
Iterative Methods in
Combinatorial Optimization

R. Ravi
Carnegie Bosch Professor
Tepper School of Business
Carnegie Mellon University

ravi@cmu.edu

mailto:ravi@cmu.edu

Combinatorial Optimization
• “Easy” Problems : polynomial time

solvable (P)
– Matchings
– Spanning Trees
– Matroid Basis

• “Hard” Problems : NP-hard
– Survivable Network Design
– Facility Location
– Scheduling Problems

2

Linear Programming

3

Formulate Linear Program

Show Integrality Round the fractional solution
to obtain approximation algorithm

P NP-hard

• Randomized Rounding
• Relaxation as Metrics
• Iterative Rounding
• Primal-Dual Method

-approximation returns
a solution with cost at
most OPT

LP-based Methods for
Approximation Algorithms

• Rounding large fractional variables
– (Vertex Cover: Nemhauser-Trotter ‘75,

BarYehuda-Even ‘81)
• Randomized Rounding

– (Packing and Covering Programs: Raghavan-
Thompson ‘88)

• Metric Embedding & Rounding
– (Max Cut – Goemans-Williamson ’94;

Multiway Cut: Calinescu-Karloff-Rabani ’98)
• Primal-Dual Methods

– (Network Design: AKR ‘91, GW ‘92)

LP-based Methods for
Approximation Algorithms

• Iterative Rounding
– (Survivable Network Design Problem: Jain

’98)
• Iterative Relaxation

– (Degree bounded SNDP : Lau-Naor-
Salvatipour-Singh ’07, Degree bounded
Spanning Trees: Singh-Lau ’07)

LP Solver Rounding
ProcedureProblem

Instance

Optimal
Fractional
Solution

Integer
Solution

LP SolverProblem
Instance

Optimal
Fractional

Solution
Part
IntegerGood

Part

Too
Fractional

Residual
Problem

Typical Rounding:

Iterative Rounding [Jain]: e.g., Rounding ½-element gives
2-approximation

Iterative Rounding
1. Formulate NP-hard problem as covering LP
2. Argue existence of large-valued element in

extreme point solution
3. Round up large-valued element to include in

solution
4. Modify constraints to reflect residual problem
5. Repeat until no more constraints remain

Iterative Relaxation
1. Formulate base problem as LP with integral

extreme points
2. Design a proof using an iterative method
3. Consider base problem with extra constraints
4. Iterative Relaxation Solution Framework

– Follow iterative proof of integrality of base pblm
– Add a step of relaxing (deleting) constraints that

have “low” violation
– Argue existence of either an integral element to

include or a constraint to relax at each step
– When all constraints are relaxed, remaining soln is

integral with low violation

Iterative Method:
Key Ingredients

1. Small number of independent tight
constraints at extreme point solution
implies large valued element

2. Bound number of independent tight
constraints at extreme point

3. Incorporate side constraints into the
argument for 1 with appropriate
relaxation

Application

• Addition to toolkit of LP-based design
of approximation algorithm

• New proofs of classical integrality
results of easy problems

• Allows adaptation to designing
approximation algorithm for NP-hard
variant with side constraints

Easy Problems to Hard Problems
Base Problem Base problem with more constraints

Spanning Tree Bounded-degree spanning trees [Singh-Lau]

Multi-criteria spanning trees [GRSZ11]

Matroids Constrained Matroids [LKS08]

Submodular Flow Constrained Submodular Flow [LKS08]

Bipartite Matchings Scheduling in Unrelated Parallel Machines

[Shmoys-Tardos]

SNDP SNDP with degree constraints [LNSS]

Outline
• Preliminaries
• Iterative Relaxation (Global Argument)

– Assignment
– Generalized Assignment

• Iterative Relaxation (Local Argument)
– Minimum Spanning Tree
– Degree-bounded Min-cost Spanning Tree

• [Alternate proof of SNDP rounding]
• Extensions, Open problems

Preliminaries

Matrix of real numbers A
Row rank = dim (span (row vectors))
Column rank = dim (span (column vectors))

Key elementary fact:
Row rank = Column rank (= rank(A))

Column rank  Row rank

Consider m X n matrix A
Take a basis for span(rows)

x1, x2,…, xr (in Rn)
Note each Axi is in span(columns)

