
Hardness of Facility Location Problems

Karthik Abinav, Thomas Pensyl, Bartosz Rybicki∗

December 11, 2014

1 k-median

1.1 Problem Statement

Let F be a set of facilities and D be a set of clients, and d be a distance metric
over F ∩D. That is, dij is the distance between facility i and client j. Given
a subset F ′ ⊆ F of open facilities, we say the connection cost of F ′ is the total
distance from each client to its nearest open facility. k-median asks for the
cheapest such set of size k.

1.2 Hardness of k-median

Theorem 1. It is hard to approximate k-median within 1+ 2
e1/c

for any c < 1.

This theorem is equivalent to the 1− 1/e− ε hardness shown in [2] and fol-
lows from a standard reduction from set cover. The main idea is to take an
approximation algorithm for k-median, and use it to obtain a partial set cover.
Then repeat this process, again partially covering the remaining items, until
everything is covered. A k-median approximation ratio of 1 + 2

e is just enough
to obtain a set cover approximation of lnn, which is the best possible un-
der reasonable hardness assumptions. Any better approximation to k-median
violates this.

1.2.1 The reduction algorithm.

Since all our reductions will be variants of this basic one, it will be useful to
give a more general lemma for hardness of partial set covers.

Let I = (X,S) be an instance of set cover with sets S over elements X.
Let B be an algorithm which, given such an instance, outputs a partial cover
T ⊆ S. Then define algorithm C(B) which invokes B repeatedly to produce a
complete set cover for instance I.

∗Collaborator from U of Wroclaw, Poland

1

Algorithm C(B)
Input: I = (X,S),

SOL← ∅
X ′ ← X
while X ′ 6= ∅ do

T ← B(X ′, S) . Run B to get partial cover T .
SOL← SOL ∪ T
X ′ ← {x ∈ X ′ | x not covered by T} . Get residual instance.

return SOL

Notice as long as B always adds at least one set, it covers at least one
element, so the algorithm halts after at most |X| loops. Also SOL is indeed a
valid set cover for I, since any uncovered element would still be in X ′.

Lemma 1. Fix constants k > 0, κ > 0. Suppose each ith call to B in C(B)
covers αi of the currently uncovered elements, using βik ≤ κk sets. Then for
every pair of constants 0 < c < c′ < 1, at least one of the following is true:

a) There exists an i such that αi < 1− e−
βi
c , OR

b) C(B) gives a set cover of size at most c′ ln |X| · k.

Proof. Suppose (1) is false. Then there exists a c < 1 such that for all i,

αi ≥ 1 − e−
βi
c . Let nt be the number of uncovered elements remaining after

step t. Observing that we start with |X| elements, we have

nt = nt−1(1− αt) ≤ nt−1 · e−
βt
c = · · · = |X|

∏t
i=1 e

− βic = |X|e− 1
c

∑t
i=1 βi .

Let ` + 1 be the step after which C terminates. Then after step `, there must
still remain at least one uncovered element, so

1 ≤ n` ≤ |X|e−
1
c

∑`
i=1 βi =⇒

∑̀
i=1

βi ≤ c ln |X|.

Including the last step, the total sets opened by C is at most

∑̀
i=1

βik + β`+1k ≤ (c ln |X|+ κ)k =

(
c+

κ

ln |X|

)
ln |X|k ≤ c′ ln |X|k,

for any constant c′ ∈ (c, 1) and |X| > exp(κ
c′−c). (We may assume |X| is larger

than a constant, since otherwise we could just find the optimal set cover by
brute force in constant time.)

By Feige’s result [1], unless NP ⊆ DTIME[nO(log logn)], it is hard to give
a set cover of size c′ ln |X| · OPTI , for any c′ < 1. Thus, if B never uses more

2

than a constant times OPTI sets, then Lemma 1 implies it is equally hard
for B to give a set which is ’too efficient’ in covering. We will define such an
algorithm which generates a partial cover by running k-median algorithm A on
an auxillary facility location instance.

1.2.2 Reduction instance between k-median and max set cover

Let Φk(I) be an instance of k-median, using S as the facilities, and X as the
clients. We overload S and s ∈ S to refer to both the sets in I and the facilities
in Φk(I), since there is an obvious 1-to-1 equivalence, and the meaning is clear
from context; and similarly for X and x ∈ X. For each pair of client x ∈ X and
facility s ∈ S, let the distance between them be 1 if x ∈ s, or 3 if x 6∈ s.

