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Problem Definition

We are given a metric G = (V ,E) and a reward on each
node. The objective is to collect as much reward as
possible by visiting a node after its release time and before
its deadline.
When all release times are zero, the problem is called
Deadline-TSP.

Anshul Sawant, Catalin-Stefan Tiseanu Vehicle Routing With Time-Windows



Introduction
Point-to-Point Orienteering

Routing with Time-windows

Problem Definition

We are given a metric G = (V ,E) and a reward on each
node. The objective is to collect as much reward as
possible by visiting a node after its release time and before
its deadline.
When all release times are zero, the problem is called
Deadline-TSP.

Anshul Sawant, Catalin-Stefan Tiseanu Vehicle Routing With Time-Windows



Introduction
Point-to-Point Orienteering

Routing with Time-windows

Notation

Let G = (V ,E) be the graph. Then ri is the reward, Ri is
the release time and Di is deadline for node i .
Dmax is the maximum deadline.
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Related Problems

k-TSP. Visit k nodes on a graph. Minimize total distance
travelled. 2-approx by Garg.
Minimum Excess Path. Visit k cities on a path P from s to
t , minimize the difference dP(s, t)− d(s, t). 2 + ε
approximation by Blum et al.. Uses k-TSP as a
sub-routine.
Point-to-Point Orienteering. Find a path from s to t with
dP(s, t) ≤ D which maximizes the number of cities visited.
Uses Minimum Excess Path as a sub-routine.

Anshul Sawant, Catalin-Stefan Tiseanu Vehicle Routing With Time-Windows



Introduction
Point-to-Point Orienteering

Routing with Time-windows

Related Problems

k-TSP. Visit k nodes on a graph. Minimize total distance
travelled. 2-approx by Garg.
Minimum Excess Path. Visit k cities on a path P from s to
t , minimize the difference dP(s, t)− d(s, t). 2 + ε
approximation by Blum et al.. Uses k-TSP as a
sub-routine.
Point-to-Point Orienteering. Find a path from s to t with
dP(s, t) ≤ D which maximizes the number of cities visited.
Uses Minimum Excess Path as a sub-routine.

Anshul Sawant, Catalin-Stefan Tiseanu Vehicle Routing With Time-Windows



Introduction
Point-to-Point Orienteering

Routing with Time-windows

Related Problems

k-TSP. Visit k nodes on a graph. Minimize total distance
travelled. 2-approx by Garg.
Minimum Excess Path. Visit k cities on a path P from s to
t , minimize the difference dP(s, t)− d(s, t). 2 + ε
approximation by Blum et al.. Uses k-TSP as a
sub-routine.
Point-to-Point Orienteering. Find a path from s to t with
dP(s, t) ≤ D which maximizes the number of cities visited.
Uses Minimum Excess Path as a sub-routine.

Anshul Sawant, Catalin-Stefan Tiseanu Vehicle Routing With Time-Windows



Introduction
Point-to-Point Orienteering

Routing with Time-windows

Orienteering Intuition

Let reward be evenly spread among segments s − x , x − y
and y − t .
In one of the segments, we can increase the excess 3
times if we minimize excess in the other segments.
If we have a 3-approximation for min-excess problem we
can get all the reward from segment x − y .
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Algorithm

For each pair of nodes (x , y) and value k , we compute a
minimum excess path from x to y which visits k nodes.
We then select the triple (x , y , k) with the maximum k ,
such that the computed path has excess
D − d(s, x)− d(x , y)− d(y , t) or smaller.
We return the path which travels from s to x via shortest
path, then x to y via the computed path, then y to t via
shortest path.

Anshul Sawant, Catalin-Stefan Tiseanu Vehicle Routing With Time-Windows



Introduction
Point-to-Point Orienteering

Routing with Time-windows

Algorithm

For each pair of nodes (x , y) and value k , we compute a
minimum excess path from x to y which visits k nodes.
We then select the triple (x , y , k) with the maximum k ,
such that the computed path has excess
D − d(s, x)− d(x , y)− d(y , t) or smaller.
We return the path which travels from s to x via shortest
path, then x to y via the computed path, then y to t via
shortest path.

Anshul Sawant, Catalin-Stefan Tiseanu Vehicle Routing With Time-Windows



Introduction
Point-to-Point Orienteering

Routing with Time-windows

Algorithm

For each pair of nodes (x , y) and value k , we compute a
minimum excess path from x to y which visits k nodes.
We then select the triple (x , y , k) with the maximum k ,
such that the computed path has excess
D − d(s, x)− d(x , y)− d(y , t) or smaller.
We return the path which travels from s to x via shortest
path, then x to y via the computed path, then y to t via
shortest path.

Anshul Sawant, Catalin-Stefan Tiseanu Vehicle Routing With Time-Windows



Introduction
Point-to-Point Orienteering

Routing with Time-windows

Time-windows Intuition

If we can start after release time, we don’t have to worry
about release time. Problem is reduced to deadline-TSP.
If some nodes above a deadline d are captured by time d ,
then we can collect the same reward by reducing
deadlines of all such nodes to d .
If deadlines are constant for all vertices, then deadline-TSP
can be solved using point-to-point orienteering.
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Optimal Path
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A Path That Does Well

Starts after release time of nodes in red area.
Ends at at time equal to least deadline in the red area.
Gets a constant factor of reward by using Point-to-Point
Orienteering.
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Partitioning the Time-Deadline Space

We want to get a constant factor of reward from each
segment using DP.
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Outline of Algorithm for a Segment

Let the segment start at deadline d and let its width be k.
For i = 0 to j such that d + k ∗ j ≤ Dmax

Let Si be the set of all vertices with deadlines in
[d + i ∗ k ,d + (i + 1) ∗ k) and release times ≤ (i + 1) ∗ k .
Assign all vertices in V − Si a reward of 0. Let other
rewards be the same as in original instance.
With the above reward assignment, let S(G, x , y , l) be the
approximate solution to p2p orienteering problem on graph
G, with path length l , starting point x and end point y .
A[i , x , y , l] = S(G, x , y , l) ∀x , y ∈ Si , ∀l ∈ {1, .., k}
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