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1 Overview

In the previous lecture we concluded FPT = W[0] C W[I] C W[2] C ... C XP.
In summary, by parameterized reductions we can show lots of problems are at
least as hard as clique or dominating set ans thus in W[1] or W[2]. In this
lecture, we study exponential time hypothesis and several hardness results in
planar graphs.

2 Exponential time hypothesis (ETH)

(introduced by Impagliazzo, Paturi, Zane [2])

Definition 1 ETH: there is no 2°™) time algorithm for n. variable 3-SAT. (the
current best bound is 1.30704™ [1]).

Note that an n-variable 3-SAT can have Q(n3) clauses but Impagliazzo et al.
[2] show that there is a 2°(™)-time algorithm for n-variable 3-SAT iff there is
a 2°(™)_time algorithm for m-clause 3-SAT. Thus ETH also says: There is no
2°(m)_time algorithm for m-clause 3-SAT.

The standard textbook NP-hardness reduction from 3-SAT to 3-coloring
constructs a graph of O(n +m) = O(m) edges and O(n +m) = O(m) vertices
to solve 3-SAT instance of n-variables and m-clauses. Thus assuming ETH,
there is no 2°(™ algorithm for 3-coloring on an n-vertex graph G.

Since there are many standard polynomial-time reductions from 3-coloring
to many other problems such that the reduction increases the number of vertices
by at most a constant factor, we have
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Corollary 1 Assuming ETH, there is no 2°™) -time algorithm on vertex graphs
for Independent set, Clique, Dominating set, Vertex cover, Hamiltonian path,
Feedback vertex set, etc..

Similarly, since in the problems above k < n we have no 2°(*n°) algorithm
for the k version of the problems above. (Note that 2°(™nO1) = 20(n)y,

2.1 Tighter Bounds

As aforementioned ETH implies Clique hardness; indeed we can prove a much
stronger and more interesting theorem

Theorem 1 (chen et al.’04 [3]) : Assuming ETH, there is no f(k)n°*) al-
gorithm for k-clique for any computable function f which is increasing.

Proof: Assume by contradiction k-clique can be solved in time f(k)nﬁ,
where s(k) is a monotone increasing unbounded function. We use this algorithm
to solve 3-coloring on an n-vertex graph G in time 2°(™). Let k be the largest
integer such that f(k) < n and 5] < n. Thus function k := k(n) is monotone
increasing and unbounded. Now we split the vertices of G into k groups. Let
us build a graph H where each vertex corresponds to a proper 3-coloring of one
of the groups and connect two vertices if they are not conflicting. Thus every
k-clique of H corresponds to a proper 3-coloring of G and thus a 3-coloring of
G can be found in time f(k)|V(H)| 0. Since f(k) < n and the partition into k
groups

Kk k

FK)IV(H)[ 50 <n- (k3%)50 =n . k500 . 3500 < n?. 3500,

Since k := k(n) and s(k) are monotone increasing and unbounded, n? - 3500 =
20(n) ]
It is easy to see that if we have a reduction from k-clique instance (x,k) to an
instance (x’,g(k)) of problem A, then f(k)‘rlo(ff1 (k) algorithm for A implies
f(k)n°® for k-clique. Thus

e To rule out f(k)n°™) algorithms for A, we need a parameterized reduction
that blows up the parameter at most linearly.

e To rule out f(k)no(‘/i) algorithms for A, we need a parameterized reduc-
tion that blows up the parameter at most quadratically.

e Thus assuming ETH, there is no f(k)n°) algorithm for Set cover, Hitting
set, Connected dominating set, Independent dominating set, Partial vertex
cover, and Dominating set in bipartite graphs.
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Figure 1:

2.2 Planar graphs

There is a standard (NP-complete) reduction from 3-coloring in general graphs
to planar 3-coloring which uses a “cross over gadget” below.

Claim 1 In every 3-coloring of the gadget, opposite external connectors have
the same color.

Claim 2 FEvery coloring of the external connectors where the opposite vertices
have the same color can be extended to the whole gadget.

Thus if two edges cross, we replace them with a cross over gadget and Claims 1
and 2 guarantee that two end-points of an edge have different colors.

The reduction from 3-coloring to planar 3-coloring introduces O(1) new
edges/vertices. Thus a graph with m edges and n vertices can be drawn with
O(m?) crossings.