Lemma 2. Given set cover instance I = (X,S), let T ⊆ S be a partial set
cover. Then T covers exactly α|X| elements in X iff facilities T have client
connection cost exactly (3− 2α)|X|.

Furthermore, if k = |T | = OPTI , then facilities T give a solution to Φk(I)
with cost exactly (3− 2α)OPTΦk(I).

Proof. By definition of Φk(I), each covered element yields a client of cost 1 and
each uncovered element yields a client of cost 3. So the total cost is α|X| · 1 +
(1 − α)|X| · 3 = (3 − 2α)|X|. Furthermore, if k = |T | = |OPTI |, then OPTI
yields a set of k facilities which lets every client pay its lowest possible cost of
1, so OPTΦk(I) = |X|.

Now given a k-median algorithm A, define algorithm Bk(A) to take set
cover instance I as input and return A(Φk(I)). Clearly, Bk(A) returns exactly
k sets. Consider C(Bk(A)). By trying all possible values of k, we know that in
at least one run, k = OPTI , for any input I. By Lemma 1, for any c < 1, there
must exist an input I ′ = (X ′, S) for which Bk(A) covers less than (1−e−1/c)|X ′|
elements. By Lemma 2, this means A(Φk(I ′)) gives cost strictly greater than

(3− 2(1− e−1/c))OPTΦk(I′) = (1 +
2

e1/c
)OPTΦk(I′).

This holds regardless of which algorithm A is used, and thus proves Theorem 1.

1.3 Hardness of r-fault tolerant k-median placement

fault tolerant k-median is a generalization of k-median in which each client
j must pay the connection costs for connecting to rj facilities, instead of just 1.
A special case of this problem is fault tolerant k-median placement, in
which each facility has maxj rj identical, independent copies (i.e. can be opened
as many times as is possibly useful). Consider the further specific case where
all rj are uniform, that is, all rj = r for some r. We denote this problem r-
fault tolerant k-median placement (rftkmp). In the case that all r = 1,
this problem is equivalent to k-median, and thus inherits the same (1 + 2/e)-
hardness of approximation. The nonuniform generalizations also inherit this

3

hardness, which is the best known. However, for the r-uniform versions with
r ≥ 2, including rftkmp, this hardness does not carry over. We will show
how to adapt the standard k-median reduction to show a hardness bound as a
function of r.

Theorem 2. It is hard to approximate r-fault tolerant k-median place-
ment within 1 + 2

er/c
for any c < 1.

Define a new reduction instance Φ`,r(I), again using elements X as clients
and sets S as facilities. To make it an rftkp instance, we allow all facilities to
be opened any number of times, and set all client demands rj = r. Also set
k = `r. Note when translating facilities back to sets, we allow choosing a set
multiple times; this is okay as it does not improve any set cover.

In this case, it is important not just whether an element is covered, but how
many facilities/sets cover it. To measure this, we define the coverage vector
α(T) of a multiset T . For i = 0 . . . r − 1, let αi be fraction of elements covered
exactly i times. Let αr be the fraction of elements covered r or more times.
The following lemma relates the connection cost to this coverage vector.

Lemma 3. Given set cover instance I = (X,S), let T be multiset of sets
in S, and let α be the coverage vector of T . Also suppose ` = OPTI . Then
facilities T in instance Φ`,r(I) have client connection cost exactly

(3− 2

r∑
i=1

i

r
αi)OPTΦ`,r(I).

Proof. Each element requires r connections. If it is covered i times, it has i
connections of cost 1 and r − i connections of cost 3. Also note

∑r
i=0 αr = 1.

Then the total cost of all elements is

r∑
i=0

(3r − 2i)αi|X| = (3− 2

r∑
i=1

i

r
αi)r|X|.

Furthermore, if ` = |OPTI |, then taking r copies of OPTI yields a set of k = `r
facilities which lets every client pay its lowest possible cost of r, so OPTΦ`,r(I) =
r|X|.

