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Consider a good (such as a hotel room) which, if not sold on time, is worth nothing
to the seller. For a customer who is considering a choice of such goods, their prices
may change dramatically by the time the customer needs to use the good; thus a cus-
tomer who is aware of this fact might choose to gamble, delaying buying until the last
moment in the hopes of better prices. While this gamble can yield large savings, it also
carries much risk. However, a coordinator can offer customers a compromise between
these extremes and benefits in aggregate. Here we explore how a coordinator might
profit from forecasts of such future price fluctuations. Our results can be used in a
general setting where customers buy products or services in advance and where market
prices may significantly change in the future.

We model this as a two-stage optimization problem, where the coordinator first agrees
to serve some buyers, and then later executes all agreements once the final values have
been revealed. Agreements with buyers consist of a set of acceptable options and a
price where the details of agreements are proposed by the buyer. We investigate both
the profit maximization and loss minimization problems in this setting. For the profit
maximization problem, we show that the profit objective function is a non-negative
submodular function, and thus we can approximate its optimal solution within an ap-
proximation factor of 0.5 in polynomial time. For the loss minimization problem, we
first leverage a sampling technique to formulate our problem as an integer program.
We show that there is no polynomial algorithm to solve this problem optimally, un-
less P = NP . In addition, we show that the corresponding integer program has a
high integrality gap and it cannot lead us to an approximation algorithm via a linear-
programming relaxation. Nevertheless, we propose a bicriteria-style approximation
that gives a constant-factor approximation to the minimal loss if by allowing a fraction
of our options to overlap. Importantly, however, we show that our algorithm provides
a strong, uniform bound on the amount the overlap per options. We propose our al-
gorithm by rounding the optimal solution of the relaxed linear program via a novel
dependent-rounding method.

Let us start with an example of a basic source of uncertainty in E-commerce.
Google offers high-quality free services for retaining Internet users and makes over
96% of its revenue from advertisers by selling users’ attention to them. For this pur-
pose, Google provides its AdWords system, an online auction-based advertising sys-
tem, that lets advertisers bid on keywords for showing their ads in Google’s search
results. Advertisers can participate in Google’s on-line AdWords auction and bid on
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their keywords. However, the cost-per-click (CPC) amount that an advertiser should
pay when users click on its ads depends heavily on the online demand and competitors’
bids, and thus a (near-)optimal bidding strategy is not clear to advertisers at bidding
time. This unknown behavior of prices may force advertisers to take too much risk at
bidding time. Many risk-averse advertisers prefer to avoid such risk, and attempt to
sign a contract which guarantees an appropriate number of clicks for a fixed price.

This phenomenon arises more generally due to uncertainty such as uncertain future
demand, uncertainty in future costs, and uncertain competitors’ behavior. While we
started with an application in the online advertising industry, we continue with another
example of this phenomenon in the hotel-reservation industry.Consider a family that
decides, on Monday, that they would like to go on vacation the following weekend.
Perhaps they do some research, and find a convenient location that seems both pleasant
and affordable. All that is left for them to do is actually reserve their accommodations.
But this involves an interesting dilemma: should they book a room now, or wait until
late in the week? Booking now assures them a place to stay that is affordable. On
the other hand, many hotels offer last-minute deals, which could save the potential
vacationers money if they decide to wait. Unfortunately, the latter carries not only the
chance for large savings, but the risk that prices will go up, perhaps even to the point
where the vacation becomes impossible.

In this work, we study how a company might profit by offering customers a com-
promise between these options. While dealing with online prices typically carries too
much risk and requires significant effort to appeal to individual customers, a coordina-
tor has the advantage of spreading these risks across many contracts. By expending the
effort to collect pricing data and form estimates of future prices, a company could rea-
sonably hope to monetize this advantage by offering customers a reliable contract with
an affordable price, while executing the contract when prices are as favorable as possi-
ble – while not every contract may be profitable, good price estimates should provide
a profit in aggregate.