Ax1 ,Ax2 … Axr are linearly independent
For otherwise (c1Ax1 + c2 Ax2 … cr Axr)= 0

implying (c1x1 + c2 x2 … cr xr) = 0

LP

Linear Program
Min cT x

s.t. A x  b (P)
x  0

Defn: x is an extreme point solution to (P)
if there is no nonzero vector y s.t. both
x+y and x-y belong to (P)
Alt: x cannot be written as a y + (1-a) z
for y and z both in (P)

Extreme point optimal
solutions

If min cTx : Ax  b, x  0 has an optimum
that is finite, there is an extreme-point
solution achieving this value

Extreme point solutions

Let P = {x: Ax  b, x  0}, and for x in P,
A= be the rows that are tight at x, and
A=

x be the submatrix of A= consisting of
columns corresponding to nonzeros in x.

x is an extreme point iff A=
x has linearly

independent columns (full column rank)

• If x is not an ext pt, for some y
A= (x – y)  b and A= (x + y)  b
while A= x = b, so A= y = 0

• If A= has linearly dependent columns,
start with A= y = 0, extend y to all
columns by adding 0’s to show that (x +
εy) and (x - εy) are both feasible

Rank Lemma
Let P = {x’: Ax’  b, x’  0}, and x be an
extreme point solution in P with all
positive entries. Then any maximal number
of linearly independent constraints that
are tight at x (rows obeying Ai x = bi)
equal the number of variables in x

Proof: A=
x = A= since all entries positive

A= has full column rank = no. of vars
Row rank of A= = Its column rank

Outline
• Preliminaries
• Iterative Relaxation (Global Argument)

– Assignment
– Generalized Assignment

• Iterative Relaxation (Local Argument)
– Minimum Spanning Tree
– Degree-bounded Min-cost Spanning Tree

• [Alternate proof of SNDP rounding]
• Extensions, Open problems

Example: Assignment
• Complete bipartite graph (A, B, A  B)

with |A| = |B| = n

Min ∑ ij cij xij
i  A xij  1  j  B
j  B xij  1  i  A

xij  0  ij

Theorem: Extreme points x* of the above
relaxation are integral

Iterative Proof of Integrality
• Claim: At any extreme point x*, there

exists edge ij: x*
ij = 1 (1-edge)

• To prove theorem, apply lemma
repeatedly by deleting matched edge
and its endpoints (including it in
solution) and re-solving

• Note: we can also remove any edge with
x*

ij = 0 (0-edge) in the graph when re-
solving

Proof Approach
• Support graph: graph of edges with nonzero

value at extreme point x*

• Suppose for contradiction there is no 1-edge
• (LB) Lower bound number of edges in support

using property of no 1-edges
• (UB) Upper bound number of independent

constraints tight at extreme point x*

• Show LB > UB
• But at extreme point x*, # support edges = #

tight constraints (since column rank = row
rank of nonsingular matrix defining it) !

Global Counting Argument

• (LB) Since every node in A has x*-
degree 1 and there are no 1-edges,
there are at least 2n edges in support

• (UB) The following system is
dependent

i  A xij = 1  j  B
j  B xij = 1  i  A

Hence maximum number of independent
constraints tight at x* is at most 2n -1

Outline
• Preliminaries
• Iterative Relaxation (Global Argument)

– Assignment
– Generalized Assignment

• Iterative Relaxation (Local Argument)
– Minimum Spanning Tree
– Degree-bounded Min-cost Spanning Tree

• [Alternate proof of SNDP rounding]
• Extensions, Open problems

Extension: Generalized
Assignment

• Bipartite graph (Jobs J, Machines M)
plus processing times pij and costs cij of
job j on machine I

• Find min cost schedule with makespan at
most P

Min ∑ ij cij xij
i  M xij ≥ 1  j  J
j  J pij xij ≤ P  i  M

xij  0  ij

Preparation

• Prune edges with pij > P (They can never
be used in an integral feasible solution)

• If optimal solution x’ has 1-edges, the
problem can be reduced (delete the job,
decrease makespan constraint rhs for
the machine; include this assignment in
solution)

