Network Design and Game Theory Spring 2008 Lecture 6 Guest Lecturer: Aaron Archer Instructor: Mohammad T. Hajiaghayi Scribe: Fengming Wang March 3, 2008 #### 1 Overview We study the Primal-dual, Lagrangian relaxation paradigm of approximation algorithms for the NP-hard problems: Steiner tree problem (both the standard and prize-collecting version) and k-Minimum spanning tree problem. Its corresponding reference is [1]. ### 2 General Steiner Tree #### 2.1 Definition Given the graph G=(V,E), the cost function $C:E\to\mathbb{R}^+$ and a subset of terminal nodes $\mathcal{T}\subseteq V$, Find $T\subseteq E$ that spans \mathcal{T} of the total minimum cost. For example, let $\mathcal{T}=\{a,b,c\}$ in Figure 1. The extra node c is called a *steiner node*. It is easy to see that the corresponding steiner tree is the star centered at c of total weight 3 while any other spanning tree without using c costs 4 units. Without loss of generality, we assume that G is always a complete graph, moreover, C obeys triangle inequalities, since the cost function could be transformed into a metric by taking the shortest path as the distance between any two nodes. ### 2.2 2-Approximation via MST Compute the minimum spanning tree MST on the subgraph induced by T, we claim that this 2-approximates the optimal steiner tree OPT. The proof consists of two steps. Since OPT is a tree, one could do the depth-first search on it from an arbitrary node, which constructs a Eulerian tour Date: 03/03/2008 Figure 1: Steiner Tree on the nodes spanned by OPT. Note the cost is doubled for the tour compared to OPT. Then revise the tree by skipping all of the steiner nodes and joining consecutive terminal nodes according to the tour, which returns a spanning tree on T. By triangle inequalities on C, the cost of this spanning tree is no larger than that of the tour, therefore, MST is a valid 2-approximation. #### 2.3 2-Approximation via LP First we fix some notations. - For any $S \subseteq V$, $\delta(S) = \{e_{u,v} \in E : u \in S, v \notin S\}$. - $C = \{S \subseteq V : S \cap T \neq \emptyset, \neq T\}.$ - For any $F \subseteq E$, $C(F) = \Sigma_{e \in F} C_e$. The following observation is easy to verify and crucial for our algorithm. $\textbf{Claim 1} \ \ \mathsf{T} \subseteq \mathsf{E} \ \text{spans} \ \mathsf{T} \ \text{if and only if} \ \forall \mathsf{S} \in \mathbb{C}, \mathsf{T} \cap \delta(\mathsf{S}) \neq \emptyset.$ Proof: Apply max-flow/min-cut theorem. We interpret this idea in terms of integer programming and define the following indicator variables for each edge: $\forall e \in E, \chi_e = 1$ if e is in our solution tree, 0 otherwise. $$\begin{array}{ll} \min & \Sigma_{e \in E} C_e \chi_e \\ \mathrm{s.t.} & \Sigma_{e \in \delta(S)} \chi_e \geq 1 \quad \forall S \subseteq \mathfrak{C} \end{array}$$ Relax the condition that $\chi_e \in \{0,1\}$ to make them nonnegative real variables. Now we obtain a linear program and then take a close look at its dual. $$\begin{array}{ll} \max & \Sigma_{S \in \mathcal{C}} y_s \\ \mathrm{s.t.} & \Sigma_{S: e \in \delta(S)} y_S \leq C_e & \forall e \in E \\ y_s \geq 0 \end{array}$$ Apparently both the primal and the dual programs are feasible. So the complementary slackness constraints are satisfied for the pair of optimal solutions. - 1. $\forall e \in E, \chi_e > 0 \Rightarrow \Sigma_{S:e \in \delta(S)} y_S = C_e$. - 2. $\forall S \in \mathcal{C}, y_S > 0 \Rightarrow \Sigma_{e \in \delta(S)} \chi_e = 1.