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1 Overview

We study the Primal-dual, Lagrangian relaxation paradigm of approximation
algorithms for the NP-hard problems: Steiner tree problem (both the standard
and prize-collecting version) and k-Minimum spanning tree problem. Its corre-
sponding reference is [1].

2 General Steiner Tree

2.1 Definition

Given the graph G = (V,E), the cost function C : E — R* and a subset of
terminal nodes T C V, Find T C E that spans T of the total minimum cost. For
example, let T ={a,b,c} in Figure 1. The extra node c is called a steiner node.
It is easy to see that the corresponding steiner tree is the star centered at ¢ of
total weight 3 while any other spanning tree without using ¢ costs 4 units.

Without loss of generality, we assume that G is always a complete graph,
moreover, C obeys triangle inequalities, since the cost function could be trans-
formed into a metric by taking the shortest path as the distance between any
two nodes.

2.2 2-Appr6ximation via MST

Compute the minimum spanning tree MST on the subgra

@ induced by T, we claim that this 2-approximates the optimal steiner tree
OPT. The proof consists of two steps. Since OPT is a tree, one could do the
depth-first search on it from an arbitrary node, which constructs a Eulerian tour
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Figure 1: Steiner Tree

on the nodes spanned by OPT. Note the cost is doubled for the tour compared
to OPT. Then revise the tree by skipping all of the steiner nodes and joining
consecutive terminal nodes according to the tour, which returns a spanning tree
on T. By triangle inequalities on C, the cost of this spanning tree is no larger
than that of the tour, therefore, MST is a valid 2-approximation.

2.3 2-Approximation via LP

First we fix some notations.
e Forany SCV, §(S)={eyv EE:ueS,veéSh
e C={SCV:S5NT#0#T}
e For any FC E, C{F) = L.c¢Ce.

The following observation is easy to verify and crucial for our algorithm.

Claim 1 T C E spans T,if and orly if VS € C, TN 5(S) #0.

(anhe |
Proof: Apply ma.x—ﬁo;"min-cut tHeorem. ]

We interpret this idea in terms of integer programming and define the fol-
lowing indicator variables for each edge: Ve € E, x. = 1 if e is in our solution
tree, 0 otherwise.

min ZecrCeXe
s.6. Zegsis)Xe=1 VSCC

Relax the condition that x. € {0, 1} to make them nonnegative real variables.
Now we obtain a linear program and then take a close look at its dual.

max Lsceys
s.t. LseessiUs < Ce VeekE
ys 20

Apparently both the primal and the dual programs are feasible. So the com-
plementary slackness constraints are satisfied for the pair of optimal solutions.
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1. Ye € E, xe > 0= Ls.ees(s)Us = Ce.
2. VS€eBys > 0= Less)Xe = 1.

These two implications have economic interpretations. The first postcondi-
tion says that for every edge, the primal buys exactly what the dual pays for it
while the second one means that each cut pays exactly for one edge. Therefore,
we get a sequence of equalities as follows:

YoceCexe = LeceXeLsiecs(s)Us =LsceUs  LeessXe = LseeUs
o Mkl
1 whenever ys#0
So any answer for the dual is always a lower bound for the primal. Next we

would devise an algorithm which promises that the output never exceeds twice
one specific dual solution.

Agrawal-Klein-Ravi (AKR) Algorithm For Steiner
Tree
F=do.
repeat
repeat
Grow at unit rate ys for every component induced by F that contains a
terminal.
until Some edge e goes tight (is paid for by the cut it crosses)[Break ties
arbitrarily].
F — F + e [This will never create a cycle because edge (u,v) stops being
paid off once u&v are in the same component).
Add edges without creating cycles and ties are broken arbitrarily.
until F spans T.
Pruning: iteratively delete edges to steiner nodes that are leaves.

Consider the graph in Figure 2, where the terminal nodes are a, b, e and f.
The first several steps of the algorithm are performed as follows:

1. Grow Yiaj, Uib}, Uge)Ys) at rate 1. Merge ac, bd, eg at time 1.

2. Grow U(a,e}» Yib,d)r Yie,g)r Yi- Merge aceg, bdf at time 2.
B =

Remark: The ys values produced by the algorithm always satisfies the
constraints in the dual program. So they form a feasible solution.

Remark: The ratio between the optimal solution for the linear program
and the output of the algorithm could be as large as 2. It is not hard to see
that a simple cycle yields this gap.
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Figure 2: Example

Theorem 1 F output by the algorithm satisfies C(F) < 2(1— &]Zyg, where the
Ys values untouched by the algorithm are implicitly set to 0.

The proof does the backward analysis and utilizes the fact that in any tree,
the total degree never exceeds twice the number of nodes. For more details, we
refer the reader to chapter 22 of the book " Approximation Algorithms”.

