Fault Tolerant Facility Location Problems

Thomas Pensyl^{*} Bartosz Rybicki[#] Karthik Abinav S^{*}

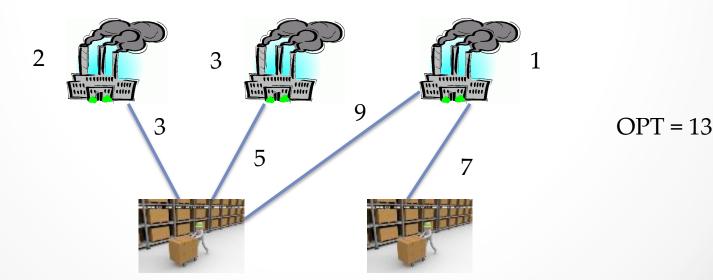
* - University of Maryland, College Park
 # - University of Wroclaw, Poland

Introduction

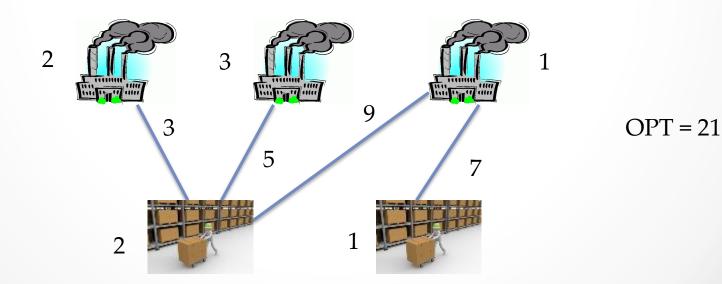
- Facility Location problems significant problem in various domains
 - o Operations Research
 - Industrial Engineering
- Various variants of this class of problems studied in the past
- Many questions yet to be answered

Definitions

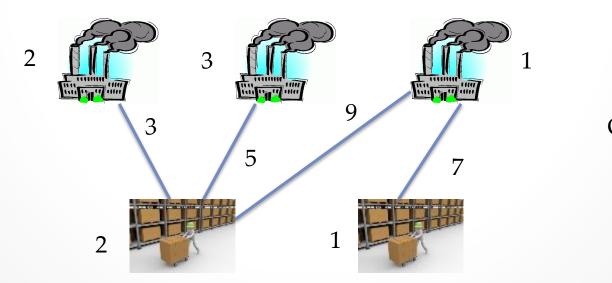
- Uncapacitated Facility Location
 - Most basic version of the problem
 - $_{\odot}\,$ A set of facilities F, each having a cost of opening f_{i}
 - A set of clients C, each having a cost of connection to the jth facility c_{ii}
 - Objective is to open a subset of facilities F, such that cost of opening facilities + the sum of minimum cost of connection for every client to this subset of facilities is minimized



- Fault Tolerant Facility Location (FTFL)
 - A variant of the UFL Problem
 - Setting similar to UFL: Facilities F, with opening costs, Clients C with connection cost
 - Difference : With every client there is an associated demand r_j, every client should be connected to r_j, different facilities in the subset opened.



- Fault Tolerant Facility Placement (FTFP)
 - A variant of the FTFL Problem
 - Setting similar to FTFL: Facilities F, with opening costs, Clients C with connection cost
 - Difference : Same facility can be opened multiple times. We may pay the cost of opening for each time it is opened.



Known Bounds

- Lower Bounds:
 - UFL 1.463 [Guha, Khuller][SODA '98]
 - FTFL Uniform demands, r=2, 1.278 [Byrka, Rybicki][ArXiv'13]
- Upper Bounds
 - UFL 1.488 [Li][ICALP '13]
 - FTFL 1.725 [Byrka, Srinivasan, Swamy] [IPCO '10]
 - FTFP for r>=2, 1.439 [Byrka, Rybicki][ArXiv '13]

