
Clearing Paths with Minimum Movement

Daniel Apon
Anu Bandi

December 7, 2011

1 Lecture Notes

1.1 Introduction to Movement Problems

Consider a scenario where a group of automated robots with limited mobility,
energy, and so on need to reorganize their joint position in order to form a
reliable radio network connecting two locations. Since resources are scarce, we
wish to minimize the movement required to establish the radio network. This,
in turn, can take many forms. Do we want to minimize the total movement
of all robots? Do we want to minimize the maximum movement of any single
robot?

A striking feature of such movement-minimization problems is that many
are generalizations of relatively simple, polynomial-time solvable problems, and
yet when movement is introduced, the problem is suddenly NP-hard. The above
example, minus the notion of pebbles and their movement, is nothing more than
graph reachability and can be solved by simply computing the shortest path with
Dijkstra’s algorithm. However, it’s not hard to see (at least intuitively) that de-
ciding which pebbles go where along the path induces the type of combinatorial
explosion traditionally associated with computational intractability.

1.1.1 Problems Studied in the Literature

We formally define the model used in the spirit of [2]. Unless otherwise stated,
we assume that we are given a graph G = (V, E) with |V | = n vertices and
m pebbles, with each pebble assigned to some (not necessarily distinct) vertex
according to some initial configuration. We say any vertex with a pebble as-
signed to it is occupied. Further, we allow more than one pebble to be assigned
to a single vertex. Moving a pebble involves assigning a path π(p) over edges
in the graph G for each pebble p, beginning with the vertex p occupies in the
initial configuration and ending at some target vertex. We say that |π(p)| is the
movement of p. The set of target vertices and their associated pebbles form
the target configuration. The goal is to minimize movement to achieve a given
graph property according to some complexity measure, as detailed below.

1

In order to specify a particular computational problem in the class of move-
ment problems, we give a pair (P,C), where P is some graph property we are
interested in and C is a complexity measure associated with any feasible solu-
tion. In [2], the authors consider five different properties:

1. Con (graph connectivity) – we want to minimize pebble movement such
the graph induced by the pebbles’ final position is connected,

2. DirCon (directed graph connectivity) – identical to Con, but G is di-
rected,

3. Path (s-t connectivity) – we want the pebbles to induce a path between
two specified vertices s, t ∈ G,

4. Ind (independent set) – we want no two pebbles to be assigned to the
same vertex or adjacent vertices, and

5. Match (perfect matching) – we want a perfect matching of pebbles by
grouping into adjacent pairs, where two pebbles are adjacent (for purposes
of Match) iff their distance dG(p, q) in G is at most 1.

Similarly, the authors consider three different complexity measures:

1. Max – we want to minimize the maxmimum movement of any single
pebble required to achieve P,

2. Sum – we want to minimize the total movement of all pebbles required to
achieve P, and

3. Num – we want to minimize the number of pebbles moved to achieve P.

This gives rise to a host of natural problems (namely, every combination
of P and C above). For instance, we have ConMax, ConSum, ConNum,
DirConMax, and so on.

1.1.2 Results of Demaine, et al

In Table 1, we summarize the results obtained in [2].

1.1.3 Example Result

Theorem. Given a tree T and a configuration of k pebbles on T , ConMax can
be solved in polynomial time.

Proof Sketch. To begin, we guess a vertex v of T occupied in the target config-
uration and the maximum movement k, 0 ≤ k ≤ n of OPT .

Then, we compute a set of forced vertices – or vertices that must be occupied
in the final solution – in the following manner: For every pebble p, move it k
steps along the unique path toward v (stopping if v is reached). Denote by xp
the final location of pebble p under such an operation. Then it must be the

2

Max Sum Num

Con O(
√
m/OPT) O(min{n,m}),

Ω(n1−ε)
O(mε), Ω(logn)

DirCon εm, Ω(n1−ε) open O(mε),
Ω(log2 n)

Path O(
√
m/OPT) O(n) polynomial

Ind 1+ 1√
3

additive in

R2
open PTAS in R2

Match polynomial polynomial polynomial

Table 1: Summary of results of Demaine, et al.

case that the vertices between xp and v are occupied in the target configuration.
Otherwise, the solution would not be feasible, for whichever p is chosen.