• If x’ has 0-edges, they can be removed

Relaxation
• If there is a machine with degree 1 in

support, remove its makespan constraint
– Single job using it fractionally cannot have

pij > P, so final makespan is at most P
• If machine with degree 2 in support,

remove its makespan constraint
– Each of the two jobs potentially fully

assigned to it cannot have pij > P, so its final
makespan is at most 2P

Iterative Proof
• Claim: For any extreme point x’, either there

is a makespan constraint to relax, or there is
a 1-edge

• Apply lemma repeatedly by either relaxing
and re-solving or deleting matched edge and
its endpoints (as well as removing 0-edges)

• Induction proof gives
Theorem (Shmoys-Tardos’ 93): Generalized

Assignment LP can be rounded to give solution
with optimal cost and makespan at most 2P

Global Counting Argument
• Suppose for contradiction there is no 1-edge,

no machine with degree 1 or 2
• No 1-edge, so degree of jobs at least 2
• No machine with degree 1 or 2, so degree of

machines at least 3
• So # edges ≥ (2 #jobs + 3 # machines)/2
• But, number of tight constraints at most

number of jobs plus number of machines
• (2 #jobs + 3 # machines)/2

> # jobs + # machines
(contradiction)

Iterative Method:
Key Ingredients

1. Small number of independent tight
constraints at extreme point solution
implies large valued element

2. Bound number of independent tight
constraints at extreme point

3. Incorporate side constraints into the
argument for 1 with appropriate
relaxation

Degree-bounded MSTs

• Given graph with edge costs, integer k,
find a spanning tree with maximum
degree at most k of minimum cost

• NP-hard: k=2 same as minimum cost
Hamiltonian path

• With non-metric costs, no
approximation of cost possible without
violating the degree bound

Base Problem and Constrained
Problem

Spanning Tree Problem
Deg-bounded
MST problem

Outline
• Preliminaries
• Iterative Relaxation (Global Argument)

– Assignment
– Generalized Assignment

• Iterative Relaxation (Local Argument)
– Minimum Spanning Tree
– Degree-bounded Min-cost Spanning Tree

• [Alternate proof of SNDP rounding]
• Extensions, Open problems

Spanning Tree Polyhedron
Linear Programming Relaxation

min e in E ce xe

s.t. e in E(V) xe = |V|-1
e in E(S) xe ≤ |S|-1  S  V

xe ≥ 0 e in E
E(S): set of edges with both endpoints in S

 Equivalent compact formulations [Wong ’80]
 Polynomial time separable [Cunningham ’84]
Theorem (Edmonds ‘71): Extreme points x* of the above

relaxation are integral

(Any tree has n-1 edges)

Subtour elimination
constraints

Extreme Points of Spanning Tree Polyhedron

Claim: Independent set of tight constraints defining x* can
be chosen s.t. corresponding subsets of vertices form a
laminar family L [Cornuejols et al ’88]

Follows from standard uncrossing arguments [Edmonds ‘71]

Tight Sets: x(E(A)) = |A|-1

Extreme Points of Spanning Tree Polyhedron

A B

While G is not a singleton
• Solve LP to obtain extreme

point x*
• Remove all edges s.t. x*e =0
• Contract all edges s.t. x*e =1

Iterative Proof of Integrality

Claim: Support E of any extreme point x* of the LP
has an edge with x*-value 1.

Proof Approach: Assume no such edge
• x* is extreme implies independent tight
constraints form a laminar family L
• Assign one token per edge in E and collect one
per tight set in laminar family: show leftover token
• Contradicts row rank = column rank for tight
linear subsystem defining extreme point x*

Counting Argument

Fractional Token
Redistribution

Definition: An edge in the support belongs to a
set in L if it is the smallest set containing both
ends of e
E.g., e belongs to R; f belongs to S

Edge e gives xe of its token to the set it belongs
to

S

e
f

R

- Leaf sets S have x(S) = |S| - 1 ≥ 1
- For others,
x(S) – ∑children C x(C) = (|S|-1) – ∑children C (|C| - 1)

≠ 0 by independence
- Every edge has (1-xe) left over for

contradiction

Fractional Token Collection

Claim: The xe tokens from edges that belong to a
tight set in L can pay for it (i.e., give it one unit)

Definition: An edge in the support belongs to a
set in L if it is the smallest set containing both
ends of e

Outline
• Preliminaries
• Iterative Relaxation (Global Argument)

– Assignment
– Generalized Assignment

• Iterative Relaxation (Local Argument)
– Minimum Spanning Tree
– Degree-bounded Min-cost Spanning Tree

• [Alternate proof of SNDP rounding]
• Extensions, Open problems

Bounded Degree MST

Extend spanning tree polyhedron
min e in E ce xe

s.t. e in E(V) xe = |V|-1
e in E(S) xe ≤ |S|-1  S  V

e in (v)xe ≤ Bv  v in W
xe ≥ 0  e in E

(Note W  V)

Spanning tree

Degree bounds

Iterative Relaxation
Algorithm

Initialize F = .

