ROUND COMPLEXITY LOWER
BOUND OF ISC PROTOCOL IN
THE PARALLELIZABLE MODEL

Overview

Background
Byzantine Generals Problem
Network Model w/o Pre-existing Setup
ISC Protocol in Parallelizable Model
ISC, Parallelizable Model
Intuition of Protocol
Round Complexity Lower Bound
Theorem

Proof

Background

Byzantine Generals Problem
Commanding general and generals camped outside an
enemy city
Commanding general sends the order to all

The generals exchange messages to agree on a battle
plan: withdraw or attack

Traitor(s): confuse others

Background
—

1 Byzantine Generals Problem

Attack! Withdraw! Attack! Attack!

Commander said “Withdraw!” Commander said “Attack!”

o Traitor(s): confuse others

Background
—

-1 Byzantine Generals Problem

Commander Commander

Attack! Withdraw! Attack! Attack!
Commander said “Withdraw!” Commander said “Attack!”

Goal of Byzantine Agreement Protocols:
® Generals reach agreement on whether attack or withdraw

® Not obey Commander’s order if Commander is a traitor

Background

Network Model w/o Pre-Existing Setup

N Parties: cannot be authenticated by pre-existing means
E.g. Public-Key Infrastructure (PKI)

Difference:
No idea where a receive message sent from

No idea if two message received from different rounds are sent
from one party

But, a message sent by an honest party in some run received by
all other parties at the end of that run

Background

Network Model w/o Pre-Existing Setup
Adversary:

Corrupt parties to behave arbitrarily
Inject message into the network (> n -1)
Change messages they relay

Send message to subset of the honest parties (< n - 1)

|ISC Protocol in Parallelizable Model

Protocol (by J. Katz, A. Miller, and E. Shi [2014]):
N Parties: cannot be authenticated by pre-existing means
Goal: Establish a PKI
No bound on the number of corruption
Adversary cannot drop or modify honest parties’ message
Time-Lock Puzzle (Proof-of-Parallelizable Work Model)
Take role of trusted setup assumption
Each honest party has equal computational power
Adversary(f parties) runs sequentially faster by factor f

f correct parties cannot solve any faster taking as whole.

|ISC Protocol in Parallelizable Model

Interactive Set Consistency (ISC):

Each party has an input and output a (multi)set of size n, s.t.
All the honest parties agree(output) on the same (multi)set S

S contains all the honest parties’ inputs

Can be used to establish PKI among parties,

PKI later can provide authenticated communication

|ISC Protocol in Parallelizable Model

:F'

parpuz Qracle

Modeling the Time-Lock Puzzle

Each party can produce a puzzle solution independently in
each round

An adversary who corrupts f processes can solve f puzzles
per round in total

Scheme
Solve a cryptographic puzzle upon request
Check solutions upon request

Polynomial Time

|ISC Protocol in Parallelizable Model

Fparpuz Oracle

Solve:

F oracle maintains a table T.
parpuz

Each party P; sends (solve, x;) to Fyqppq, oracle: For | =
1, ocos 0, Fogrpuz first check if (x;, h;) has been stored in
T.

Yes: return h; to P;;

Otherwise, generate h; € { 0,1}4, return h; to P; and
store (x;, h;) inT.

|ISC Protocol in Parallelizable Model

:F'

parpuz Qracle

Solve:

Each honest party is allowed to call F, 4,0, only once per round

Each round of honest party: All the solve request must be sent
before any honest party receives its solution.

Each round of corrupted parties: they can call F, 4,0,y one after
another in sequence up to f times.

|ISC Protocol in Parallelizable Model
S =

0 Fparpuz Oracle

o Check:

» Each party P; sends (check, (xl-l, h}), (xiz, hl-z), ...) to
Fparpuz oracle:

O Tparpuz oracle returns (b}, bizl"'):
wbl=1if (x},h}) €T

. bg = (, otherwise.

|ISC Protocol in Parallelizable-Work Model

Orders in rounds (honest parties)

Each party sends (at most) one solve-request to
Tparpuz and receive the solution

Each party computes a message to send
Message are delivered to each party

Each party sends a list of puzzle solution to Tpa‘rpuz
for verification

|ISC Protocol in Parallelizable-Work Model

Intuition of the Protocol:

Mining Phase:
Each correct party generate a chain of O(f?) puzzle
solutions:
E.g. Solve(pk;, Solve(pk;, Solve(...Solve(pk;, P)...)))
Each correct party can create a valid puzzle chain for its
own key,

Corrupt party only can create at most f puzzle chains
before the protocol terminate

|ISC Protocol in Parallelizable-Work Model

Intuition of the Protocol:

Communication Phase:

Each party publishes their chains and propagate the puzzle
chain they received from others

In each round r: Each party accepts a value if it has
received a collection of r signatures on that value, the
process then add its own signature to the collection and
relay it to the other processes.

Signatures without associated puzzle chains are ignored

A correct party consider a public key “valid” if it comes
along with a puzzle chain containing the public key long
enough

Reference

Aguilera, Marcos Kawazoe, and Sam Toueg. "A simple bivalency
proof that t-resilient consensus requires t+ 1 rounds." Information

Processing Letters 71.3 (1999): 155-158.

Dolev, Danny, and H. Raymond Strong. "Authenticated algorithms for
Byzantine agreement." SIAM Journal on Computing 12.4 (1983):
656-666.

Lamport, Leslie, Robert Shostak, and Marshall Pease. "The Byzantine
generals problem." ACM Transactions on Programming Languages

and Systems (TOPLAS) 4.3 (1982): 382-401.

Katz, Jonathan, Andrew Miller and Elaine Shi. "Pseudonymous Secure

Computation from Time-Lock Puzzles." Cryptology ePrint
Archive (2014):857.