$ These two implications have economic interpretations. The first postcondition says that for every edge, the primal buys exactly what the dual pays for it while the second one means that each cut pays exactly for one edge. Therefore, we get a sequence of equalities as follows: $$\Sigma_{e \in E} C_e \chi_e = \Sigma_{e \in E} \chi_e \Sigma_{S: e \in \delta(S)} y_S = \Sigma_{S \in \mathcal{C}} y_S \qquad \underbrace{\Sigma_{e \in \delta S} \chi_e}_{1 \text{ whenever } y_S \neq 0} = \Sigma_{S \in \mathcal{C}} y_S$$ So any answer for the dual is always a lower bound for the primal. Next we would devise an algorithm which promises that the output never exceeds twice one specific dual solution. Agrawal-Klein-Ravi (AKR) Algorithm For Steiner Tree $\mathcal{F} = \phi$. repeat repeat Grow at unit rate y_S for every component induced by $\mathcal F$ that contains a terminal. until Some edge e goes tight (is paid for by the cut it crosses)[Break ties arbitrarily]. $\mathcal{F} \leftarrow \mathcal{F} + e$ [This will never create a cycle because edge (\mathfrak{u}, ν) stops being paid off once $\mathfrak{u}\&\nu$ are in the same component]. Add edges without creating cycles and ties are broken arbitrarily. until F spans T. Pruning: iteratively delete edges to steiner nodes that are leaves. Consider the graph in Figure 2, where the terminal nodes are $\mathfrak{a},\mathfrak{b},\mathfrak{e}$ and \mathfrak{f} . The first several steps of the algorithm are performed as follows: - Grow y(a), y(b), y(e)y(f) at rate 1. Merge ac, bd, eg at time 1. - 2. Grow $y_{\{a,c\}}, y_{\{b,d\}}, y_{\{e,g\}}, y_{\{f\}}$. Merge aceg, bdf at time 2. - 3. ... Remark: The y_S values produced by the algorithm always satisfies the constraints in the dual program. So they form a feasible solution. **Remark:** The ratio between the optimal solution for the linear program and the output of the algorithm could be as large as 2. It is not hard to see that a simple cycle yields this gap. I dea of the proof of Approximation factor 2(Thm 1) If we have path for node b a by 20 edges and this is factor 2 what about If 5 163, then we pay in average 20. more precisely consider an snapshot of the algorithm whose final solution is F. The set A is the set of A growing balls (Active components) consider I as a the set (A) af Inactive components (isolated) steiner moder which steiner modes which are in the final solution F) Rute of Paying for Primal is Edeg(V) while the rate of increasing duct is IAI since All leaves are active nodes (steiner nodes will be use less as leaves due to pruning step that we delite unnecessary edges) the inactive nodes have degree at least 2 thus Edeg(V) > 2 | II (F) we have Z deg(v) = 2(|A|+II)-1) sine the salution isatile. Pue to (1) thus E leg(v) < 2(1A1-1) < 2(A1. Thus deprinal increas) < 2 ded in the Thus by induction cost(F)= cost of primal < 2 cost of dual copt Figure 2: Example **Theorem 1** \Im output by the algorithm satisfies $C(F) \leq 2(1-\frac{1}{n})\Sigma y_S$, where the y_S values untouched by the algorithm are implicitly set to 0. The proof does the backward analysis and utilizes the fact that in any tree, the total degree never exceeds twice the number of nodes. For more details, we refer the reader to chapter 22 of the book "Approximation Algorithms". ### 3 Prize-collecting Steiner Tree (PCST) This is similar to the problem previously studied. In addition, there two more parameters, $\Pi:V\to R^+$, the prize function which associates a nonnegative value to each node once reached, and $r\in V$, the root from which one tries to build the steiner tree. The goal is changed as well: we want to construct a tree T rooted at r such that the gain (the difference between the sum of prizes from the connected nodes and the total cost to realize the tree) is maximum. Formally the following quantity needs to be maximized: $$\Pi(\mathsf{T}) - \mathsf{C}(\mathsf{T}) \tag{1}$$ which is equivalent to maximize $$\Pi(\mathsf{T}) - \mathsf{C}(\mathsf{T}) - \Pi(\mathsf{V}) \tag{2}$$ or $$-C(T) - \Pi(V \setminus T) \tag{3}$$ Remark 1 This is the same as minimizing $C(T) + \Pi(V \setminus T)$. This seems like an unnatural objective function. The original motivation for studying it is that it is NP-hard to determine whether the optimum value for 1 is positive, and hence no bounded approx ratio is possible unless P=NP. In contrast, we can get a 2-approx for 3, as shown below. This algorithm has a "Lagrangian multiplier-preserving" property that turns out to have both theoretical and practical consequences that we will exploit. For every $U \subseteq V \setminus \{r\}$, z_U equals to 1 if U is exactly the set we don't span, 0 otherwise. Therefore, an easy observation leads to the following integer program. $$\begin{array}{ll} \min & \Sigma_{e \in E} \, C_e \chi_e + \Sigma_{U \subseteq V \setminus \{r\}} \Pi(U) z_U \\ \mathrm{s.t.