
Round Complexity Lower Bound

of ISC Protocol with Fparpuz Model

Huijing Gong

December 11, 2014

1 Introduction

In the open, peer to peer networks where parties are not necessary to be au-
thorized by any prior means of authentication, [4] proposed a interactive set
consistency (ISC) protocol to realize nontrivial security over this type of scheme
by defining precise bounds on computational power.

Their protocol relies on ISC properties, which could be used to establish
public key infrastructure among parties. The ISC protocol involves two types
of time-lock puzzle, Fpuz and Fparpuz. Fparpuz is different by granting power
to adversary to work parallelly with other corrupted parties when interacting
with time-lock puzzle oracle.

In ISC protocol with Fparpuz model, it must take at least f + 1 rounds for
the protocol to tolerate f faults. This project is to find round complexity lower
bound for the ISC protocol with Fparpuz model.

2 ISC Protocol with Fparpuz Model

To better understand this problem, we first introduce a Byzantine General Prob-
lems proposed by [3].

In the scenario of Byzantine General Problems, commander and generals
are camped outside a enemy city. Commander send battle order, attack or
withdraw, to generals and generals can send message to each other and decide
their action. There are traitors involved to confuse others and people do not
know who is the traitor. If Commander is the traitor, then Commander can
send order to different generals. If some of the generals are traitors, they can
send message to others and may convince them that Commander is the traitor.
The goal of designing a good Byzantine protocol is to make honest generals
agree on a same battle order; and if Commander is found out to be a traitor,
then then generals will withdraw.

1



Scribe: Huijing Gong
Lecture: Streaming Algorithms Date: 11/11/2014

The scenario for reaching agreement among multiparties with no pre-existing
setup is more tricky. Since when parties receive messages from other parties,
the receiver has no idea where the message sent from. Moreover, if two message
received from different rounds are sent from one party. However, a message sent
by an honest party in any run will be received by all other parties by the end
of that run.

In the network model without pre-existing setup, adversary can corrupt par-
ties to behave arbitrarily, inject message into the network, change messages they
relay, and send message to subset of the honest parties.

2.1 Interactive Set Consistency (ISC)

Interactive Set Consistency protocol provides a method to create a set of iden-
tities in replace of Public-Key Infrastructure, which enables parties to.conduct
authenticated communication later.

Protocols that realize ISC must holds the following properties:

1. Each honest party Pi outputs a (multi)set Si containing at most n values.

2. Each honest party output the same (multi)set Si.

3. (Multi)set Si contains inputs from all the honest parties.

Note here the agreed (multi)set Si can be used as a list of public keys which
enable honest parties to construct PKI.

2.2 Fparpuz Model

Time-Lock Puzzle is in place of trusted setup assumption, which makes sure
that each honest party has equal computational power and f corrupted parties
cannot solve any faster than f honest parties per round. But in Fparpuz model,
adversary can runs sequentially faster by a factor of f.

The Fparpuz model is designed in [4], which models the time-lock puzzle. In
this model, each party to produce a puzzle solution independently each round
and an adversary who controls f parties can solve f puzzles per round in total.
The scheme is to solve cryptographic puzzle upon request and check the solution
upon request in polynomial time.

Fparpuz model is composed by two algorithms, solve and check :
In solve subroutine, Fparpuz oracle maintains a table T . Each party Pi

sends (solve, xi) to Fparpuz oracle. For i = 1, ..., n, Fparpuz oracle first check
if (xi, hi) has been store in T or not. If yes, then return hi to Pi. Otherwise,
uniformly generates a hi ∈ {0, 1}λ and return hi to Pi and store (xi, hi) in T .

In check subroutine, each party Pi sends (check, (x1i , h
1
i ), ((x2i , h

2
i ), ...) to

Fparpuz model. Fparpuz model returns (b1i , b
2
i , ...). bji = 1 if (xji, h

j
i) ∈ T ,

bji = 0, otherwise.
Note here In solve algorithm, each honest party is allowed to call Fparpuz

model only once per round. And for each round of honest party, all the solve

2



Scribe: Huijing Gong
Lecture: Streaming Algorithms Date: 11/11/2014

request must be sent before any honest party receives its solution. But each
round of corrupted parties can call Fparpuz model one after another in sequence
up to f times.

2.3 Intuition of ISC Protocol with Fparpuz Model

The generic sequence of this type of protocols committed by honest parties
should be as following:

1. Each party sends solve-query to Fparpuz model and receive the solution.

2. Each party computes a message to send.

3. Message sent from each party are delivered to all the other parties.

4. Each party sends a list of puzzle-solution pairs to Fparpuz model for ver-
ification.

ISC Protocol with Fparpuz model contains two phases in [4], MIning Phase
and Communication Phase.

In mining phase, each correct party generate a chain of O(f2) puzzle solu-
tions, for instance, Solve(pki, Solve(pki, Solve(Solve(pki, ø)))). Each correct
party can create a valid puzzle chain for its own key but corrupt party only can
create at most f puzzle chains before the protocol terminate.

In communication phase, each party publishes their chains and propagate
the puzzle chain they received from others. In each round r, each party accepts
a value if it has received a collection of r signatures on that value, the process
then add its own signature to the collection and deliver it to the other processes.
Signatures without associated puzzle chains are ignored. A correct party con-
siders a public key ’“valid” if it comes along with a puzzle chain containing the
public key long enough

References

[1] Aguilera, Marcos Kawazoe and Toueg, Sam. A simple bivalency proof that
t-resilient consensus requires t+ 1 rounds. Information Processing Letters.
Volume 71.3 Page 155–158, 1999

[2] Dolev, Danny and Strong, H. Raymond. Authenticated algorithms for Byzan-
tine agreement. SIAM Journal on Computing. Page 656–666, 1983.

[3] Fischer, Michael J and Lynch, Nancy A and Paterson, Michael S. Impossi-
bility of distributed consensus with one faulty process. Journal of the ACM
(JACM). Volume 32.2, Page 374–382, 1985.

[4] Katz, Jonathan and Miller, Andrew and Shi, Elaine. Pseudonymous Secure
Computation from Time-Lock Puzzles. Cryptology ePrint Archive. no.857,
2014.

3


