
Lower Bounds for Online Algorithms

Scribe: Hossein Esfandiari
Lecturer: Vahid Liaghat

November 4th

1 Introduction

What is an oline problem Unlike the offline problems that we get the whole input
at the beginning, in an online problem we just have some part of the input in
advance. The rest of the input are queries that arrive one by one. Upon the
arrival of each request, we need to process as it is received.

In analyzing online algorithms, we usually, do not really care about the
ruing time. The source of hardness here is lack of information, not complexity
assumptions like P 6= NP . Since the algorithm does not know the rest of the
input it may not be able to make the optimum decisions.

In online problems, we want to have a ”good solution”. How to measure
a ”solution”? We compare the outcome of an online algorithm with the best
possible offline solution. This is the notion of ”competitive ratio”, which is
defined below:

Definition 1.1 (competitive ratio). Suppose, someone knows the whole input
and find an optimum solution (OPT). we want to compare ourselves with this
optimum.
Let OPT denote the cost of an optimal offline solution
Let Alg denote the cost of our algorithm.
α-competitive ratio is defined as follow:

(in minimization): ∀σ,Alg(σ) ≤ αOPT (σ) + γ

(in maximisation): Alg(σ) ≥ 1

α
OPT (σ).

Where γ is some constant independent of σ.

2 Caching Problem

When we work with data, the RAM is slow. A usual trick to speed up the access
to data is to have a cache in between to work with.

1

Definition 2.1 (caching problem). Suppose, we have n pages of RAM and k
pages of cache. The input is a sequence of request of pages in the RAM. In each
step, if you read a page from the RAM, you need to store in it in the cache.
Cost of a request from cache is 0 and a request from RAM is 1.

Indeed, an online algorithm decide what to put in cach and what to remove
form it.

There are several algorithms that one may consider the caching problem
such as:
FIFO: First In, First Out.
LIFO: Last In First Out.
LRU: Least Recently Used.
LFFO: Least Friquency First Out.

Theorem 2.2. LRU is k-competitive.

Proof. Consider that, if in the first part of the input i have k + 1 different
requests, any algorithm has at least 1 fault (because size of the cache is k and
it it not possible to have k+ 1 different pages in it). In the rest, we show that if
LRU pays for k faults, the optimum pays for at least 1 fault. In order to prove
this, we need to know the notion of phase.

Definition 2.3 (Phase:). Phase is an interval of input σ that Alg pays for
exactly k faults.

Consider an arbitrary phase [σi, σj], we have two cases.

• Case 1: In this case we assume, for some page A, Alg pays at least 2
faults in this phase. Say, this happens at σs and σr. Remark that, from
σs to σr we had k different requests excluding A. Therefore, including A
we have k + 1 different requests, and thus OPT pays at least 1.

• Case 2: In this case we assume that, all k faults that Alg pays for, is
belong to different pages. Let A be the last request of the previous phase.
Both OPT and Alg have A in their caches. If in this interval Alg pays a
penalty for A, same as case 1, OPT has to pay 1 in this phase. If Alg does
not have A, OPT does not have all k pages, and needs to pay at least 1.

Theorem 2.4. There is no [deterministic] algorithm with competitive ratio bet-
ter than k for the caching problem.

Proof. Consider the following input:
We have exactly k + 1 pages in the RAM. Given an algorithm Alg, request all
k+1 pages, and then at each step request the page that Alg had recently removed
form the cache. Alg never have the requested page in the cache. Therefore, the
cost of Alg is |σ| − k

2

Now consider the following Optimum:
Opt: kick out the page that is going to be requested furthest in the future.

Suppose that Opt pays penalties at steps i and j. We show that j − i + 1.
This means that OPT ≤ (|σ|+ 1)/k.

Consider that, Opt have k item in the cache at step i. In fact, it can keep
the items σi+1, . . . , σi+k−1. Thus, the next item that OPT may pay for is σi+k.
This says that, j >= i+ k.

Therefore, the competitive ratio is bounded by:

σ − k
(|σ|+ 1)/k

' k.

