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Introduction

Facility Location problems significant problem in

various domains

o Operations Research
o Industrial Engineering

Various variants of this class of problems studied In
the past

Many questions yet to be answered
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Definitions

 Uncapacitated Facility Location
o Most basic version of the problem

o A sef of facilities F, each having a cost of opening f;
o Aset of clients C, each having a cost of connection fo the j" facility c;
o Objective is to open a subset of facilities F, such that cost of opening

facilities + the sum of minimum cost of connection for every client to this
subset of facilities is minimized

OPT =13
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« Fault Tolerant Facility Location (FTFL)
o A variant of the UFL Problem

o Seftting similar to UFL: Facilities F, with opening costs, Clients C with
connection cost

o Difference : With every client there is an associated demand r; every

client should be connected fo r; different facilities in the subset opened.

OPT =21
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» Fault Tolerant Facility Placement (FTFP)
o A variant of the FTFL Problem

o Seftting similar to FTFL: Facilities F, with opening costs, Clients C with
connection cost

o Difference : Same facility can be opened multiple times. We may pay the
cost of opening for each time it is opened.

OPT =15




Known Bounds

« Lower Bounds:

o UFL-1.463 [Guha, Khuller [[SODA "98]

o FTFL — Uniform demands, r=2, 1.278 [Byrka, Rybicki] [ArXiv'13]

* Upper Bounds

o UFL - 1.488 [Li][ICALP ‘13]
o FTFL-1.725 [Byrka, Srinivasan, Swamy][IPCO ‘10]

o FTFP —forr>=2, 1.439 [Byrka, Rybicki][ArXiv ‘13]
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New Lower Bound FTFP

Extend the idea of Byrka, Rybicki for FTFL to FTFP

For the uniform case, r = 2, get a lower bound of
1.18

For uniform case, generalized r, lower bound
solution to equation

X = 1+2e>
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Overview of proof

Given approximation algorithm for FTFP, use it to get
approximation for set cover

Set cover cannot be approximated better than
O(ln n)

o Use this to show lower bound on approximation for FTFP

For every set, have a facillity, for every element

have a client

o For elements contained in a set a edge of cost 1 added between client
and facility, else edge of cost 3
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Guess optimal solution of set cover

Cost of j" facility is a parameter (q) fixed later

Find Lower bound on cost of any solution - L
Find optimal cost of solution - U

Approximation ratio should be at least the ratio of L
by U

Maximize this with respect to the parameter g

o9



« Fault Tolerant K-Median Facility Location(FTKMFL)

o A variant of the FTFL Problem
o In this case, we have facilities F, but no cost associated with them

o We have clients C, having demands r;and connection costs ¢;

o Since facilities have no cost, hence only connection cost appears in
objective

OPT =15
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« Fault Tolerant K-Median Facility Placement(FTkMFP)

o A variant of the FTFP Problem
o In this case, we have facilities F, but no cost associated with them

o We have clients C, having demands r;and connection costs ¢;

OPT =13




k-median

Remove facility costs.

Add constraint;
Use <= k facillities.

Hardness reduction is simpler.

K=3

OPT =15
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MAX-COVER

INnput:

Goal: cover many elements using k sets.

Sets S
Elements X

Hardness: 1-1/¢e

©)
@)
©)
©)

Proof by reduction to Set Cover.

Run MAX-COVER repeatedly, k=OPT_SC

If 1-1/e-& approximation, we stop in <In(n) steps
Use less than In(n)OPT sets.
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1-1/e Hardness

* Run MAX-COVER on SET COVER instance, k=OPT;-
- Remove covered elements and run again

« Suppose >1-1/e approximation
> 1/e! uncovered elements after t steps.

- we stop in <In(n) steps
- Use less than In(n)OPT sets.
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Simple Lower Bound for
k-median

« Reduction from MAX COVER*

o *where OPT covers all elements

« Sets-> Facillifies Elements->Clients
E1 E2 E3 E4 E5

51 2 53
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El E2 E3 E4 E5

S1 S2 S3
Facility (set) is distance 1 from all clients (elements)
In set.

By friangle inequality, other distances are 3.
If facilities “cover” many clients, cost will be small.

small k-median cost €=» |arge coverage
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El E2 E3 E4

51 S2 S3

« Suppose sets T cover B of elements

« Whatis k-median cost of T¢

o Covered clients pay 1
o Uncovered clients pay 3

. COST(T)= 1* B+3*(1- B)=3-2 3

E5

e1/



+ COST(T)=1* B+3*(1- B)=3-2 3

COST(T)<1+2/e > B>1-1/e

« OPT =1
« Conclusion: k-medianis 1+2/e hard
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Fault Tolerant k-Median

general r_j

single-use facilities

r_j=r

single-use facilities

/ r-Fault Tolerant k-Median \

r_j=r

ﬂFault Tolerant k-Facility Placemerm

unlimited facility copies

NS

)/
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Fault Tolerant k-Median

93-approximation [Hajiaghayi, Hu, Li, Li, Saha “13]

/ r-Fault Tolerant k-Median \

4-approximation [Swamy, Shmoys “08]

/r-Fault Tolerant k-Facility Placement\

4-approximation

S 2/
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r-Fault Tolerant k-Facility Placement

« Forr=1, this is k-median, and has hardness 1+2/¢e

« For uniform r>=2, we adopt reduction
- use k*r facillities
- estimate cost as function of coverage (loose)

-2 1+1/e/Ar hardness
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Improved Lower Bound

From previous section, cheapest solution possible —
cover l-eTelements, r fimes

s this really easy, if it is hard to cover more than 1-e”

at least once ¢
o Answer: NO |

This above observation, leads to better lower
bounds
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Improved Constraints

Apply sampling to get sets of multiple sizes.

Expected fraction of elements uncovered at least
err

New constraints gives 1.344 lower bound forr =2
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Hardness values for
various r

r 1 2 3 4 5 6 7 8
- 1 | 0.705 ] 0.494 | 0.379 | 0.306 | 0.257 | 0.222 | 0.195
new hardness || 1.736 | 1.344 | 1.224 | 1.167 | 1.132 | 1.110 | 1.094 | 1.082
1+ 2 1.736 | 1.271 | 1.010 | 1.037 | 1.013 | 1.005 | 1.0018 | 1.0007
integrality gap || 1.736 | 1.541 | 1.448 | 1.391 | 1.351 | 1.321 | 1.298 | 1.279
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Integrality Gap
k-median has known integrality gap 2
rFTkMP for r>1 also has integrality gap 2
Gap of 2is *weak” in k-median
Stronger gap is 1+2/e

Question: what is the “stronger” gap for rFTkMP<¢
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Future Directions

« Extend a similar approach to get a lower bound on
FTFP.

o Note, no lower bound known currently

« Large gap between Lower and Upper bound -
Improve from either directions
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Questions/Comments ?