New Lower Bound FTFP

- Extend the idea of Byrka, Rybicki for FTFL to FTFP
- For the uniform case, r = 2, get a lower bound of 1.18
- For uniform case, generalized r, lower bound solution to equation

$$X = 1 + 2e^{-x.r}$$

Overview of proof

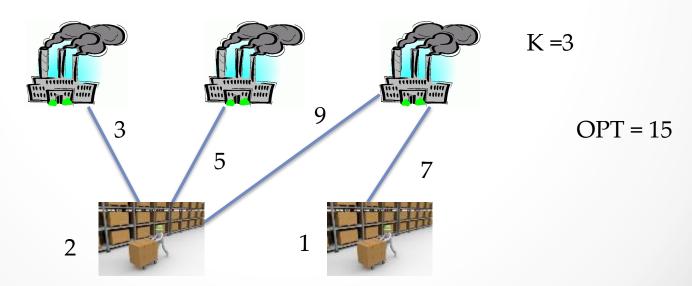
- Given approximation algorithm for FTFP, use it to get approximation for set cover
- Set cover cannot be approximated better than O(In n)

• Use this to show lower bound on approximation for FTFP

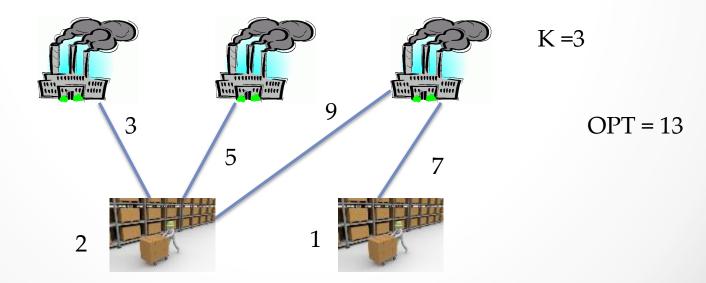
- For every set, have a facility, for every element have a client
 - For elements contained in a set a edge of cost 1 added between client and facility, else edge of cost 3

- Guess optimal solution of set cover
- Cost of jth facility is a parameter (q) fixed later
- Find Lower bound on cost of any solution L
- Find optimal cost of solution U
- Approximation ratio should be at least the ratio of L by U
- Maximize this with respect to the parameter q

- Fault Tolerant K-Median Facility Location(FTkMFL)
 A variant of the FTFL Problem
 - In this case, we have facilities F, but no cost associated with them
 - We have clients C, having demands r_i and connection costs c_{ii.}
 - Since facilities have no cost, hence only connection cost appears in objective

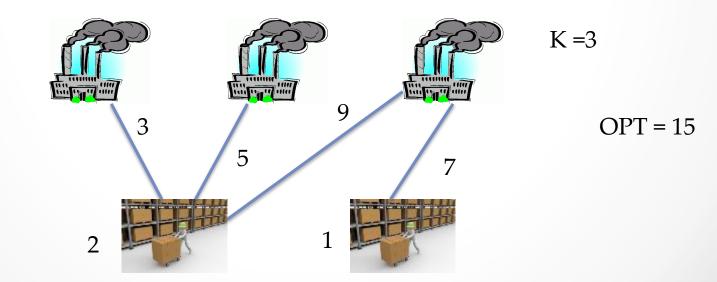


- Fault Tolerant K-Median Facility Placement(FTkMFP)
 A variant of the FTFP Problem
 - In this case, we have facilities F, but no cost associated with them
 - We have clients C, having demands r_i and connection costs c_{ii.}



k-median

- Remove facility costs.
- Add constraint: Use <= k facilities.
- Hardness reduction is simpler.

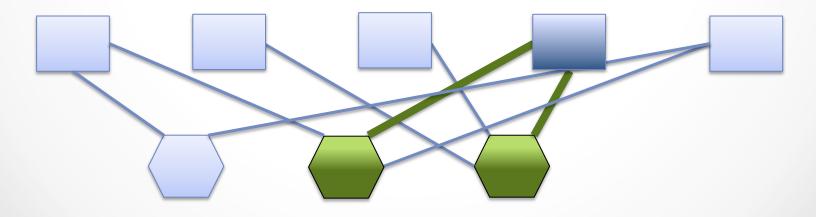


MAX-COVER

- Input:
- Sets S
- Elements X
- Goal: cover many elements using k sets.
- Hardness: 1-1/e
 - Proof by reduction to Set Cover.
 - Run MAX-COVER repeatedly, k=OPT_SC
 - If 1-1/e- ε approximation, we stop in <In(n) steps
 - Use less than In(n)OPT sets.

