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1 Introduction

Deadline-TSP (DTSP) and Vehicle routing with time-windows (VRTW) are
extensions of the much studied TSP problem where each vertex to be visited
has a time-window associated with it and server is rewarded only if it visits
a node during this time window. For the deadline-TSP problem, all release
times are identically zero. These problems have been studied extensively and
find applications in areas such as vehicle routing, robot motion planning and
task scheduling. In the above problems, only the starting vertex is specified.
If both end points of walk are given, then the problem is called point to point
orienteering with time-windows. The algorithms discussed in here apply to this
problem as well.

2 Notation and Preliminaries

Let G = (V, E) be a weighted graph, with a start node r. We use OPT to
denote the optimal algorithm and the optimal path. When it is clear from the
context we also use OPT to denote total reward collected by the optimal path.
D : V 7→ Z+ is the deadline function. Let Π : V 7→ Z+ be the reward function.
Let ΠP be the reward collected by path P. Let Dmax denote maximum deadline.
Let R : V 7→ Z>=0 be the release time function.

3 Summary of Results

Here we present summary of current best know approximation for VRTW and
related problems on undirected graphs. P2P is defined in the next section.
Other problems listed in the table are: DTSP with constant number of different
deadlines (DTSP-CD), VRTW with time-windows of size 1 (VRTW-1TW). Let
Lmax = maxv∈V(R(v) −D(v)). Let Lmin = minv∈V(R(v) −D(v)).

Table 1:
Problem Metric Approximation
DTSP[1] Graph O(log(n))
VRTW[1] Graph O(log(Dmax))
VRTW[1] Graph O(log2(n))

VRTW[3] Graph O(log(Lmax
Lmin

))

DTSP-CD[4] Graph 12
VRTW-1TW[5] Graph 6 + ε

VRTW-1TW[5] Tree Exact
VRTW[2] Path O(1)
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4 Orienteering

In point-to-point orienteering (P2P), we are required to go from a node s to node
t within time D. Objective is to maximize reward withing the above constraints.
The paper gives a 3-approximation from point-to-point orienteering problem,
which is an improvement over an earlier 4-approximation. The algorithms uses
a 2 + ε- approximation to the min-excess path problem. In min-excess path
problem, we are required to collect a reward of atleast k, starting at s and
ending at t. The objective is to minimize D − d(s, t), where D is the total
length of path and d(s, t) is the length of the shortest path between s and t.
We assume that all distances, rewards and deadlines are polynomial in n.

4.1 Algorithm

Input: Metric G, s, t, D, rewards.
Output: A path that is a 3-approximation for p2p orienteering problem.

• For each pair of nodes (x, y) and value k, we compute a minimum excess
path from x to y which visits k nodes.

• We then select the triple (x, y, k) with the maximum k, such that the
computed path has excess D− d(s, x) − d(x, y) − d(y, t) or smaller.

• We return the path which travels from s to x via shortest path, then x to
y via the computed path, then y to t via shortest path.

4.2 Proof Sketch

Let reward be evenly spread among segments s−x, x−y and y−t. Let segment
x−y have the least excess path among all segments. Then it will have atmost a
third of the total excess. If we have a 3-approximation for min-excess problem
we can get all the reward from segment x − y. Since, we can guess all triplets
(x, y, k) in polynomial time, we get a 3-approximation to this problem.

5 Routing with Time-windows

The main intuituion behind this algorithm is that if we start collecting reward
for a set of vertices after their release time, then the problem reduces to deadline-
TSP. If, for a subset of vertices, OPT collects reward from some vertices before
time d and deadlines of vertices are greater than or equal to d, then we can
get a constant factor of reward from these vertices using the point-to-point
orienteering problem.

6 Bicriterion Algorithm
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Algorithm 1 Bicriteria algorithm for general case 1

Input: Graph G = (V, E) with deadline d(v); parameter ε.
Output: Path P with ΠP ≥ Ω( 1

log( 1
δ
)
)∗ΠOPT and R(v) ≤ tr(v) ≤ (1+ε)∗d(v).

1: Let f = 1√
1+ε

and s be the smallest such integer for which f1.5
s ≤ 1

4
.

2: Apply small margin algorithm with parameter f to the graph and let P0be
the path obtained.

3: Apply large margin algorithm to the graph, and let Ps+1be the path ob-
tained.

4: for all i ∈ {1, .., s} do

5: For all v ∈ V,define d ′(v) = d(v)f1.5
i−1

.

6: Apply small margin algorithm with parameter f0.5(1.5)
i−1

to the graph
with new deadline d ′, and let Pi the path obtained.

7: end for
8: Among the paths constructed above, return the one with the maximum

reward.

6.1 Small Margin Algorithm

Let ε be a fixed constant. Consider the set of nodes Vε = {v : D(v)/(1 + ε) ≤
tOPT (v) ≤ D(v)}. We can get a constant factor of reward from part of OPT that
is in Vε while exceeding the deadlines by a factor of (1+ ε)2. Let f = 1

(1+ε)0.5
.

Divide the nodes in the graph into segments where segment Sj has nodes with
deadlines between (fjDmax, f

j−1Dmax]. Notice that vertices in Sj are visited
before vertices in Sj+2 by Vε. To get a constant fraction of reward, one can
compute a path that get optimal reward from every third of these segments and
join them by taking shortcuts across the intermediate sets. To approximate the
optimal path in some Sj, we guess the first and the last vertex that OPT visites
in this set and corresponding times. Then we use p2p algorithm to construct a
path of guessed length. Then we append these subpaths. Finally, we slow-down
this path by a factor if f3. We get a 9-approximation.

6.2 Large Margin Algorithm

Let V1/4 = {v : tOPT (v) ≤ D(v)
4

}. To all nodes, assign new deadlines that
are a fourth of original deadlines. Let α = 1.2. Let Si be the set of vertices
with deadlines between [αi, αi+1). Let Sj mod β = ∪≥0Sβi+j. Let Pi be a path
returned by the p2p algorithm with parameter D = αi+1 when applied to graph
induced by {r} ∪ Si. Let Ti be the tour that starts at root, follows Pi and then
returns to root. Append all paths of form Tβi+j. It can be proved, that this
path does not exceed the original deadlines by a factor of two. We can slow this
path down by a factor of two to ensure that release times are honored.
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6.3 General Case

The algorithm for the general case is given above. It divides deadline-time space
for the optimal path into O(log(Dmax)) segments. On one end we can get a
constant factor reward from the segment that corresponds to large margin case.
On the other end, we have a very thin segment and we are constrained to reap
rewards in order of their deadlines. In between we have a bit of leeway and we
can use the small margin algorithm above with appropriate scaling of deadlines.
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