3 Prize-collecting Steiner Tree (PCST)

This is similar to the problem previously studied. In addition, there two more
parameters, T : V — R*, the prize function which associates a nonnegative
value to each node once reached, and v € V, the root from which one tries to
build the steiner tree. The goal is changed as well: we want to construct a
tree T rooted at r such that the gain (the difference between the sum of prizes
from the connected nodes and the total cost to realize the tree) is maximum.
Formally the following quantity needs to be maximized:

T = C(T) (1)

which is equivalent to maximize

T(T) = C(T) =TI(V) (2)
or

=C(T)=TI(V\T) (3)

Remark 1 This is the same as minimizing C(T)+TT1(V\T). This seems like an
unnatural objective function. The original motivation for studying it is that it
is NP-hard to determine whether the optimum value for 1 is positive, and hence
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no bounded approx ratio is possible unless P = NP. In contrast, we can get a
Z-approz for 3, as shown below. This algorithm has a "Lagrangian mulliplier-
preserving” property that turns out to have both theoretical and practical conse-
quences that we will exploit.

For every U C V \ {r}, zy equals to 1 if U is exactly the set we don't
span, 0 otherwise. Therefore, an casy observation leads to the following integer
prograr.

min  LoeeCeXe + ZucwvinTT(U)zy
5.t. Leests)Xe+Zudszu =21  VSCV\({r}

XesZu 2 0
The corresponding dual is
max Zys
st. Lseess)ys <C. VYeckE ()
Iscuys = TM(U) YUCV
ys =20

We have one new implication added into the complementary slackness.

zy > 0= Lscuys =T(U)

Goemans-Williamson Algorithm For PCST
F=.
A ={{v}: T, >0}
J={{v}: TT, = 0} [This includes {r} since we assume T, = 0]
Vv €V, Py =TT, [We call the P variables potentials.|
repeat
repeat
Grow ys and shrink Pg for all § € A.
until Some edge e goes tight or for some § € A, Ps hits 0.[Ties are broken
arbitrarily.|
if Edge e goes tight then
FeF+te.
Merge Sy,5; that e joins and let Ps,us, = Ps, + Ps,
Delete Sy,5; from A (or J) and add $; US; to A.
if reS;US; then
Move S$; US; from A to J.
end if
else if For some S € A, Ps hits 0 then
move S from A to J
end if
until A = ¢ or F spans the whole graph.
Pruning: throw away cvery component that was ever an inactive leaf,
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Note 1 GW should have to implement this using standard priority queue in
O(n?logn) time.

At the end of the algorithm, we have some tree T. Because the nodes we fail
to span can be partitioned into components that ran out potential, and this was
constructed to be equivalent to constraint 4 being tight for that component, we
get

Lscvitus =TIV T)

Moreover, the analogous analysis in the last section gives

C(T) € 2Zs:1m5(5)20Us
Combine them together and we get

Theorem 2 C(T) + 2M(V\ T) < 2Fys

To have a 2-approximation for PCST, it would have been sufficient to show
C(T)+2IM(V\T) < 2Lys.

The two sides being equal means that the Lagrangian-preserving Property
is satisfied. If we multiply the prize function by a parameter A to find some
tree T(A) via GW PCST algorithm, this is very useful which amounts to the
following claim.

Claim 2 Among all trees that capture at least ATT(T(A)) prizes, the cost of T(A)
is no worse than twice that of the optimal.

Proof: As the previous linear program

min LCexe
st. Lecs(s)Xe+ZLusszu=>1 VSCV\r
ZucwMMUWzy £ G

Xe Zu 2 0
Its dual is
max ngv\,ys —AG
st IseessiUs <Ce  VeeE
Lscuys <AM(U) YUC V\r
A)US > 0
Think of G as M(V\T(A)). Then similar to the previous analysis, C(T(A)) <
2(Lys —ATI(V\ T(A))). B

The theorem above gives us a base for the algorithmic paradigm which "turns
the A knob” to search for a better approximation.
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4 k-MST problem

Given G = (V,E), the cost function C: E — R*, the root r € V and k € Z*+, find
the tree T rooted at r spanning at least k nodes of the smallest total edge-cost.

Notation:
e T(A) = trec given by GW PCST run with semespsehit A. 'fqy! Ce [-;) [/ff/‘rx
o OPT\ = cost of the optimal k-MST. fﬂnH‘j

* LBy = a valid lower bound on OPTy

Figure 3: Search

The sketch of the idea is that find a value of A (using binary search, Meggido
parametric, search, etc.) such that ‘T[I\‘] < k and )T[?\*], > k, where TI'[J\‘]
and [T(A+)| are 2-approximate k'-MSTs for k’ = [T(A~)| and k' = ra+)p 1
k =|T(A"} we are done and have a 2-approximate solution. Otherwise, we
must combine the trees T(A") and T(A*) to get our final solution T. If ¢(T)
are exactly the linear interpretation of ¢(T(A~)) and ¢(T(A*)), then we would
have a 2-approximation. This is essentially how a 2-approximation is obtained,
although it is possibly to get a 5 or a 3 much more simply.

5 Real world Application

At AT&T a team that includes Aaron has built a tool that uses the Goemans-
Williamson PCST algorithm to help decide where to lay new cables. The tree
produced by the GW algorithm is a first cut that is fed into some heuristics
to augment the tree into a 2-connected network. We have found this approach
to be practical and effective. The multiplier A can be set to reflect the target
payback period for this capital investment.
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