In fact, this opportunity arises more generally – the key relevant aspects of our
examples are uncertain future prices. Thus, one could hope to exploit this sort of
future arbitrage when selling stock options, airline tickets, rental cars, event tickets,
or any product/service that typically faces price fluctuations. Our goal in this work is
to answer this question: given estimates of future prices, what is the best way for an
enterprising coordinator to offer contract to buyers?

Two-stage optimization. We have a coordinator who can provide options from a set
H , and who will have a chance to offer these options to a set of potential buyersB. This
process, however, takes places in stages: in the first stage, the coordinator negotiates
agreements; in the second stage, the prices will be realized, and the coordinator must
serve options in the realized scenario to fulfill all of the previously made agreements.
Each agreement with a buyer b ∈ B specifies a pack P ⊆ H of options that are
acceptable to the buyer, and a value vb the buyer must pay. The coordinator may
satisfy the agreement by getting any option in the pack to the buyer, and it does not
matter which one. The two-stage nature of our problem arises because the coordinator
must make binding decisions about what agreements to make before the prices are
revealed.

First stage: agreements. The first stage of our optimization problem models the
formation of agreements. In our model, all of the buyers arrive at once, and each pro-
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poses a pack of options and a price. The value vb associated with each buyer is the price
they propose, and the coordinator may accept a subset of offers1. Note that agreements
are only formed when an offer is made and the coordinator accepts; therefore, we refer
to the set S of buyers the coordinator chooses to form agreements with as the served
set.

Second stage: execution. In the second stage, the coordinator must match each
buyer b ∈ S to an option in their associated pack. At this point, the prices are revealed,
and the coordinator’s problem becomes one of maximum-weight matching. We call
the collection of revealed prices a scenario, and denote it by I; we denote the full set
of possible scenarios by I. We denote the price of option h in scenario I by cIh. The
I seen in the second stage is drawn according to a probability distribution, and the
coordinator has the ability to sample from this distribution.

Objectives. The coordinator’s objective is to maximize profit. We denote the profit
from a served set S as

P (S) =
∑

b∈S vb + E[
∑

h6∈MI(S) c
I
h],

where MI(S) is the cheapest set of options that buyers in S can be matched to in
scenario I , and the expectation is over which I occurs. The first term is the profit
that is extracted from agreements in S, e.g., set of contracts in the Google advertising
example. The second term is the profit that is made by selling the remaining options in
the future, e.g., selling through online Google AdWords system.

example 0.1 In this example, there are two buyers b1 and b2, three options h1, h2, and
h3, and three possible future scenarios. Each scenario can be represented by a vector
of 3 elements indicating the realized values of the three options. Assume the future
scenarios are I1 = {125, 250, 25}, I2 = {200, 25, 225}, and I3 = {75, 150, 100},
and they happen with probabilities 0.4, 0.3, and 0.3, respectively. The first buyer is
willing to pay a price equal to 125 dollars for being served, while the second buyer
will pay 100 dollars. Figure 1 illustrates this example.

In this case, if we only serve b1, the best matches to this buyer in future scenarios
I1, I2, and I3 are h1, h2, and h1 dollars, respectively. Therefore, our expected profit
from choosing only b1 to serve would be 125 + (0.4(150 + 25) + 0.3(200 + 225) +
0.3(150+100)) = 397.5 dollars. On the other hand, if we only choose b2, our expected
profit would be 100+(0.4(125+150)+0.3(200+225)+0.3(75+150)) = 405 dollars.
Finally, if we choose both buyers to serve, we may no longer be able to serve each buyer
with their cheapest feasible option. In the first scenario, the best options for b1 and b2
would be h1 and h3, respectively, and the remaining value is 150 dollars. Similarly, the
remaining values would be 225 and 150 dollars when serve both buyers in the second
and third scenarios, respectively. Therefore, the expected total profit from serving both
customers would be 125+100+(0.4×150+0.3×225+0.3×150) = 397.5 dollars.
Thus, our best option is to only serve b2 for a total profit of 405 dollars, even though
her offered price is less than the price b1 is willing to pay us.