Now given an rftkmp algorithm A, define algorithm B`,r(A) to take set
cover instance I as input and return A(Φ`,r(I)). Clearly, B`,r(A) returns exactly
k = `r sets. Consider C(B`,r(A)). By trying all possible values of `, we know
that in at least one run, ` = OPTI , for any particular input I. Now we can
apply Lemma 1 with κ = r: for any c < 1, there must exist an input I ′ = (X ′, S)
for which B`,r(A) covers less than (1−e−r/c)|X ′| elements. In other words, if α
is the coverage vector of the output, we have the number of uncovered elements
α0 > e−r/c. By Lemma 3, A(Φ`,r(I

′)) gives approximation ratio

(3− 2

r∑
i=1

i

r
αi) ≥ (3− 2

r∑
i=1

r

r
αi) = (3− 2(1− α0)) = 1 + 2α0 > 1 + 2r/c (1)

4

where we have used
∑r
i=0 αi = 1 and α0 > e−r/c. This holds regardless of which

algorithm A is used, and thus proves Theorem 2

1.4 Improved bound

Lemma 1 shows it is essentially hard to cover more than 1 − 1/er elements at
least once using rOPTI sets. However, for (1) to be tight, it must still be easy
to cover exactly 1−1/er elements at least r times each. But can the latter really
be easy if the former is hard, especially for large values of r? In this section we
will show a negative answer, yielding a tighter hardness result.

Theorem 3. It is hard to approximate r-fault tolerant k-median place-
ment within

min
0≤γ≤1

{
3− 2

1− e−γr/c

1− (1− γ)r

}
for any c < 1.

The idea is this: if a partial cover T really covers its elements many times,
than by randomly sampling a subset of T , we can get a partial cover which is
much smaller, but still covers a lot of elements at least once. Note that Feige’s
result holds even for randomized algorithms, so we do not weaken the result by
using randomness. Consider for some constant γ, that we sample a uniformly
random subset U ⊂ T with |U | = dγ|T |e.
Lemma 4. Given a multiset T of sets over elements X with coverage vector α,
let U ⊆ T be a random subset of size dγT e, chosen uniformly among all such
subsets. Then the expected fraction of elements covered by U is at least

r∑
i=0

(1− γ)iαi

Proof. The probability that any set s ∈ T is also in U is at least γ. Let cU (x) and
cT (x) be the number of sets in U and T which cover element x. The expected
number of elements not covered by U is

E[|{x ∈ X | cU (x) = 0}|] =
∑
x∈X

Pr[cU (x) = 0]

=

r∑
i=0

∑
x:cT (x)=i

Pr[cU (x) = 0]

=

r∑
i=0

∑
x:cT (x)=i

Pr[some i sets were not chosen]

≤
r∑
i=0

∑
x:cT (x)=i

(1− γ)i

=

r∑
i=0

(1− γ)iαi|X|

5

Define Θ(T, γ) to be a random algorithm which repeats this process some
large polynomial number of times, and returns the solution which covers the
most elements. Thus, we may assume w.h.p. that the coverage of this solution
is at least that of its expected coverage.

Again, given some rftkmp algorithm A, we define a helper algorithm B.

Algorithm B`,r(A):
Input: I = (X,S), c ∈ (0, 1)

T ← A(Φ`,r(I))
if |{x ∈ X | x covered by T}| < (1− 1

er/c
)|X| then

return Θ(T, γr) . Return a random subset of T
else

return T

Lemma 5. For any c < 1, there is an instance I ′ for which B`,r(A) returns a
set with coverage vector α ∈ [0, 1]r satisfying the following constraints:

(i)
∑r
i=0 αi = 1

(ii) α0 > e−r/c

(iii)
∑r
i=0(1− γr)iαi > e−γrr/c

Proof. Consider C(B`,r(A)). As before, we may try all possible values of ` such
that in at least one run ` = OPTI . Lemma 1 (with κ = r) says that for any
c < 1, there is an instance I ′ for which B`,r(A) returns β` sets which cover less
than 1− e−β/c elements.

Consider B`,r(A) when run on instance I ′. If T covers at least 1 − e−r/c
of the elements, then B would return T directly, and the coverage would be
too good. This means that T covers less than 1− e−r/c elements. This in turn
implies that the returned set is Θ(T, γr) (whose coverage is described by Lemma
4) which covers less than 1− e−γrr/c.