Once a set of forced vertices is found, define the bipartite graph H =
(U,V, E), where U is the set of pebbles, V is the set of forced vertices, and
E is composed of edges that connect p to every forced vertex within k steps.
Then a maximum-cardinality matching of H covers every v ∈ V iff the pebbles
can be moved to occupy the forced vertices.

1.2 Our Problem Definitions

For all problems we consider, we are given an undirected graph G = (V, E) with
|V | = n vertices, m pebbles, and a property on configurations of pebbles over
the vertices of G we are interested in satisfying. We augment the problems
(where possible) with coincident-cost functions costv(i) = αv(i − 1) – i.e. the
second pebble to arrive at a vertex v pays αv to be coincident; the third pebble
pays 2αv, and so on.

— ClearMax —

Input: Two specified vertices s, t, and a coincident-cost function costv for every
v ∈ G.

Output: A prescribed set of moves for the pebbles such that a path from s− t
is totally unoccupied by pebbles afterward, and such that maximum sum of
movement plus induced coincident-cost of any single pebble is minimized. That
is,

min

 max
pi:i∈[m]

 ∑
(u,v)∈E:u,v∈Pi

w(u, v) + costv ′
i
(ipi,v)

where w(u, v) denotes the weight of edge (u, v), where v ′i is the target vertex
of pi’s movement, and where ipi,v is the index of pebble pi with respect to the
coincident-cost assignment of v.

3

— ClearSum —

Input: Two specified vertices s, t, and a coincident-cost function costv for every
v ∈ G.

Output: A prescribed set of moves for the pebbles such that a path from s−t is
totally unoccupied by pebbles afterward, and such that total sum of movement
plus induced coincident-cost over all pebbles is minimized. That is,

min

 ∑
pi:i∈[m]

 ∑
(u,v)∈E:u,v∈Pi

w(u, v) + costv ′
i
(ipi,v)

where the w(u, v), v ′i, and ipi,v are as above.

— ClearNum —

Input: Two specified vertices s, t.

Output: A prescribed set of moves for the pebbles such that a path from s− t
is totally unoccupied by pebbles afterward, and such that number of moved
pebbles is minimized.

1.3 Our Results

In the full version, we prove the following:

Theorem. ClearSum is NP-hard.

Theorem (1). ClearMax is NP-hard.

Theorem (2). ClearMax on trees without coincident-cost functions is polynomial-
time solvable.

Theorem. There is a polytime, O(logn)-approx. algorithm for ClearMax
(on general graphs and with coincident-cost functions).

Theorem (3). ClearNum is polynomial-time solvable.

Due to space concerns, we only provide proofs in what follows for the theo-
rems labeled with numbers above.

1.3.1 Hardness of ClearMax

Proof of Theorem (1). We reduce Hamiltonian Path to ClearMax. The
proof is essentially a proof by picture; refer to Figure 1 for the following.

On input a graph G from an instance of Hamiltonian Path: We begin
by constructing n2 vertices in a square. In particular, there are n levels (or
rows) of vertices, each composed of the n distinct vertices v1, v2, ..., vn ∈ V. We
then construct a vertex labeled s above the grid, and a vertex labeled t below.

4

Figure 1: Gadget for ClearSum and ClearMax reductions

Finally, we construct n special vertices v∗1, ..., v
∗
n that we will associate with the

n corresponding length-n columns of v1’s, ..., vn’s.
Returning to the grid, we use the adjacency matrix of G to construct cor-

responding edges between vertices in each level of the grid. We then connect
every vertex in the top level to s, and every vertex in the bottom level to t.
Finally, we connect all vertices in each column i to their special vertex v∗i .

To wrap up, we place n2 pebbles on the grid vertices, which leaves precisely
n + 2 empty spaces on the grid – the n special vertices, s, and t. Finally, we
give every edge adjacent to a special vertex a weight of n and every other edge
a weight of n3. We also set αv := ∞,∀v so that no pebbles may be coincident.

By construction, there is a solution to the ClearMax instance with max-
imum cost for any pebble of n if and only if there is a Hamiltonian path in
G.