While W ≠ 

1. Solve LP to obtain extreme point x*.
2. Remove all edges e s.t. x*e=0.
3. (Relaxation) If there exists a vertex v in W such that

degE(v) ≤ Bv+1, then remove v from W (i.e., remove its
degree constraint).

Key Claim: There is always a vertex to remove in (3.)

Fractional Token Proof Outline:
• Assign 1 token per edge in support E
• Use xe of each edge’s token to “pay” for the

laminar sets in L
• Use remaining (1 – xe)/2 for each endpoint’s

degree constraint in T
• All edge tokens used contradicts

independence of L U T constraints

Local Counting Argument
Claim: x* is extreme implies Independent tight
constraints defining it form a laminar family L

of subtour constraints and T  W of tight
degree constraints

Token Redistribution

xe

(1-xe)/2 (1-xe)/2

For laminar family

for degree
constraint

for degree
constraint

Claim: Tokens from edges incident to node t in
T can pay for its degree constraint

Tokens = e in (t) (1 – xe)/2 = (degE(v) – Bv)/2 ≥ 1
(by relaxation condition)

Fractional Token Argument

Claim: Tokens from edges that belong to a tight
set in L can pay for it (i.e., give it one unit)

(same proof as before)

Definition: An edge in the support belongs to a
set in L if it is the smallest set containing both
ends of e

Fractional Token Argument
If all tokens from E are “used up” in paying for
sets in L and T, their constraints are dependent

All edge tokens xe used up in laminar sets 
e in Exe = sum of constraints of maximal sets in L

All edges tokens (1 – xe)/2 used up in T implies
Every edge in E is incident to T or

t in T e in (t) xe = e in E xe

Maximal tight sets in L and degree constraints
in T are dependent!

Singh, Lau ‘07 1 k+1

Reference Cost Guarantee Degree

Furer and Raghavachari ‘92 Unweighted Case k+1

Not possible k
Konemann, R ’01, ’02 O(1) O(k+log n)
CRRT ’05 ’06 O(1) O(k)
R, Singh 06 MST k+p (p=#distinct

costs)
Goemans ’06 1 k+2

History: Degree-bounded MSTs

Related Work
• First use of iterative relaxation with rounding

for degree-bounded SNDP [Lau, Naor,
Salvatipour and Singh STOC ‘07]

• Degree bounded matroids & submodular flows
[Kiraly, Lau and Singh, IPCO’08]

• First use of fractional token argument
[Bansal,Khandekar,Nagarajan STOC ’08]

• Fractional token argument for LP extreme
points for STSP and SNDP [Nagarajan, Ravi,
Singh ’08]

Outline
• Preliminaries
• Iterative Relaxation (Global Argument)

– Assignment
– Generalized Assignment

• Iterative Relaxation (Local Argument)
– Minimum Spanning Tree
– Degree-bounded Min-cost Spanning Tree

• [Alternate proof of SNDP rounding]
skip

• Extensions, Open problems

Survivable Network Design
Problem

Given undirected graph with edge costs, find
minimum cost subgraph with ri edge disjoint paths
between (si,ti).

• Special cases
– Shortest path, Spanning tree
– Steiner tree
– Generalized Steiner Forest
– k-edge-connected subgraph

SNDP LP Relaxation

Min ∑ e in E ce xe

x((S))  ri  S  V separating si and ti

xe  0  e in E
(S) = set of edges with exactly one end in S

Theorem (Jain): Any extreme point x of the
above relaxation has an edge e with xe  ½
Corollary: There is a polynomial-time 2-
approximation algorithm for SNDP

Skew Supermodular function

LP Relaxation

Min ∑ e in E ce xe

x((S))  f(S)  S  V
1  xe  0  e in E

Recall f(S) = max ri over (si,ti) separated by S

Theorem (Jain): Any extreme point x of the
above relaxation for integral skew super-
modular f(.) has an edge e with xe  ½