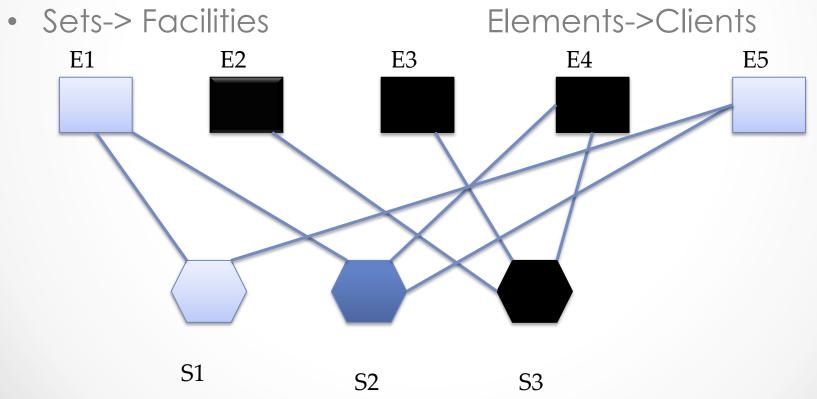
1-1/e Hardness

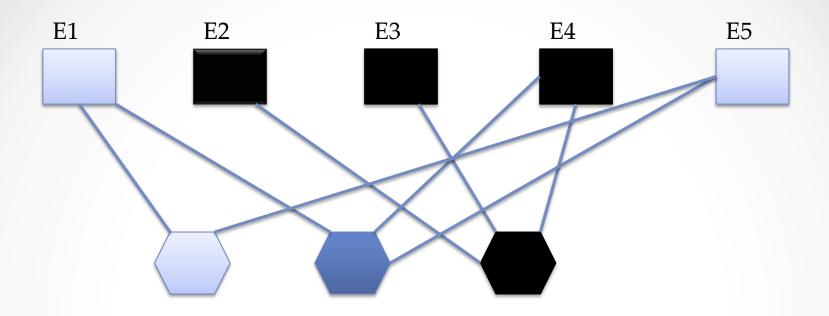
- Run MAX-COVER on SET COVER instance, k=OPT_{SC}
 Remove covered elements and run again
- Suppose >1-1/e approximation
 → 1/e[†] uncovered elements after t steps.
 - \rightarrow we stop in <ln(n) steps
 - \rightarrow Use less than ln(n)OPT sets.

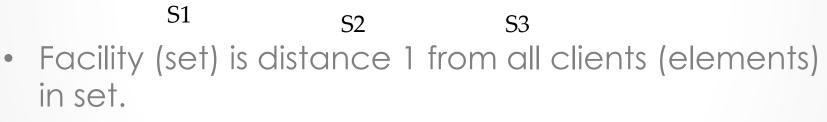


Simple Lower Bound for k-median

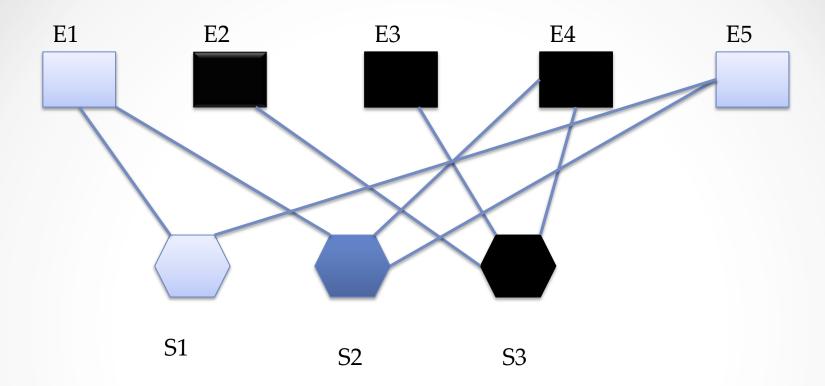
- Reduction from MAX COVER*
 - *where OPT covers all elements





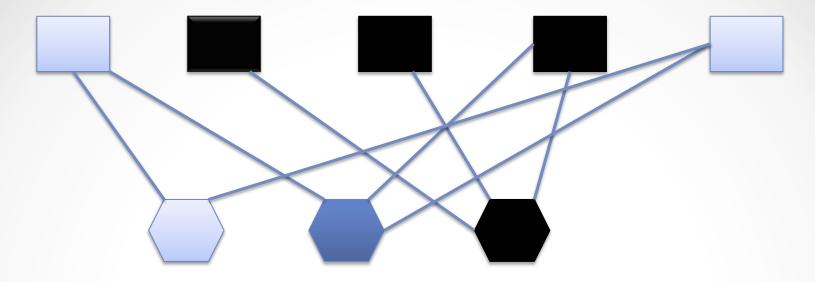


- By triangle inequality, other distances are 3.
- If facilities "cover" many clients, cost will be small.
- small k-median cost ←→ large coverage



