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Background

Byzantine Generals Problem
Commanding general and generals camped outside an
enemy city
Commanding general sends the order to all

The generals exchange messages to agree on a battle
plan: withdraw or attack

Traitor(s): confuse others



Background
—

1 Byzantine Generals Problem

Attack! Withdraw! Attack! Attack!

Commander said “Withdraw!” Commander said “Attack!”

o Traitor(s): confuse others



Background
—

-1 Byzantine Generals Problem

Commander Commander

Attack! Withdraw! Attack! Attack!
Commander said “Withdraw!” Commander said “Attack!”

Goal of Byzantine Agreement Protocols:
® Generals reach agreement on whether attack or withdraw

® Not obey Commander’s order if Commander is a traitor



Background

Network Model w/o Pre-Existing Setup

N Parties: cannot be authenticated by pre-existing means
E.g. Public-Key Infrastructure (PKI)

Difference:
No idea where a receive message sent from

No idea if two message received from different rounds are sent
from one party

But, a message sent by an honest party in some run received by
all other parties at the end of that run



Background

Network Model w/o Pre-Existing Setup
Adversary:

Corrupt parties to behave arbitrarily
Inject message into the network ( > n -1)
Change messages they relay

Send message to subset of the honest parties (< n - 1)



|ISC Protocol in Parallelizable Model

Protocol (by J. Katz, A. Miller, and E. Shi [2014]):
N Parties: cannot be authenticated by pre-existing means
Goal: Establish a PKI
No bound on the number of corruption
Adversary cannot drop or modify honest parties’ message
Time-Lock Puzzle (Proof-of-Parallelizable Work Model)
Take role of trusted setup assumption
Each honest party has equal computational power
Adversary(f parties) runs sequentially faster by factor f

f correct parties cannot solve any faster taking as whole.



|ISC Protocol in Parallelizable Model

Interactive Set Consistency (ISC):

Each party has an input and output a (multi)set of size n, s.t.
All the honest parties agree(output) on the same (multi)set S

S contains all the honest parties’ inputs

Can be used to establish PKI among parties,

PKI later can provide authenticated communication



|ISC Protocol in Parallelizable Model

:F'

parpuz Qracle

Modeling the Time-Lock Puzzle

Each party can produce a puzzle solution independently in
each round

An adversary who corrupts f processes can solve f puzzles
per round in total

Scheme
Solve a cryptographic puzzle upon request
Check solutions upon request

Polynomial Time



|ISC Protocol in Parallelizable Model

Fparpuz Oracle

Solve:

F oracle maintains a table T.
parpuz

Each party P; sends (solve, x;) to Fyqppq, oracle: For | =
1, ocos 0, Fogrpuz first check if (x;, h;) has been stored in
T.

Yes: return h; to P;;

Otherwise, generate h; € { 0,1}4, return h; to P; and
store (x;, h;) inT.



|ISC Protocol in Parallelizable Model

:F'

parpuz Qracle

Solve:

Each honest party is allowed to call F, 4,0, only once per round

Each round of honest party: All the solve request must be sent
before any honest party receives its solution.

Each round of corrupted parties: they can call F, 4,0,y one after
another in sequence up to f times.



|ISC Protocol in Parallelizable Model
S =

0 Fparpuz Oracle

o Check:

» Each party P; sends (check, (xl-l, h}), (xiz, hl-z), ...) to
Fparpuz oracle:

O Tparpuz oracle returns (b}, bizl"'):
wbl=1if (x},h}) €T

. bg = (, otherwise.



|ISC Protocol in Parallelizable-Work Model

Orders in rounds (honest parties)

Each party sends (at most) one solve-request to
Tparpuz and receive the solution

Each party computes a message to send
Message are delivered to each party

Each party sends a list of puzzle solution to Tpa‘rpuz
for verification



|ISC Protocol in Parallelizable-Work Model

Intuition of the Protocol:

Mining Phase:
Each correct party generate a chain of O(f?) puzzle
solutions:
E.g. Solve(pk;, Solve(pk;, Solve(...Solve(pk;, P)...)))
Each correct party can create a valid puzzle chain for its
own key,

Corrupt party only can create at most f puzzle chains
before the protocol terminate



|ISC Protocol in Parallelizable-Work Model

Intuition of the Protocol:

Communication Phase:

Each party publishes their chains and propagate the puzzle
chain they received from others

In each round r: Each party accepts a value if it has
received a collection of r signatures on that value, the
process then add its own signature to the collection and
relay it to the other processes.

Signatures without associated puzzle chains are ignored

A correct party consider a public key “valid” if it comes
along with a puzzle chain containing the public key long
enough
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