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Combinatorial Optimization
• “Easy” Problems : polynomial time 

solvable (P)
– Matchings
– Spanning Trees
– Matroid Basis

• “Hard” Problems : NP-hard 
– Survivable Network Design  
– Facility Location
– Scheduling Problems
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Linear Programming

3

Formulate Linear Program

Show Integrality Round  the fractional solution
to obtain approximation algorithm 

P NP-hard

• Randomized Rounding
• Relaxation as Metrics
• Iterative Rounding
• Primal-Dual Method

-approximation returns
a solution with cost at 
most OPT



LP-based Methods for 
Approximation Algorithms

• Rounding large fractional variables
– (Vertex Cover: Nemhauser-Trotter ‘75, 

BarYehuda-Even ‘81)
• Randomized Rounding

– (Packing and Covering Programs: Raghavan-
Thompson ‘88)

• Metric Embedding & Rounding
– (Max Cut – Goemans-Williamson ’94; 

Multiway Cut: Calinescu-Karloff-Rabani ’98)
• Primal-Dual Methods

– (Network Design: AKR ‘91, GW ‘92) 



LP-based Methods for 
Approximation Algorithms

• Iterative Rounding
– (Survivable Network Design Problem: Jain 

’98)
• Iterative Relaxation

– (Degree bounded SNDP : Lau-Naor-
Salvatipour-Singh ’07, Degree bounded 
Spanning Trees: Singh-Lau ’07)



LP Solver Rounding
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Typical Rounding:

Iterative Rounding [Jain]: e.g., Rounding ½-element gives
2-approximation



Iterative Rounding
1. Formulate NP-hard problem as covering LP 
2. Argue existence of large-valued element in 

extreme point solution 
3. Round up large-valued element to include in 

solution
4. Modify constraints to reflect residual problem
5. Repeat until no more constraints remain



Iterative Relaxation
1. Formulate base problem as LP with integral 

extreme points 
2. Design a proof using an iterative method
3. Consider base problem with extra constraints
4. Iterative Relaxation Solution Framework

– Follow iterative proof of integrality of base pblm
– Add a step of relaxing (deleting) constraints that 

have “low” violation
– Argue existence of either an integral element to 

include or a constraint to relax at each step
– When all constraints are relaxed, remaining soln is 

integral with low violation



Iterative Method:
Key Ingredients

1. Small number of independent tight 
constraints at extreme point solution 
implies large valued element

2. Bound number of independent tight 
constraints at extreme point

3. Incorporate side constraints into the 
argument for 1 with appropriate 
relaxation



Application

• Addition to toolkit of LP-based design 
of approximation algorithm

• New proofs of classical integrality 
results of easy problems

• Allows adaptation to designing 
approximation algorithm for NP-hard 
variant with side constraints



Easy Problems to Hard Problems
Base Problem Base problem with more constraints

Spanning Tree Bounded-degree spanning trees [Singh-Lau]

Multi-criteria spanning trees [GRSZ11]

Matroids Constrained Matroids [LKS08]

Submodular Flow Constrained Submodular Flow [LKS08]

Bipartite Matchings Scheduling in Unrelated Parallel Machines

[Shmoys-Tardos]

SNDP SNDP with degree constraints [LNSS]



Outline
• Preliminaries
• Iterative Relaxation (Global Argument)

– Assignment 
– Generalized Assignment

• Iterative Relaxation (Local Argument)
– Minimum Spanning Tree 
– Degree-bounded Min-cost Spanning Tree

• [Alternate proof of SNDP rounding]
• Extensions, Open problems



Preliminaries

Matrix of real numbers A
Row rank = dim (span (row vectors))
Column rank = dim (span (column vectors))

Key elementary fact: 
Row rank = Column rank (= rank(A))



Column rank  Row rank

Consider m X n matrix A
Take a basis for span(rows)

x1, x2,…, xr (in Rn)
Note each Axi is in span(columns)

Ax1 ,Ax2 … Axr are linearly independent
For otherwise (c1Ax1  + c2 Ax2 … cr Axr)= 0 

implying (c1x1  + c2 x2 … cr xr) = 0 



LP

Linear Program
Min cT x

s.t. A x  b (P)
x  0 

Defn: x is an extreme point solution to (P) 
if there is no nonzero vector y s.t. both 
x+y and x-y belong to (P)
Alt: x cannot be written as a y + (1-a) z 
for y and z both in (P)





