ROUND COMPLEXITY LOWER
BOUND OF ISC PROTOCOL IN
THE PARALLELIZABLE MODEL

Huijing Gong
CMSC 858F
Overview

- Background
 - Byzantine Generals Problem
 - Network Model w/o Pre-existing Setup
- ISC Protocol in Parallelizable Model
 - ISC, Parallelizable Model
 - Intuition of Protocol
- Round Complexity Lower Bound
 - Theorem
 - Proof
Background

- Byzantine Generals Problem
 - Commanding general and generals camped outside an enemy city
 - Commanding general sends the order to all
 - The generals exchange messages to agree on a battle plan: withdraw or attack
 - Traitor(s): confuse others
Background

- Byzantine Generals Problem

- Traitor(s): confuse others
Background

- **Byzantine Generals Problem**

Goal of Byzantine Agreement Protocols:
- Generals reach agreement on whether attack or withdraw
- Not obey Commander’s order if Commander is a traitor
Background

- Network Model w/o Pre-Existing Setup
 - N Parties: cannot be authenticated by pre-existing means
 - E.g. Public-Key Infrastructure (PKI)
 - Difference:
 - No idea where a receive message sent from
 - No idea if two message received from different rounds are sent from one party
 - But, a message sent by an honest party in some run received by all other parties at the end of that run
Network Model w/o Pre-Existing Setup

Adversary:
- Corrupt parties to behave arbitrarily
- Inject message into the network (> n - 1)
- Change messages they relay
- Send message to subset of the honest parties (< n - 1)
ISC Protocol in Parallelizable Model

- Protocol (by J. Katz, A. Miller, and E. Shi [2014]):
 - N Parties: cannot be authenticated by pre-existing means
 - Goal: Establish a PKI
 - No bound on the number of corruption
 - Adversary cannot drop or modify honest parties’ message

- Time-Lock Puzzle (Proof-of-Parallelizable Work Model)
 - Take role of trusted setup assumption
 - Each honest party has equal computational power
 - Adversary(f parties) runs sequentially faster by factor f
 - f correct parties cannot solve any faster taking as whole.
Interactive Set Consistency (ISC):

- Each party has an input and output a (multi)set of size n, s.t.
 - All the honest parties agree(output) on the same (multi)set S
 - S contains all the honest parties’ inputs
- Can be used to establish PKI among parties,
 - PKI later can provide authenticated communication
ISC Protocol in Parallelizable Model

- F_{parpuz} Oracle
 - Modeling the Time-Lock Puzzle
 - Each party can produce a puzzle solution independently in each round
 - An adversary who corrupts f processes can solve f puzzles per round in total
- Scheme
 - Solve a cryptographic puzzle upon request
 - Check solutions upon request
 - Polynomial Time
ISC Protocol in Parallelizable Model

- \mathcal{F}_{parpuz} Oracle

 - Solve:
 - \mathcal{F}_{parpuz} oracle maintains a table T.
 - Each party P_i sends $(solve, x_i)$ to \mathcal{F}_{parpuz} oracle: For $l = 1, \ldots, n$, \mathcal{F}_{parpuz} first check if (x_i, h_i) has been stored in T.
 - Yes: return h_i to P_i;
 - Otherwise, generate $h_i \in \{0, 1\}^\lambda$, return h_i to P_i and store (x_i, h_i) in T.
ISC Protocol in Parallelizable Model

- \mathcal{F}_{parpuz} Oracle

 Solve:
 - Each honest party is allowed to call \mathcal{F}_{parpuz} only once per round.
 - Each round of honest party: All the solve request must be sent before any honest party receives its solution.
 - Each round of corrupted parties: they can call \mathcal{F}_{parpuz} one after another in sequence up to f times.
ISC Protocol in Parallelizable Model

- F_{parpuz} Oracle
 - Check:
 - Each party P_i sends (check, $(x_{i}^1, h_{i}^1), (x_{i}^2, h_{i}^2), ...$) to F_{parpuz} oracle:
 - F_{parpuz} oracle returns $(b_{i}^1, b_{i}^2, ...)$:
 - $b_{i}^j = 1$ if $(x_{i}^2, h_{i}^2) \in T$
 - $b_{i}^j = 0$, otherwise.
ISC Protocol in Parallelizable-Work Model

- Orders in rounds (honest parties)
 - Each party sends (at most) one solve-request to F_{parpuz} and receive the solution
 - Each party computes a message to send
 - Message are delivered to each party
 - Each party sends a list of puzzle solution to F_{parpuz} for verification
Intuition of the Protocol:

- Mining Phase:
 - Each correct party generate a chain of $O(f^2)$ puzzle solutions:
 - E.g. $\text{Solve}(pk_i, \text{Solve}(pk_i, \text{Solve}(\ldots\text{Solve}(pk_i, \phi)\ldots)))$
 - Each correct party can create a valid puzzle chain for its own key,
 - Corrupt party only can create at most f puzzle chains before the protocol terminate
ISC Protocol in Parallelizable-Work Model

- Intuition of the Protocol:
 - Communication Phase:
 - Each party publishes their chains and propagate the puzzle chain they received from others
 - In each round r: Each party accepts a value if it has received a collection of r signatures on that value, the process then add its own signature to the collection and relay it to the other processes.
 - Signatures without associated puzzle chains are ignored
 - A correct party consider a public key “valid” if it comes along with a puzzle chain containing the public key long enough
Reference