How do we prove a lower bound of deterministic algorithms for a
problem?
We assume that every deterministic algorithm A makes a sequence of decisions.
Since A is deterministic, we can anticipate its decisions. We design our hard
instance BASED on the deterministic decisions of A.
Can we have a fixed instance that is hard for every deterministic algorithm? A
fixed hard instance that does not depends on the algorithm?
No! An oblivious hard instance does not exist! For every input, there is a
’perfect’ algorithm that just outputs the optimum of that instance.
BUT, an oblivious distribution P over hard instances may exist s.t. for every
deterministic algorithm A, E[A(I)] is bad. Such P , destroys every deterministic
algorithm. How do we prove a lower bound of randomized algorithms
for a problem?
In this case, for each randomized algorithm R, we need to find an instance I s.t.
ER[R(I)] is bad, where by ER we mean the expectation over the randomness in
R.

Lemma 2.5 (Yao’s Lemma(maximization version)). Let S(P) denote the sup-
port of P . For every randomized algorithm R

min
I∈S(p)

{E[R(I)]} ≤ max
A
{EI P [A(I)]}

where the max is over all deterministic algorithms.

Intuitively Yao’s Lemma says that ”the worst input in P ≤ the best deter-
ministic algorithm w.r.t P”.

3 Online Matching

In the online matching problem, we have bipartite graph G((U, V), E). We
have the set V in advance, which are called offline vertices. The vertices in
U arrive one by one, which are called online vertices. At the time we get

3

ui, wegetallofitsneighbouraswell.Whenwereceiveanonlinevertexui, we need to
match ui to one of the offline vertices. Indeed, this decision is irrevocable.

The greedy algorithm gives a maximal matching which is a two approxima-
tion. The following example shows that the greedy algorithm is not better than
two competitive.

Example 3.1. Suppose that we have two offline vertices and two online vertices.
The first online vertex is connected to both offline vertices. The second online
vertex is connected to one of the offline vertices, the one that is matched to the
first online vertex. One can see that the outcome of greedy is 1, however the
optimum algorithm gives a matching of size 2.

One can see that the above example works for all deterministic algorithms
and says that, there is no deterministic algorithm with competitive ratio better
than 2 for online matching problem.

What about a randomize algorithm? What if we select a vertex uniformly
at random? This algorithm is 4/3 competitive for the above example. However
it is still 2 competitive in the example of figure 3.

Pr[u1 is good) =
1

n/2 + 1

Pr[u2 is good) = Pr[u1 is good)
1

n/2 + 1
+ Pr[u1 is bad)

1

n/2
≤ 1

n/2

Pr[ui is good) = 1/(n/2− i+ 2).

Thus we have:

E(Alg) ≤
∑ 1

n/2− i+ 2
+ n/2 = O(logn) + n/2.

4

Remark that there is a perfect matching of size n in this graph and thus for
large n the competitive ratio is 2.

Definition 3.2 (Ranking). select a random permutation π uniformly at ran-
dom. At each point choose the unmatched vertex with the smallest rank.

It is known that the ranking algorithm is e
e−1 competitive (not covered in

the class).

3.1 The hardness result of online matching

Consider the following instance:

• For all i and j >= i, we have the edge (ui, vj).

• For every permutation π, I(π) relabels the vertices in V by π, i.e. we have
edges (ui, vπi).

• The input is I(π), where π is chosen uniformly at random.

Here is the high level approach
We define the randomized algorithm Rand as follow:

Definition 3.3 (Rand). At any step choose an unmatched neighbour uniformly
at random.

We show the randomize algorithm Rand that is better (or the same as) any
deterministic algorithm on I(π)

Lemma 3.4. For any algorithm A we have, E[A(P)] ≤ E[Rand(I)].

Lemma 3.5. E[Rand(I)] ≤ n(1− 1/e)

These two together with Yao’s lemma shows that for any randomize algo-
rithm R, the approximation ratio of R is at most e/(e− 1).

of Lemma 3.4. Consider an arbitrary iteration i. At (the beginning of) step i,
let the set of eligible vertices be Q(i) = {vπi

|j ≥ i.
a) Suppose that, A (or Rand) have k unmatched eligible vertices. Any two

subsets of size k from Q(i) are the set of unmatched eligible vertices, with the
same probability.

Let P (i, k) be the probability that at iteration i, the number of unmatched
eligible vertices is k. In fact, we have PrA(P)(i, k) = PrRand(I)(i, k).

This shows that the expected number of steps that makes the the number of
unmatched eligible vertices 0 are the same in A and Rand. This proves Lemma
3.4.

of Lemma 3.5. Consider the algorithm Rand. For each iteration i, define the
following two random variables:

• x(i) = n− i+ 1 = |Q(i)|

5

• y(i) =number of unmatched eligible vertices.