Extreme point optimal 
solutions

If min cTx : Ax  b, x  0 has an optimum 
that is finite, there is an extreme-point 
solution achieving this value 



Extreme point solutions

Let P = {x: Ax  b, x  0},  and for x in P, 
A= be the rows that are tight at x, and
A=

x be the submatrix of A= consisting of 
columns corresponding to nonzeros in x.

x is an extreme point iff A=
x has linearly 

independent columns (full column rank)



• If x is not an ext pt, for some y 
A= (x – y)  b and A= (x + y)  b 
while A= x = b, so A= y = 0

• If A= has linearly dependent columns, 
start with A= y = 0, extend y to all 
columns by adding 0’s to show that (x + 
εy) and (x - εy) are both feasible 



Rank Lemma
Let P = {x’: Ax’  b, x’  0},  and x be an 
extreme point solution in P with all 
positive entries. Then any maximal number 
of linearly independent constraints that 
are tight at x (rows obeying Ai x = bi) 
equal the number of variables in x

Proof: A=
x = A= since all entries positive

A= has full column rank = no. of vars
Row rank of A= = Its column rank



Outline
• Preliminaries
• Iterative Relaxation (Global Argument)

– Assignment
– Generalized Assignment

• Iterative Relaxation (Local Argument)
– Minimum Spanning Tree 
– Degree-bounded Min-cost Spanning Tree

• [Alternate proof of SNDP rounding]
• Extensions, Open problems



Example: Assignment
• Complete bipartite graph (A, B, A  B) 

with |A| = |B| = n

Min ∑ ij cij xij
i  A xij  1   j  B
j  B xij  1   i  A

xij  0  ij

Theorem: Extreme points x* of the above 
relaxation are integral



Iterative Proof of Integrality
• Claim: At any extreme point x*, there 

exists edge ij: x*
ij = 1 (1-edge)

• To prove theorem, apply lemma 
repeatedly by deleting matched edge 
and its endpoints (including it in 
solution) and re-solving 

• Note: we can also remove any edge with 
x*

ij = 0 (0-edge) in the graph when re-
solving



Proof Approach
• Support graph: graph of edges with nonzero 

value at extreme point x*

• Suppose for contradiction there is no 1-edge
• (LB) Lower bound number of edges in support 

using property of no 1-edges
• (UB) Upper bound number of independent 

constraints tight at extreme point x*

• Show LB > UB
• But at extreme point x*, # support edges = # 

tight constraints (since column rank = row 
rank of nonsingular matrix defining it) !



Global Counting Argument

• (LB) Since every node in A has x*-
degree 1 and there are no 1-edges, 
there are at least 2n edges in support

• (UB) The following system is 
dependent

i  A xij = 1   j  B
j  B xij = 1   i  A

Hence maximum number of independent 
constraints tight at x* is at most 2n -1



Outline
• Preliminaries
• Iterative Relaxation (Global Argument)

– Assignment 
– Generalized Assignment

• Iterative Relaxation (Local Argument)
– Minimum Spanning Tree 
– Degree-bounded Min-cost Spanning Tree

• [Alternate proof of SNDP rounding]
• Extensions, Open problems



Extension: Generalized 
Assignment

• Bipartite graph (Jobs J, Machines M) 
plus processing times pij and costs cij of 
job j on machine I

• Find min cost schedule with makespan at 
most P

Min ∑ ij cij xij
i  M xij ≥ 1   j  J
j  J pij xij ≤ P   i  M

xij  0  ij



Preparation

• Prune edges with pij > P (They can never 
be used in an integral feasible solution)

• If optimal solution x’ has 1-edges, the 
problem can be reduced (delete the job, 
decrease makespan constraint rhs for 
the machine; include this assignment in 
solution) 

• If x’ has 0-edges, they can be removed



Relaxation
• If there is a machine with degree 1 in 

support, remove its makespan constraint
– Single job using it fractionally cannot have 

pij > P, so final makespan is at most P
• If machine with degree 2 in support, 

remove its makespan constraint
– Each of the two jobs potentially fully 

assigned to it cannot have pij > P, so its final 
makespan is at most 2P



Iterative Proof
• Claim: For any extreme point x’, either there 

is a makespan constraint to relax, or there is 
a 1-edge

• Apply lemma repeatedly by either relaxing 
and re-solving or deleting matched edge and 
its endpoints (as well as removing 0-edges)