3SAT Graph G Planar Graph G'

n Var 0O(m) ver 0(m?) ver

m Clause 0(m) edge> 0(m?2) edge

Figure 2:

Corollary 2 Assuming ETH, there is no 2°V' ™) algorithm for 3-coloring on
n-vertex planar graph G (observed by [Cai and Juedes [4]]).
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consequence: Assuming ETH, there is no 20V ) _time and no ZU(W)TLO“ )-
time algorithm on planar graphs for (k)-Independent, (k)-Dominating set, (k)-
Vertex cover, (k)-path, (k)-Feedback vertex set, etc.

Note that above bounds are indeed tight due to bidimensionality algorithms.

To get stronger and more bounds, Grid tiling is the key problem (introduced
by [Marx [5]])

Grid tiling: Input: a k x k matrix and a set of pairs S;; C [D] x [D] for
each cell.

Output: find a pair s;; € Sy ; for each cell such that

e Vertical neighbors agree in the first coordinate.

e Horizontal neighbors agree in the second coordinate.

3,1 1,4 ’
2.4 (5,3) (2.4)

(2,4)
(2,2) (3,1)
(1,4) (1,2) =2

2
(2,3) (1,1)
(1.3) (1.3) (2.3)

Figure 3:

Theorem 2 Grid tiling is W[1]-hard.

Proof: We use a reduction from k-clique. Given a graph G for k-clique we
construct a k x k grid as follows. For each cell (i,j):

e For i =j, the pair (x,y) € Sij iff x =v.
e For i #j, the pair (x,y) € Sij iff x and y are adjacent in G.

Now each diagonal cell defines a vertex in clique. ]
Indeed the above reduction gives a stronger bound.

Theorem 3 k x k Grid tiling is w[1]-hard and assuming ETH cannot be solved
in time f(k)n°¥) for any function f.

This lower bound is the key for proving hardness results for planar graphs or
even general graphs (the matrix is like a grid which is planar).
Examples

e List coloring on planar graphs
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e Multiway cut on planar graphs with k terminals
e Independent set for unit disks
e (*)Planar directed Steiner forest with k terminals

Let’s see an overview of the proof of (*).

We want to show DSF(Directed Steiner forest which connects k terminal
pairs (si,ti) in a directed graph), under ETH does not have any algorithm
f(k)n°™) even on planar DAGs.

Here we have 2k terminals (ai, bi) and (ci,d;i) as shown in Figure 4. We
construct the graph in Figure 4 which has the same size as Grid tiling and
thus f(k)n°®*) hardness of Grid tiling gives the same hardness for DSF even on
planar DAGs (combine hardness of Theorem 4, 5 with hardness of Grid tiling -
see more details in [Chitnis, Hajiaghayi, Marx [6]]).

If (x,y) = si,j € Si,j then we color green the vertex in the gadget Gy ;.
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Figure 4:

We need a small technical modification: we add one dummy row and column
to the Grid tiling instance. Essentially we now have a dummy index 1. So neither
the first row nor the first column of any S; j has any elements in the Grid tiling
instance. That is, no green vertex can be in the first row or the first column of
any gadget. Combining this fact with the oriental of the edges we get the only
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Figure 5: Let u, v be two consecutive vertices on the canonical path say P%. Let
v on the canonical path Q%l and let y be the vertex preceding it on this path.
If v is a green vertex then we subdivide the edge (y,v) by introducing a new
vertex x and adding two edges (y,x) and (x,v) of weight 1. We also add an
edge (u,x) of weight 1. The idea is if both the edges (y,v) and (u,Vv) were being
used initially then now we can save a weight of 1 by making the horizontal path
choose (u,x) and then we get (x,v) for free, as it is already being used by the
vertical canonical path.

gadgets which can intersect any a; ~+ b; path and Gj 1, Gi 2,..., Gy k. Similarly
the only gadgets which can intersect any c; ~ dj paths are G135, G2 j,..., Gk ;.

We now prove two theorems which together give a reduction from Grid tiling
to DSF.

Theorem 4 Grid tiling has a solution implies OPT for DSF is at most p —k?.

Proof: For each 1 < i,j < k let si; € Sij be the vertex in the solution of
the Grid tiling instance. Therefore for every i € k we know that each of the
k vertices si1,8i,2,...,5i,k have same x-coordinate, say o;. Similarly for each
j € [k] each of the k vertices s1 j,52,,...,5k,j has the same y-coordinate, say
Aj. We now use the canonical path P for (ai,b;) and the canonical path Q])\’
for (ci,di). Each of the ¢; ~» dj paths will pay the full weight of a canonical
path, which is 5 = A(n +1) + (2k + 1) + 2k(n — 1). However each a; ~» b;
path will encounter a green vertex in each of the k gadgets along the way and
save k in each path. Hence over all terminals we save a weight of k? and we
have a solution to DSF of weight p — k2. [ |

Theorem 5 Optimum for DSF is at most B — k? implies Grid tiling has a
solution.