- Suppose sets T cover β of elements
- What is k-median cost of T?
 - Covered clients pay 1
 - Uncovered clients pay 3

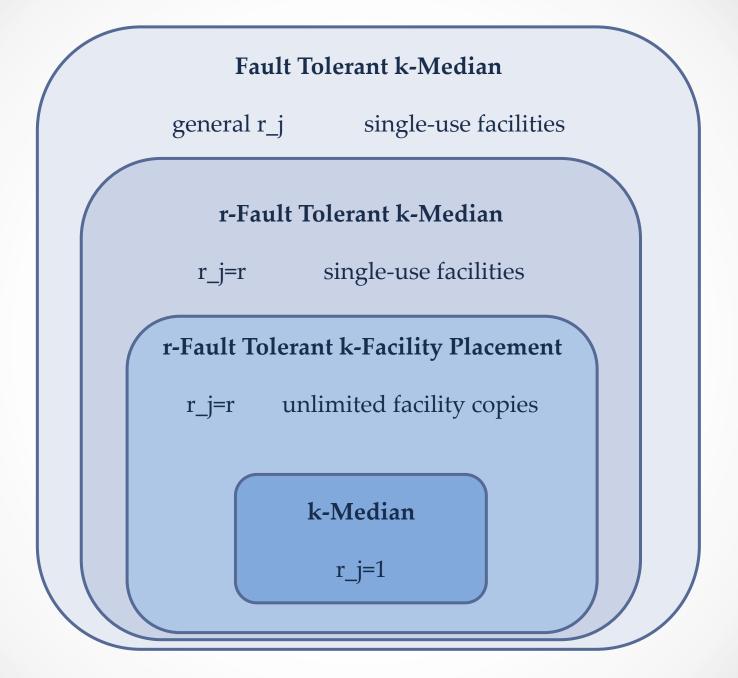
• COST(T) =
$$1^* \beta + 3^*(1 - \beta) = 3 - 2 \beta$$



• $COST(T) = 1^* \beta + 3^*(1 - \beta) = 3 - 2 \beta$

$COST(T) < 1+2/e \rightarrow \beta > 1-1/e$

- OPT_k = 1
- Conclusion: k-median is 1+2/e hard



Fault Tolerant k-Median

93-approximation [Hajiaghayi, Hu, Li, Li, Saha '13]

r-Fault Tolerant k-Median

4-approximation [Swamy, Shmoys '08]

r-Fault Tolerant k-Facility Placement

4-approximation

k-Median

2.61-approximation ['14]

r-Fault Tolerant k-Facility Placement

- For r=1, this is k-median, and has hardness 1+2/e
- For uniform r>=2, we adopt reduction

- use k*r facilities

- estimate cost as function of coverage (loose)
- \rightarrow 1+1/e^r hardness

Improved Lower Bound

- From previous section, cheapest solution possible cover 1-e^{-r} elements, r times
- Is this really easy, if it is hard to cover more than 1-e^{-r} at least once ?
 - Answer: NO!
- This above observation, leads to better lower bounds

Improved Constraints

- Apply sampling to get sets of multiple sizes.
- Expected fraction of elements uncovered at least e^{-γr}
- New constraints gives 1.344 lower bound for r =2

Hardness values for various r

r	1	2	3	4	5	6	7	8
γ_r	1	0.705	0.494	0.379	0.306	0.257	0.222	0.195
new hardness	1.736	1.344	1.224	1.167	1.132	1.110	1.094	1.082
$1 + \frac{2}{e^r}$	1.736	1.271	1.010	1.037	1.013	1.005	1.0018	1.0007
integrality gap	1.736	1.541	1.448	1.391	1.351	1.321	1.298	1.279

Integrality Gap

- k-median has known integrality gap 2
- rFTkMP for r>1 also has integrality gap 2
- Gap of 2 is "weak" in k-median
- Stronger gap is 1+2/e
- Question: what is the "stronger" gap for rFTkMP?

Future Directions

- Extend a similar approach to get a lower bound on FTFP.
 - Note, no lower bound known currently

 Large gap between Lower and Upper bound – Improve from either directions Questions/Comments ?