• Induction proof gives 
Theorem (Shmoys-Tardos’ 93): Generalized 

Assignment LP can be rounded to give solution 
with optimal cost and makespan at most 2P



Global Counting Argument
• Suppose for contradiction there is no 1-edge, 

no machine with degree 1 or 2
• No 1-edge, so degree of jobs at least 2
• No machine with degree 1 or 2, so degree of 

machines at least 3
• So # edges ≥ (2 #jobs + 3 # machines)/2    
• But, number of tight constraints at most 

number of jobs plus number of machines
• (2 #jobs + 3 # machines)/2    

>    # jobs + # machines
(contradiction)



Iterative Method:
Key Ingredients

1. Small number of independent tight 
constraints at extreme point solution 
implies large valued element

2. Bound number of independent tight 
constraints at extreme point

3. Incorporate side constraints into the 
argument for 1 with appropriate 
relaxation



Degree-bounded MSTs

• Given graph with edge costs, integer k, 
find a spanning tree with maximum 
degree at most k of minimum cost

• NP-hard: k=2 same as minimum cost 
Hamiltonian path

• With non-metric costs, no 
approximation of cost possible without 
violating the degree bound



Base Problem and Constrained 
Problem

Spanning Tree Problem
Deg-bounded 
MST problem



Outline
• Preliminaries
• Iterative Relaxation (Global Argument)
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Spanning Tree Polyhedron
Linear Programming Relaxation

min e in E ce xe

s.t. e in E(V) xe = |V|-1
e in E(S) xe ≤ |S|-1  S  V 

xe ≥ 0 e in E
E(S): set of edges with both endpoints in S

 Equivalent compact formulations [Wong ’80]
 Polynomial time separable [Cunningham ’84] 
Theorem (Edmonds ‘71): Extreme points x* of the above 

relaxation are integral

(Any tree has n-1 edges)

Subtour elimination
constraints



Extreme Points of Spanning Tree Polyhedron

Claim: Independent set of tight constraints defining x* can 
be chosen s.t. corresponding subsets of vertices form a 
laminar family L [Cornuejols et al ’88]

Follows from standard uncrossing arguments [Edmonds ‘71]

Tight Sets:    x(E(A))  =  |A|-1



Extreme Points of Spanning Tree Polyhedron

A B



While G is not a singleton
• Solve LP to obtain extreme 

point x* 
• Remove all edges s.t. x*e =0
• Contract all edges s.t. x*e =1

Iterative Proof of Integrality



Claim: Support E of any extreme point x* of the LP 
has an edge with x*-value 1.

Proof Approach: Assume no such edge
• x* is extreme implies independent tight 
constraints  form a laminar family L
• Assign one token per edge in E and collect one 
per tight set in laminar family: show leftover token
• Contradicts row rank = column rank for tight 
linear subsystem defining extreme point x*

Counting Argument



Fractional Token 
Redistribution

Definition: An edge in the support belongs to a 
set in L if it is the smallest set containing both 
ends of e
E.g.,  e belongs to R; f belongs to S

Edge e gives xe of its token to the set it belongs 
to

S

e
f

R



- Leaf sets S have x(S) = |S| - 1 ≥ 1
- For others, 
x(S) – ∑children C x(C) = (|S|-1) – ∑children C (|C| - 1) 

≠ 0 by independence
- Every edge has (1-xe) left over for 

contradiction

Fractional Token Collection

Claim: The xe tokens from edges that belong to a 
tight set in L can pay for it (i.e., give it one unit)

Definition: An edge in the support belongs to a 
set in L if it is the smallest set containing both 
ends of e



Outline
• Preliminaries
• Iterative Relaxation (Global Argument)

– Assignment 
– Generalized Assignment
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Bounded Degree MST

Extend spanning tree polyhedron
min e in E ce xe

s.t. e in E(V) xe =  |V|-1
e in E(S) xe ≤ |S|-1  S  V

e in (v)xe ≤ Bv  v in W
xe ≥ 0  e in E

(Note W  V)

Spanning tree

Degree bounds



Iterative Relaxation 
Algorithm

Initialize F = .