} & \Sigma_{e \in \delta(S)} \chi_e + \Sigma_{U \supseteq S} z_U \geq 1 \\ & \chi_e, z_U \geq 0 \end{array} \quad \forall S \subseteq V \setminus \{r\}$$ The corresponding dual is $$\begin{array}{ll} \max & \Sigma y_S \\ \text{s.t.} & \Sigma_{S:e \in \delta(S)} y_S \leq C_e & \forall e \in E \\ & \Sigma_{S \subseteq U} y_S \leq \Pi(U) & \forall U \subseteq V \\ & y_S \geq 0 \end{array}$$ We have one new implication added into the complementary slackness. $$z_{U} > 0 \Rightarrow \Sigma_{S \subset U} y_{S} = \Pi(U)$$ ``` \begin{split} \mathfrak{I} &= \{\{\nu\}: \Pi_{\nu} = 0\} \text{ [This includes } \{r\} \text{ since we assume } \Pi_{r} = 0] \\ \forall \nu \in V, P_{\{\nu\}} = \Pi_{\nu} \text{ [We call the P variables potentials.]} \\ \textbf{repeat} \\ \textbf{Grow } \mathfrak{y}_{S} \text{ and shrink } P_{S} \text{ for all } S \in \mathcal{A}. \\ \textbf{until Some edge } e \text{ goes tight or for some } S \in \mathcal{A}, P_{S} \text{ hits } 0. \text{[Ties are broken arbitrarily.]} \\ \textbf{if Edge } e \text{ goes tight } \textbf{then} \\ \mathcal{F} \leftarrow \mathcal{F} + e. \\ \textbf{Merge } S_{1}, S_{2} \text{ that } e \text{ joins and let } P_{S_{1} \cup S_{2}} = P_{S_{1}} + P_{S_{2}} \\ \textbf{Delete } S_{1}, S_{2} \text{ that } e \text{ joins and let } P_{S_{1} \cup S_{2}} = P_{S_{1}} + P_{S_{2}} \\ \textbf{Delete } S_{2}, S_{3} \text{ from } \mathcal{A} \text{ (or } \mathcal{I}) \text{ and add } S_{3} \cup S_{4} \text{ of } \mathcal{I}_{2} \end{aligned} ``` Merge S_1, S_2 that e joins and let $P_{S_1 \cup S_2} = P_{S_1} + P_{S_2}$. Delete S_1, S_2 from A (or J) and add $S_1 \cup S_2$ to A. if $r \in S_1 \cup S_2$ then Move $S_1 \cup S_2$ from \mathcal{A} to \mathcal{I} . end if else if For some $S \in A$, P_S hits 0 then Goemans-Williamson Algorithm For PCST move S from A to I end if $\mathcal{F} = \phi$. $A = \{\{v\} : \Pi_v > 0\}$ until $A = \phi$ or \mathcal{F} spans the whole graph. Pruning: throw away every component that was ever an inactive leaf. scribe: Fengming Wang Lecture 6 Date: 03/03/2008 Note 1 GW should have to implement this using standard priority queue in $O(n^2 \log n)$ time. At the end of the algorithm, we have some tree T. Because the nodes we fail to span can be partitioned into components that ran out potential, and this was constructed to be equivalent to constraint 4 being tight for that component, we get $$\Sigma_{S\subseteq V\setminus T}y_S=\Pi(V\setminus T)$$ Moreover, the analogous analysis in the last section gives $$C(T) \leq 2\Sigma_{S:T \cap \delta(S) \neq \phi} y_S$$ Combine them together and we get Theorem 2 $$C(T) + 2\Pi(V \setminus T) \le 2\Sigma y_S$$ To have a 2-approximation for PCST, it would have been sufficient to show $C(T)+2\Pi(V\setminus T)\leq 2\Sigma y_S$. The two sides being equal means that the Lagrangian-preserving Property is satisfied. If we multiply the prize function by a parameter λ to find some tree $T(\lambda)$ via GW PCST algorithm, this is very useful which amounts to the following claim. Claim 2 Among all trees that capture at least $\lambda\Pi(T(\lambda))$ prizes, the cost of $T(\lambda)$ is no worse than twice that of the optimal. Proof: As the previous linear program $$\begin{array}{ll} \min & \Sigma C_e \chi_e \\ \mathrm{s.t.} & \Sigma_{e \in \delta(S)} \chi_e + \Sigma_{u \supseteq S} z_u \geq 1 & \forall S \subseteq V \setminus r \\ & \Sigma_{u \subseteq V \setminus r} \Pi(u) z_u \leq G \\ & \chi_e, z_u \geq 0 \end{array}$$ Its dual is $$\begin{array}{ll} \max & \Sigma_{S\subseteq V\setminus r} y_S - \lambda G \\ \mathrm{s.t.