1.3.2 ClearMax, no coincident-cost functions, on trees

Proof of Theorem (2). Given some tree T , WLOG, assume s is a leaf of the tree
and t is the root of the tree, or vice versa. Notably, we make the assumption

5

that no pebbles may move through s or t (after all, we are trying to clear a
path in which, presumably, objects at s and/or t would be moving!). Then it’s
not hard to see that we can always prune the tree so that this is the case (up
to a arbitrary labeling of whether s or t is the root or the leaf, respectively).
In particular, since there is a unique, valid path from u to v, for u, v ∈ T by
definition of a tree, we can completely ignore any vertices v and edges e such
that

1. v 6= s and/or e are contained in a subtree Ts of T , rooted at s, and

2. v 6= t and/or e are not contained in the subtree Tt ′ , rooted at t ′, where
t ′ is t’s child in the direction of s.

Moreover, by the definition of coincident-cost functions, we can actually do
(much) better. In particular, consider the path from s to t in T . By construction,
this path is a sequence of parent vertices, each of the previous vertices in the
sequence respectively. The only adjacent vertices that are eligible target vertices
are the children of the vertices intermediate in the path from s to t (but not
including s or t’s distinct children, by the above assumption). However, we can
also rule out of consideration as a target vertex any vertex v where v is neither
in the s− t path or an immediate child of any vertex v ′ 6= s, t in the path.

That is, let v1 be in the path, v2 be a child of v1 not in the path, and v3
be a child of v2, and consider moving a pebble p from its starting vertex to
v3. Upon arriving at v2, it’s easy to see that there is no motivation to pay the
additional movement cost of w(v2, v3) to move p to v3. On the one hand, p
is already off the path (and so is at a valid, final location), and on the other,
there can be no savings in cost by moving again (since p has already incurred
the coincident-cost associated with v2 for moving “through” it, as v2 is not on
the s − t path. Therefore, we might decide to move pebbles to vertices like v2,
but will never move pebbles to vertices like v3 or elsewhere further away from
the s− t path.

Finally since there are no coincident-cost functions, the movement of the
pebbles are independent of each other (namely, the starting vertex, chosen path,
and chosen target vertex of some pebble pi has no influence on the choices made
for another pebble pj), so we perform a simple greedy search at each vertex v ∈ P
to find the closest v ′ 6∈ P.

This gives a polynomial-time algorithm for the relaxation of ClearMax
without coincident-cost functions, giving Theorem 3.

1.3.3 Algorithm for ClearNum

Proof of Theorem 5. On input an instance of ClearNum, color the given peb-
bles black, and then place a white pebble on every unoccupied vertex in G. Then
run the PathNum dynamic programming algorithm of [2] (treating black peb-
bles as empty spaces) to find the path P from s to t with the minimum number
of vertices unoccupied by white pebbles. Then P also has the minimum number
of vertices occupied by black pebbles. Therefore, P is the optimal solution to
the ClearNum instance.

6

References

[1] Piotr Berman, Erik D. Demaine, and Morteza Zadimoghaddam. O(1)-
approximations for maximum movement problems. In Proceedings of the
14th International Workshop on Approximation Algorithms for Combinato-
rial Optimization Problems (APPROX 2011), pages 62–74, Princeton, New
Jersey, August 17–19 2011.

[2] Erik D. Demaine, MohammadTaghi Hajiaghayi, Hamid Mahini, Amin S.
Sayedi-Roshkhar, Shayan Oveisgharan, and Morteza Zadimoghaddam. Min-
imizing movement. ACM Transactions on Algorithms, 5(3):Article 30, July
2009.

[3] Erik D. Demaine, MohammadTaghi Hajiaghayi, and Dániel Marx. Mini-
mizing movement: Fixed-parameter tractability. In Proceedings of the 17th
Annual European Symposium on Algorithms (ESA 2009), volume 5757 of
Lecture Notes in Computer Science, pages 718–729, Copenhagen, Denmark,
September 7–9 2009.

[4] Adrian Dumitrescu and Minghui Jiang. Constrained k-center and movement
to independence. Discrete Appl. Math., 159:859–865, April 2011.

[5] Zachary Friggstad and Mohammad R. Salavatipour. Minimizing movement
in mobile facility location problems. ACM Trans. Algorithms, 7:28:1–28:22,
July 2011.

7