Lemma 3 again says that the corresponding approximation factor obtained
by A on Φ`,r(I

′) is (3− 2
∑r
i=0

i
rαi). This time we minimize it without simpli-

fying as in (1). We find the smallest possible value over all possible α subject to
the constraints in Lemma 5. In particular, we have added constraint (iii). For
appropriately chosen γr, we obtain a stronger lower bound on the approximation
factor of A. 1

1It is possible to add arbitrarily many such constraints for many constants γ, but in our
calculations we found this did not improve anything

6

r 1 2 3 4 5 6 7 8

1 + 2
er 1.736 1.271 1.010 1.037 1.013 1.005 1.0018 1.0007

new hardness 1.736 1.344 1.224 1.167 1.132 1.110 1.094 1.082
γr 1 0.705 0.494 0.379 0.306 0.257 0.222 0.195

Table 1: Calculated values for various r

We claim that the maximum occurs when αr is maximized such that α0 =
1− αr, when constraint (iii) is tight.

1− αr + (1− γr)rαr = e−γrr/c

αr =
1− e−γrr/c

1− (1− γr)r

Then the approximation ratio is

3− 2αr = 3− 2
1− e−γrr/c

1− (1− γr)r

Now for each value of r, we will choose parameter γr such that this ratio is
maximized. As c → 1, we get results shown in Table 1. In particular, we note
that the old bound 1+ 2

er approaches 1 exponentially fast, while the new bound
appears to be close to 1 + 2

re , approaching 1 much more slowly.

2 Lower Bounds for Fault Tolerant Facility Place-
ment

To show the lower bound we will use a reduction from set cover. Consider a set
cover instance (X,E), where X is the set of sets and E is the set of elements.
We will construct an instance of FTFP as follows. For every set Si ∈ X, have a
facility fi. For every element ei ∈ E, have a client ci. We will consider the case
of uniform FTFP. All clients have the same demand r. If element ei ∈ Sj , then
add an edge of cost 1 between client ci and facility fj . Else, add an edge of cost
3 between ci and fj . Let the cost of opening of the factory fj be qj . We will
define the precise value of qj a little later. Let FTFP be an α approximation
to the FTFP problem. Let k denote the optimal value of the set cover size. We
will construct a set cover iteratively as follows

7

Algorithm for set cover from FTFP
Input: I = (X,S),

SOL← ∅
X ′ ← X
set cost of facility i as γ0 ∗ |E|k . γ0 will be set later
while X ′ 6= ∅ do

T ← FTFP on reduced instance . Run FTFP to get partial
cover T .

SOL← SOL ∪ T
X ′ ← {x ∈ X ′ | x not covered by T} . Get residual instance.

set cost of facility i as γj ∗ |X
′|
k . the subscript j refers to the jth

round of this loop

return SOL

Consider any jth iteration of the above reduction. Let the cost of the solution
returned by FTFP in this round be H. Let us suppose, in this round the number
of facilities opened by FTFP is βj .k, and let nj be the number of uncovered
elements at the beginning of round j. Also, let cj be the fraction of clients
covered at least once in this round. Hence,

H ≥ βj .k.γj .
nj
k

+ cj .nj .r + (1− cj).nj .r.3

The first term in the sum refers to cost of opening facilities. The second term
refers to the cost of connecting clients who are covered at least once. Note, if
they are covered at least once, assuming they are covered r times will give a
lower bound. The third term refers to the clients that are not covered even
once.

Note that, the optimal solution in this round is

γj .
nj
k
.k.r + nj .r

Hence, the value of approximation ratio α should be atleast

1
r .βj .γj + 3− 2.cj

1 + γj

We proceed by two cases similar to [3]. Without going into complete details
of calculations, we give the results here. The expression is maximised when
βj = c. ln(2r

γj .c
). This gives the equation

α =

1
r .γj . ln(2r

γj
) + 1 +

γj
r

1 + γj

Now, we will maximize this with respect to γj . Solving this numerically
gives us the value of 1.18 for r = 2(maximizer γj = 0.372).

8

References

[1] Feige, Uriel. “A threshold of lnn for approximating set cover.” Journal of
the ACM (JACM) 45.4 (1998): 634-652.

[2] Jain, Kamal, Mohammad Mahdian, and Amin Saberi. “A new greedy ap-
proach for facility location problems.” Proceedings of the thirty-fourth annual
ACM symposium on Theory of computing. ACM, 2002.

[3] Bartosz Rybicki and Jaroslaw Byrka. Improved approximation algorithm
for fault-tolerant facility placement. CoRR, abs/1311.6615, 2013

9

