, k)
to vertex cover(G,n − k) is not a parameterized reduction. But transforming
independent set(G, k) to a clique(Ḡ, k) is a parameterized reduction.

Before moving into example of paametrized reductions, we define a useful
variant of clique called multicolored clique, which heps in simplifying details in
FPT reductions by allowing an almost systematic gdget construction.

Definition 3 multi colored clique: Given k colors and a graph G whose ver-
tices are colored with one of the k colors, does there exist a clique containing
one vertex fom each color class?

Note that multicolored versions exists for all natural subset problems e.g. inde-
pendent set, and one can show that they are as hard as their uncolored coun-
terparts [4]

Theorem 3 There is a parameterized reduction from k− clique to
multi colored clique

Proof: Given an instance (G, k) for k − clique, we construct a graph G ′ by
taking k copies v1, v2, · · · , vk for each vertex v and color vi with color i. We
then add an edge in G ′ between two vertex ui and vj , i 6= j iff u and v are
connected in G ′. It is straightforward to verify that G has a k-clique iff G ′ has
a k-multicolored clique.

Theorem 4 There is a parameterized reduction from
multi colored independent set to k− dominating set

Proof: First we recall the definition of k− dominating set: Given a graph G
and a number k does there exist a set D of size k such that the rest of the n−k
vertices have at least one neighbor in D?

Let G be a graph with its vertices being k-colored. We construct a graph H
such that G has a multicolored clique if and only if H has a dominating set of size
k. LetG, k, (V1, · · · , Vk) be an instance of themulti colored independent set
with Vi being the set of vertices colored i. We construct a graph H as follows

• For every vertex v ∈ V(G), we introduce v in H

• For every 1 ≤ i ≤ k, we make the set Vi in H a clique by adding th
required edges.

• For every 1 ≤ i ≤ k, we introduce two new vertices xi , yi into H and
make them adjacent to every vertex in Vi

• For every edge e ∈ E(G) with endpoints u ∈ Vi and v ∈ Vj, we introduce a
vertex we into H and make it adjacent to every vertex in (Vi ∪ Vj) \{u, v}
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We claim G has a k colored independent set iff H has a dominating set of size
k.

Let Z ⊂ V(G) be an independent set such that Z ≡ {z1, z2, · · · , zk} and
zi ∈ Vi. Now we show Z is a dominating set in H. xi and yi are dominated by
zi. All of the vertices in Vi’s are dominated by zi. Now suppose w{u,v}, with
u ∈ Vi and v ∈ Vj does not have a neighbor in Z. That implies u = zi and
v = zj, which further implies that zi and zj have an edge in G [contradiction].

Next, let’s assume we have a dominating set D of size k in H. Since all of
the xi’s and yi’s have to be dominated each Vi must have at least one of its
member in D. Hence we can write D as D = {d1, d2, · · · , dk} such that di ∈ Vi.
Now we show that D is a k-independent set of G. Of course all of the vertices
in D are uniquely colored in G as they belong to different Vis. Now suppose
that di and dj have an edge between them in G. That implies w{di,dj} does not
have a neighbor in D [contradiction]

Indeed lots of other parameterized problems are known to be as hard as Clique
such as Set cover, Hitting set, Connected Dominating set, Independent domi-
nating set, partial vertex cover etc.

Exercise 1 Prove that there is a parameterized reduction from Dominating set
to Connected dominating set and Set cover.

So far we have been relying on just P 6= NP for parameterized complexity. Often
we need stronger assumptions like

• [Clique hardness]: k − clique or k − independent set cannot be solved
in f(k)nO(1) time

• [Exponential Time Hypothesis]: n-variable 3 − SAT cannot be solved in
2O(n) time.

The second assumption is much stronger and in fact implies the first [5].

4.2 W-Hierarchy

From the previous subsection we have a parameterized reduction from Indepen-
dent Set to Dominating Set problem, but what about the reverse? The aswer
most probably is ’No’. Unlike NP completeness where most problems are equiv-
alent, here we have a hierarchy of hardness. Let us first define few important
concepts

Definition 4 Boolean circuit is a circuit consisting of input gates, negation
(∼), AND (∧), OR (∨) and output gates.

Definition 5 Circuit Satisfiability: Given a Boolean circuit C, decide if there
is an assignment on the inputs of C such that the output is true

Figure 1 shows an example of Circuit SAT
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Figure 1: Circuit SAT
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Figure 2: Graph G and its corresponding WCSAT for Independent set problem

Definition 6 Weighted Circuit satisfiability: Given a Boolean circuit C and an
integer k, decide if there is an assignment of weight k such that the output is
true, where the weight is the number of true inputs.

Definition 7 The depth of a circuit is the maximum length of a path from an
input to the output

Definition 8 The weft of circuit is the maximum number of large gates on a
path from an input to the output, where large gates are the gates that have more
than two inputs.

Next we briefly show the reduction of independent set to a weighted circuit
satisfiability. Figure 2 shows such an example. For every vertex vi in G we
create a corresponding literal xi. For every literal xi we negate it by attaching
it to a negation gate Ti. For every edge e = {vi, vj} we OR Ti and Tj. Finally
we AND all the outputs from the OR gates to get the final output. It is easy
to see that such a construction of a weighted circuit SAT is euivalent to the
independent set problem. We also observe that weft of such a circuit is 1 and
depth is 3.

Similarly we can show that Dominating set reduces to weighted circuit SAT.
Figure 3 gives an example. For every vertex vi in G we create a corresponding
literal xi. For every literal xi we create an OR gate Ti which has as input xj iff
vj ∈ vi ∪N(vi), where N(v) is the set of neighbors of v. Next we AND all the
outputs from Tis. The depth and weft both equal two for such a circuit.
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Figure 3: Graph G and its corresponding WCSAT for Dominating set problem

Let C[t, d] be the set of all circuits having weft at most t and depth at most
d.

Definition 9 A problem P is in class W[t] if there is a constant d (that holds
for all instances of the problem and may be a function of k) and a parameterized
reduction from P to weighted circuit SAT of C[d, t]

Hence Independent set problem is in W[1] and the dominating set problem
is in W[2]. Moreover it can be proven that Independent-Set and Dominating Set
problem are W[1] and W[2]-complete respectively. Note that FPT algorithms
are in C[O (f(k)) , 0] and thus in W[0].

Also W[i] ⊆ W[j] for all i ≤ j. Hence if there is a parameterized reduction
from Dominating set to Independent set,W[1] =W[2], on account of those prob-
lems being complete in their respective classes. Under parameterized reductions
it is believed the ⊆ is indeed ⊂.

Many natural computational problems occupy the lower levels W[1], W[2].
XP is the class of parameterized algorithms that can be solved in nf(k) time. So
to conclude we have FPT =W[0] ⊆W[1] ⊆W[2] ⊆ · · · ⊆ XP
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