Proof: The proof is more involved and uses the concept of canonical path. ®
Finally note that one probably most important result in lower bound for ker-
nelization is that:
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Theorem 6 For any € > 0, the vertex cover problem parameterized by solution
size does not admit a polynomial kernel with bitsize (in this case the number of
the edges in O(k?>~¢) unless NP C CoNP/poly.

Though we do not prove theorem above since it is involved, we can use pa-
rameterized reduction to get hardness for other problems (since we can always
pipeline the parameterized reduction into kernelization algorithm). e.g. con-
sider Feedback vertex set (deleting a minimum the number of vertices to make
a graph cycle-free).

There is a simple parameterized transformation that takes an instance (G, k)
of vertex cover and outputs an equivalent instance (G’,k) of Feedback vertex
set. Take every edge uv € E(G) and add a vertex wy,, that is adjacent only to
u and v (in G’); thus creating a triangle that must hit by the solution. Thus
we get a similar theorem to Theorem 6 for Feedback vertex set as well.

We have more involved theorems as well.

Theorem 7 Let € > 0, be any constant. Unless NP C CoNP/poly;

e For any q > 3, the q-SAT problem parameterized by the number of vari-
ables 1 does not have a kernel of bitsize O(n9—¢).

e For any d > 2, the d-hitting set problem parameterized by solution size
k does not have a kernel with bitsize O(k4=€). (In hitting set we want
to find a subset of minimum size that intersects every set of collections C
which has size < d)

Note that theorem above says trivial kernelization which just removes duplicates
of clauses or sets is the best that we can do.

Another important theorem ia as follows for Steiner tree (which asks for
minimum the number of edges which connect a terminal set T C V(G).)

Theorem 8 Steiner tree parameterized by the size of the tree does not admit a
polynomial kernel unless NP C CoNP/poly.

Corollary 3 The same holds if Steiner tree is parameterized by |T| instead of
solution size (since |T| < solutionsize + 1).

3 Fixed parameter algorithms and other fields

3.1 FPT and Approximation

An FPT optimum approximation algorithm for a problem O with approximation
ratio p is an algorithm A that, given an input x output a y € sol(x) such that

cost(x,y) < opt(x)p(opt(x)) if goal is min.
cost(x,y) > opt(x)/p(opt(x)) if goal is max.
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We require that on input x that algorithm A runs in f(opt(x))[x|°") time for
some computable function f. Chitnis, Hajiahayi, and Kortsaz [8] prove

Theorem 9 Under ETH and another conjecture projection Games Conjecture(PGC),
there exists constants Fi,F2 > 0 such that the set cover problem does not ad-

mit an FPT optimum approzimation algorithm with ratio p(opt) = opt"' in
ZOPtFZpoly(N, M) time where N is the size of the universe and M is the num-

ber of sets.

Theorem 10 Unless NP C SUBEXP, for every 0 < &6 < 1, there exists a
constant F(8) > 0 such that cligue has no FPT optimum approrimation with
ratio p(opt) = opt' % in 2°Pt poly(n) time where n is the number of vertices
i the graph.

There are a few f(opt) approximation for some W-Hard problems but still the
field is very new we expect more results to be known in the field.

3.2 FPT and Streaming

Though in streaming and semi-streaming, we often assume the space needed
is a function of n. However for many reasonable graph problems, we have
can assume the solution is not large on real-world input instances. Thus we
can aim for parameterized streaming in which we require the memory be in
O(k) = O(k polylog n).

Chitnis, Carmode, Hajiaghayi, and Monemizadeh [7] introduce the concept
of parameterized streaming and obtain such algorithms for matching and vertex
cover. They consider two models

1. insertion only in which edges will be just added.
2. dynamic streaming in which we have both insertion and deletion of edges.

[7] obtain results for both cases. However for dynamic streaming they only
consider the case that the solution size is at most k during the entire course of
the stream. This area is novel and new and obtaining new hardness results for
it is very interesting, e.g., if the size of the solution just at the end of the stream
is at most k and in the middle can be large.
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