In some applications such as in the hotel-reservation industry, the value cIh can be
interpreted as the cost of providing option h in scenario I . In these situations, we study

1We may use “price” interchangeably with “value” herein.
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Figure 1: Each graph corresponds to one scenario. The upper vertices show the buyers
and the price they are willing to pay. The lower vertices show the options and their
realized values in each scenario. The edges indicate the buyers’ interest in options. In
this example, the best decision is to choose b2, for which our best matches are shown
with dashes.

the loss minimization problem rather than the profit maximization version. Therefore,
we also consider a modified objective that we call loss, which has the form

L(S) =
∑

b∈B\S vb + E[
∑

h∈MI(S) c
I
h].

Note that L(S) is an affine transformation of P (S). Intuitively, the loss objective tries
to capture the idea of lost revenue, where we can lose revenue either by choosing not
to serve a buyer, or by having to spend to pay for an option.

1 Related work
Our problem falls into the framework of two-stage stochastic optimization. This frame-
work formalizes hedging against uncertainty into two stages: in the first, decisions have
low cost but the exact input is uncertain; in the second, the input is known but deci-
sions have high cost. Many problems have been cast in this framework, e.g., set cover,
minimum spanning tree, Steiner tree, maximum weighted matching, facility location,
and knapsack [3, 6, 10, 9]. Prior work has considered linear programming approaches
in this framework [16, 18], for example the Sample Average Approximation (SAA)
method to reduce the size of a linear program [13, 2]. Ensuring the reduced linear pro-
gram is representative of the original problem is generally hard and requires problem-
specific techniques for most combinatorial optimization settings, however, and so no
unified framework has been developed so far.

Our problem is most closely related to bipartite matching problems in this literature.
Katriel et al. [11] consider such a problem, where an optimizers wants to buy an edge
set containing a maximum matching at the least cost, and must balance fixed first-
stage edge costs against the potential risks and rewards of random second-stage edge
costs. They propose a polynomial-time deterministic algorithm which approximates
the expected cost of minimum matching within a factor of O(n2), where n is the size
of the input graph. They also design a polynomial-time bicriteria randomized algorithm
which returns, with probability 1 − e−n, a matching of size at most (1 − β)n which
approximates the optimum cost within a factor of 1/β. In our setting, however, we
must book a room for every buyer served in the first stage, and this bicriteria algorithm
gives no guarantees on the set of served but unmatched buyers – they might even all
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have demanded the exact same option. We seek an algorithm assigning few customers
to each option, even in the worst case, an objective that requires significant new insight
compared to the setting of [11]. We design an algorithm which assigns at most two
customers to each option. Kong and Schaefer [14] give results for the maximum-
weighted matching problem, but this objective fails to capture either of our problems.

Maximizing a non-negative submodular function has been extensively studied in
the literature (see, e.g., [4, 7, 5, 19]). This problem generalizes the NP-hard max-
cut problem [8]. The first constant-factor approximation algorithm for maximizing a
non-negative non-monotone submodular function was proposed by Feige, Mirrokni,
and Vondrak [4]. They present a randomized local-search algorithm with an approx-
imation factor of 0.4. They also show that it is impossible to get a better than 0.5
approximation for the submodular maximization problem with polynomially many or-
acle queries. Gharan and Vondrak [7] improve this approximation factor to 0.41 by a
simulated annealing algorithm. This approximation ratio was further improved to 0.42
by Feldman, Naor, and Schwartz [5] based on a structural continuous greedy algorithm.
Later, Buchbinder et al. [1] improved this approximation ratio to the optimal 0.5. It
is worth mentioning that submodular maximization plays an important role in many
optimization problems, e.g., influence maximization [12, 15], graph cut problems [17],
and load balancing [17].
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