While W ≠ 

1. Solve LP to obtain extreme point x*.
2. Remove all edges e s.t. x*e=0.
3. (Relaxation) If there exists a vertex v in W such that 

degE(v) ≤ Bv+1, then remove v from W (i.e., remove its 
degree constraint).

Key Claim: There is always a vertex to remove in (3.)



Fractional Token Proof Outline:
• Assign 1 token per edge in support E
• Use xe of each edge’s token to “pay” for the 

laminar sets in L
• Use remaining (1 – xe)/2 for each endpoint’s 

degree constraint in T
• All edge tokens used contradicts 

independence of L U T constraints

Local Counting Argument
Claim: x* is extreme implies Independent tight
constraints defining it form a laminar family L 

of subtour constraints and T  W of tight 
degree constraints



Token Redistribution

xe

(1-xe)/2 (1-xe)/2

For laminar family

for degree 
constraint

for degree 
constraint



Claim: Tokens from edges incident to node t  in 
T can pay for its degree constraint

Tokens = e in (t) (1 – xe)/2 = (degE(v) – Bv)/2 ≥ 1
(by relaxation condition)

Fractional Token Argument

Claim:  Tokens from edges that belong to a tight 
set in L can pay for it (i.e., give it one unit)

(same proof as before)

Definition: An edge in the support belongs to a 
set in L if it is the smallest set containing both 
ends of e



Fractional Token Argument
If all tokens from E are “used up” in paying for 
sets in L and T, their constraints are dependent

All edge tokens xe used up in laminar sets 
e in Exe = sum of constraints of maximal sets in L

All edges tokens (1 – xe)/2 used up in T implies
Every edge in E is incident to T or 

t in T e in (t) xe = e in E xe

Maximal tight sets in L and degree constraints 
in T are dependent!



Singh, Lau ‘07 1 k+1

Reference Cost Guarantee Degree

Furer and Raghavachari ‘92 Unweighted Case k+1

Not possible k
Konemann, R ’01, ’02 O(1) O(k+log n)
CRRT ’05 ’06 O(1) O(k)
R, Singh 06 MST k+p (p=#distinct 

costs)
Goemans ’06 1 k+2

History:  Degree-bounded MSTs



Related Work 
• First use of iterative relaxation with rounding 

for degree-bounded SNDP [Lau, Naor, 
Salvatipour and Singh STOC ‘07]

• Degree bounded matroids & submodular flows 
[Kiraly, Lau and Singh, IPCO’08]

• First use of fractional token argument 
[Bansal,Khandekar,Nagarajan STOC ’08]

• Fractional token argument for LP extreme 
points for STSP and SNDP [Nagarajan, Ravi, 
Singh ’08]



Outline
• Preliminaries
• Iterative Relaxation (Global Argument)

– Assignment 
– Generalized Assignment

• Iterative Relaxation (Local Argument)
– Minimum Spanning Tree 
– Degree-bounded Min-cost Spanning Tree

• [Alternate proof of SNDP rounding ] 
skip

• Extensions, Open problems



Survivable Network Design 
Problem

Given undirected graph with edge costs, find 
minimum cost subgraph with ri edge disjoint paths 
between (si,ti). 

• Special cases
– Shortest path, Spanning tree
– Steiner tree
– Generalized Steiner Forest
– k-edge-connected subgraph



SNDP LP Relaxation

Min ∑ e in E ce xe

x((S))  ri  S  V separating si and ti

xe  0     e in E
(S) = set of edges with exactly one end in S

Theorem (Jain): Any extreme point x of the 
above relaxation has an edge e with xe  ½
Corollary: There is a polynomial-time 2-
approximation algorithm for SNDP



Skew Supermodular function



LP Relaxation

Min ∑ e in E ce xe

x((S))  f(S)    S  V 
1  xe  0     e in E

Recall f(S) = max ri over (si,ti) separated by S

Theorem (Jain): Any extreme point x of the 
above relaxation for integral skew super-
modular f(.) has an edge e with xe  ½



Edge Boundaries are Strongly 
Submodular



Jain’s Iterative Rounding 
Algorithm



Extreme Points

Claim: Independent set of tight constraints uniquely 
defining x* can be chosen s.t. corresponding subsets 
of vertices form a laminar family L [Jain ’98]

Tight Sets:  x((S)) = f(S)



