Subexponential Time Algorithms via Concentration Bounds

Manish Purohit, Anshul Sawant

2014-12-08

Manish Purohit, Anshul Sawant Subexponential Time Algorithms via Concentration Bounds

4 3 5 4

Outline

2 Extension to Non-linear Mappings

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Motivation

- Computation of equilibria in 2-player games is a hard problem.
- However, if strategies are **sparse** and **uniform** then the search space is sub-exponential.
- Althofer Lemma guarantees existence of such a grid in strategy space of players.
- We will give a novel application of this sparsification technique in the second half.

・ 同 ト ・ ヨ ト ・ ヨ ト

Sparse Solutions to Linear Systems: Althofer's Lemma

- Let $p = (p_1, ..., p_n)$ be any probability vector, i.e., $\sum_{i=1}^{n} p_i = 1, p_i \ge 0.$
- Let A be any m × n matrix with all entries between 0 and
 1. Let A_i be the ith row of A.
- Then the linear transform *Ap* can be approximated by *Aq*, where probability vector *q* is:

approximate representation of p

 $|A_i \cdot (p - q)| \le \epsilon, i \in \{1, \dots, n\}.$ sparse at most $k = \frac{\log 2m}{2\epsilon^2}$ entries are non-zero. uniform all entries are of form $q_i = \frac{k_i}{k}$, k_i is integral

・ 同 ト ・ ヨ ト ・ ヨ ト …

Proof Outline

- Construct a sparse representation of *p* by sampling.
- Use Hoeffding bound and union bound to prove that with non-zero probability, the constructed representation is an approximate representation of *p*.
- This proved existence of a sparse representation.

伺下 イヨト イヨト

Proof Outline : Construction of Sparse Representation

- Let $p = (p_1, \ldots, p_n)$ be a given probability vector.
- Sample k times with replacement from set $\{1, ..., n\}$ with probability of sampling i given by p_i .
- Let S be the multiset representing the result of the above sampling.
- Let n_i be the number of times *i* occurs in *S*.

• Then
$$q_i = \frac{n_i}{k}$$
.

・ 同 ト ・ ヨ ト ・ モ ト …

Proof Outline : Properties of Sparse Representation

Probability vector $q = (q_1, \ldots, q_n)$:

is sparse at most k non-zero entries. is uniform all entries are multiples of $\frac{1}{k}$. preserves dot products $E(a \cdot q) = a \cdot p$.

伺下 イヨト イヨト

Proof Outline

- To prove existence of sparse *q*, we need to choose appropriate *k*.
- Dot products are preserved in expectation, therefore, the linear transform *Ap* is preserved in expectation.
- We use Hoeffding bound and union bound to choose appropriate value of *k*.

4 周 ト 4 ヨ ト 4 ヨ ト