Consider that we have:

• ∆x = −1.

• ∆y = −2 if vπi
is unmatched and ui will not me matched to it.

• ∆y = −1 otherwise.

By Lemma 3.4(a), we have Pr[vπi
is unmatched] = y(i)

|Q(i)| . Therefore

Pr[y(i+ 1)− y(i) = −2] =
y(i)

x(i)

y(i)− 1

y(i)

Thus, we have

E[∆y] = −1− y(i)− 1

x(i)

which gives us

E[∆y]

E[∆x]
= 1 +

y(i)− 1

x(i)

When n goes to infinity, this can be approximated by the solution of the follow-
ing differential equation:

dy

dx
= 1 +

y − 1

x

which gives us

y(n+ 1) =
n

e
− o(n).

This completes the proof of the lemma.

4 Online Set Cover

Definition 4.1 (Set Cover). we have a universe of elements E and a collection
of subsets of elements of E, named F . We are asked to choose the minimum
number of sets in F to cover E.

Definition 4.2 (Online Set Cover). The offline part is (F,E). In each online
step, we receive ei with the sets covering ei. At each step, we need to cover
all elements we have seen so far. Consider that, we may not receive all of the
elements in E.

This is one of the few example that we prove a good hardness result using
a time complexity assumption. Here we assume that NP can not be solved in
time nO(loglog(n)). This gives us that there is no (1 − ε)log(n) approximation
algorithm for offline set cover.

6

4.1 Reduction form set cover to online set cover

Let (E,F) be an offline hard instance with an optimal solution of size k, but any
algorithm that runs in polynomial time, can not compute a solution better than
k′ (we know k′ ∈ Ω(log(n))k). We will construct an online instance (U ′, F ′, E′)
with an optimal solution of size k s.t. an online algorithm with solution of size
better than k′O(log(n)) requires solving (E,F) with a cost better than k′.

This implies an Ω(log2(n))-hardness for online algorithms that run in poly-
nomial time.

We will shortly see that for a size N , we have |E| = m,F = n, |U ′| =
(N ′ − 1)m, |F ′| = N

2 n, |E
′| = m.log(N).

We depict these elements in the binary tree showed in figure 4.1. For every
copy, at i ∈ [1 . . . N − 1], we have a path from root to that copy.

Let the ordered vector of indices Pi, denote the indices of the path form root
to i.

• P1 =< 1 >

• Pi =< P[i/2], i >

Constructing the sets:
Substantively, every leaf i ∈ [N/2, . . . , N − 1], has a copy of offline subsets

F , that covers the same set of elements form Ui, Ui/2, . . . , U1.
For every f ∈ F and i ∈ [1 . . . N − 1], let Ui(f) denote the elements of Ui

that correspond to the copies of f .
For ∀i ∈ [N/2, . . . , N − 1], let Fi denote a copy of F s.t. ∀f ∈ F, fi = {j ∈

[1, .., log(N)|Upi(j)(f)}.
For every leaf i, we construct an online sequence E′i as follow: E′i =<

Upi(1), Upi(2), . . . , Upi(log(N)) >.

7

By Yao’s lemma, it is sufficient to show that if we pick a leaf i uniformly
at random, then every online deterministic algorithm that runs in polynomial
time uses Ω(log(n)k′) sets to cover the online requests E′i.

consider an arbitrary step j ∈ [1, . . . , log(N)] in which we receive Upi(j).
Consider the subtree T rooted at Upi(j). Only the sets that are in the leaves of
T can be useful.

We may assume that the online algorithm has to choose at least k′ sets
among these sets to cover Upi(j). Let k1 denote the number of selected sets in
the left subtree of T , while k2 denote the number of those at the right subtree.
Consider that k1 + k2 ≥ k′ which gives us max(k1, k2) ≥ k′

2 .
With out loss of generality assume that k2 ≥ k1. With probability 1

2 the
next U -node might go to the left subtree. Hence, all the sets that contribute to
k2 will be redundant. Therefore the online solution wastes at least k′

2 sets with
probability 1

2 . Thus, we have:

E[size of an online solution ≥ log(N)

2

k′

2

as desired.
Note that Opt is still k. we can simply choose the optimal solution at the

final leaf.

8