Uncrossing Argument

A B



Proof Approach:
• Assume for contradiction no xe ≥ 1/2 
• Show number of nonzero variables is greater 

than number of tight constraints at extreme 
points

• Contradicts row rank = column rank for tight 
linear subsystem defining x*

Iterative Local Proof
Lemma: x* is extreme implies Independent tight 
constraints defining it form a laminar family L



Fractional Token Redistribution:
• Assign total of 1 token per edge (u,v) in E
• Assign xe of its token to each of the smallest 

sets containing u and v
• Assign remaining (1-2xe) to the smallest set 

containing both u and v
• All of the above are nonzero if no xe ≥ 1/2 

Iterative Local Proof
Lemma: x* is extreme implies Independent tight 
constraints defining it form a laminar family L



Token Redistribution

1-2xe

xe xe

For smallest set 
containing e

for smallest set 
containing v

for smallest set
containing u

u v



Iterative Local Proof
Claim: Every set in L receives at least one token
Consider leaf set S

x((S)) = f(S) ≠ 0

xe



Iterative Local Proof
Claim: Every set in L receives at least one token
Consider set S with children R1, R2, …, Rk in L
x((S)) - x((R1)) - x((R2)) -… - x((Rk)) 

= f(S) – f(R1) – f(R2) - … - f(Rk) 
≠ 0 (else these sets are dependent)

= x(A) – x(B) – 2x(C)

A  (+1)

B (-1)

C (-2)
D  (0)



Iterative Local Proof
Claim: Every set in L receives at least one token
Consider set S with children R1, R2, …, Rk in L

Tokens assigned to S
= e in A xe + e in B (1-xe) + e in C (1 - 2xe)

= x(A) + |B| - x(B) + |C| - 2x(C) 
= |B| +|C| + nonzero integer

A  (+1)

B (-1)

C (-2)
D  (0)

xe

1 - 2xe+ xe 

1 - 2xe



Iterative Local Proof
Not all tokens from E are “used up” in paying for 
sets in L

Consider a maximal set S in L

It has at least one edge (u,v) leaving it

No set in L contains both u and v, and hence its 
(1 – 2xuv) token is unassigned



SNDP LP Relaxation

Min ∑ e in E ce xe

x((S))  f(S)    S  V 
1  xe  0     e in E

Denote f(S) = max ri over (si,ti) separated by S

Theorem (Jain): Any extreme point x of the 
above relaxation for integral skew super-
modular f(.) has an edge e with xe  ½



Iterative Method
• Inductive method for finding (near) optimal 

solutions from linear programming relaxations
• Overview

– Formulate generic LP relaxation
– Identify element with high fractional value 

to
• (Round) Pick element in solution or
• (Relax) Remove some constraints whose violation 

can be bounded
– Formulate residual problem in generic form 

and iterate (Prove by induction)



Iterative Method:
Key Ingredients

1. Small number of independent tight 
constraints at extreme point solution 
implies large valued element

2. Bound number of independent tight 
constraints at extreme point

3. Incorporate side constraints into the 
argument for 1 with appropriate 
relaxation



Examples of Base Problems

• Bipartite Matching and Vertex Cover
• Spanning trees (undirected and directed)
• Max weight matroid basis and 2-matroid 

intersection
• Rooted k-connected subgraphs
• Submodular Flows
• Network Matrices
• General Graph Matchings



Examples of Approximations
• Generalized Assignment, Maximum Budgeted 

Allocation
• Degree bounded  variants of spanning trees, 

matroid bases, submodular flows and 
Survivable Network Design Problem

• Partial covering (e.g. vertex cover)
• Multi-criteria problems (spanning trees)
• Earlier results: Discrepancy, Unsplittable 

Flow, Bin packing
• Recent developments: Iterated randomized 

rounding for Steiner trees



Open Directions
• New proofs of integral polyhedra (e.g. 

TU matrices, TDI systems)
• Adding side constraints to other well 

behaved polyhedra (e.g. Network 
Matrices?)

• Traveling Salesperson Problems
• Packing problems (e.g. general 

unsplittable flow, degree bounded flow)
• Algorithms that avoid solving LP 



Lap-chi Lau (CUHK) & 
Mohit Singh (McGill): 
co-authors on a 
monograph from 
Cambridge University 
Press. A non-printable 
copy is available on 
the web