} & \Sigma_{S:e\in\delta(S)} y_S \leq C_e & \forall e \in E \\ \Sigma_{S\subseteq U} y_S \leq \lambda \Pi(U) & \forall U \subseteq V \setminus r \\ & \lambda, y_S \geq 0 \end{array}$$ Think of G as $\Pi(V \setminus T(\lambda))$. Then similar to the previous analysis, $C(T(\lambda)) \le 2(\Sigma_{y_s} - \lambda \Pi(V \setminus T(\lambda)))$. The theorem above gives us a base for the algorithmic paradigm which "turns the λ knob" to search for a better approximation. ### 4 k-MST problem Given G = (V, E), the cost function $C : E \to R^+$, the root $r \in V$ and $k \in \mathbb{Z}^+$, find the tree T rooted at r spanning at least k nodes of the smallest total edge-cost. **Notation**: - T(λ) = tree given by GW PCST run with Penalty OPT_k = cost of the optimal k-MST. - $LB_k = a$ valid lower bound on OPT_k Figure 3: Search The sketch of the idea is that find a value of λ (using binary search, Meggido parametric search, etc.) such that $|T(\lambda^-)| \leq k$ and $|T(\lambda^+)| > k$, where $|T(\lambda^-)|$ and $|T(\lambda^+)|$ are 2-approximate k'-MSTs for $k' = |T(\lambda^-)|$ and $k' = |T(\lambda^+)|$. If $k = |T(\lambda^-)|$ we are done and have a 2-approximate solution. Otherwise, we must combine the trees $T(\lambda^-)$ and $T(\lambda^+)$ to get our final solution T. If c(T) are exactly the linear interpretation of $c(T(\lambda^-))$ and $c(T(\lambda^+))$, then we would have a 2-approximation. This is essentially how a 2-approximation is obtained, although it is possibly to get a 5 or a 3 much more simply. ## 5 Real world Application At AT&T a team that includes Aaron has built a tool that uses the Goemans-Williamson PCST algorithm to help decide where to lay new cables. The tree produced by the GW algorithm is a first cut that is fed into some heuristics to augment the tree into a 2-connected network. We have found this approach to be practical and effective. The multiplier λ can be set to reflect the target payback period for this capital investment. Red world AT&T application: Design fiber build connecting New castomers to existing network. The graph 7 is the street network. Root: existing fiber (super node). Edge cost: cost of digging trench for laging tibers. Prize is the monthly in come from a costomer. The Prize-collecting striner tree models the total loss of the company. #### References David S. Johnson, Maria Minkoff, and Steven Phillips. The prize collecting steiner tree problem: theory and practice. In SODA, pages 760-769, 2000. Prize-collecting problem are classic optimization problems in which there are Valious demands that desire to be served by some lovest-cost structure. However if som demands are too expensive to serve, then we can refuse and instead pay a penalty. Several applications both in theory and pratine Usually there is a constant tactor (on additive factor I difference) for approx. factor of PC problems vs. non-PC (regular) Problems (though there are some exceptions) still we do not know can this additive+1 can be eliminated (ve can improve + 0.5 but not more so far. PC-TSP 1.91 Vs. 1.5 for TSP PK-Stringthe 196 Vs. 1.39 for striner tree PC-Steiner forest 254 vs 2 for steine forest there are a st of pairs, that we want to connect and a penalty for each one which is not connected. An example of additive factor 1: consider PC-ST and write Up St. \(\times \text{xe+Z+} \right\) \(\text{tert} \) \[\text{Viscountere resembles} \] \[\text{ve+Z+} \right\] \(\text{tert} \) \[\text{viscountere resembles} \] \[\text{ve+Z+} \right\] Solve the lp and consider all TCT for which 2,23. Pay the Penalty for these ts. Then in crosse xe by a scale factor 3. Then me know for tET-T, 2 xext for any Swhere res and tes. Then we know cost of connecting 7-T' is at most twice this LP (by Primal-dual origin; this Total cost is 2 \(\int \text{Ce}(\frac{3}{2}) \text{7e+3} \text{2xR4} = 30Pt. We can improve 3 to 2.54 using a randomized discribettle)