Edge Boundaries are Strongly
Submodular

Jain’s Iterative Rounding
Algorithm

Extreme Points

Claim: Independent set of tight constraints uniquely
defining x* can be chosen s.t. corresponding subsets
of vertices form a laminar family L [Jain ’98]

Tight Sets: x((S)) = f(S)

Uncrossing Argument

A B

Proof Approach:
• Assume for contradiction no xe ≥ 1/2
• Show number of nonzero variables is greater

than number of tight constraints at extreme
points

• Contradicts row rank = column rank for tight
linear subsystem defining x*

Iterative Local Proof
Lemma: x* is extreme implies Independent tight
constraints defining it form a laminar family L

Fractional Token Redistribution:
• Assign total of 1 token per edge (u,v) in E
• Assign xe of its token to each of the smallest

sets containing u and v
• Assign remaining (1-2xe) to the smallest set

containing both u and v
• All of the above are nonzero if no xe ≥ 1/2

Iterative Local Proof
Lemma: x* is extreme implies Independent tight
constraints defining it form a laminar family L

Token Redistribution

1-2xe

xe xe

For smallest set
containing e

for smallest set
containing v

for smallest set
containing u

u v

Iterative Local Proof
Claim: Every set in L receives at least one token
Consider leaf set S

x((S)) = f(S) ≠ 0

xe

Iterative Local Proof
Claim: Every set in L receives at least one token
Consider set S with children R1, R2, …, Rk in L
x((S)) - x((R1)) - x((R2)) -… - x((Rk))

= f(S) – f(R1) – f(R2) - … - f(Rk)
≠ 0 (else these sets are dependent)

= x(A) – x(B) – 2x(C)

A (+1)

B (-1)

C (-2)
D (0)

Iterative Local Proof
Claim: Every set in L receives at least one token
Consider set S with children R1, R2, …, Rk in L

Tokens assigned to S
= e in A xe + e in B (1-xe) + e in C (1 - 2xe)

= x(A) + |B| - x(B) + |C| - 2x(C)
= |B| +|C| + nonzero integer

A (+1)

B (-1)

C (-2)
D (0)

xe

1 - 2xe+ xe

1 - 2xe

Iterative Local Proof
Not all tokens from E are “used up” in paying for
sets in L

Consider a maximal set S in L

It has at least one edge (u,v) leaving it

No set in L contains both u and v, and hence its
(1 – 2xuv) token is unassigned

SNDP LP Relaxation

Min ∑ e in E ce xe

x((S))  f(S)  S  V
1  xe  0  e in E

Denote f(S) = max ri over (si,ti) separated by S

Theorem (Jain): Any extreme point x of the
above relaxation for integral skew super-
modular f(.) has an edge e with xe  ½

Iterative Method
• Inductive method for finding (near) optimal

solutions from linear programming relaxations
• Overview

– Formulate generic LP relaxation
– Identify element with high fractional value

to
• (Round) Pick element in solution or
• (Relax) Remove some constraints whose violation

can be bounded
– Formulate residual problem in generic form

and iterate (Prove by induction)

Iterative Method:
Key Ingredients

1. Small number of independent tight
constraints at extreme point solution
implies large valued element

2. Bound number of independent tight
constraints at extreme point

3. Incorporate side constraints into the
argument for 1 with appropriate
relaxation

Examples of Base Problems

• Bipartite Matching and Vertex Cover
• Spanning trees (undirected and directed)
• Max weight matroid basis and 2-matroid

intersection
• Rooted k-connected subgraphs
• Submodular Flows
• Network Matrices
• General Graph Matchings

Examples of Approximations
• Generalized Assignment, Maximum Budgeted

Allocation
• Degree bounded variants of spanning trees,

matroid bases, submodular flows and
Survivable Network Design Problem

• Partial covering (e.g. vertex cover)
• Multi-criteria problems (spanning trees)
• Earlier results: Discrepancy, Unsplittable

Flow, Bin packing
• Recent developments: Iterated randomized

rounding for Steiner trees

Open Directions
• New proofs of integral polyhedra (e.g.

TU matrices, TDI systems)
• Adding side constraints to other well

behaved polyhedra (e.g. Network
Matrices?)

• Traveling Salesperson Problems
• Packing problems (e.g. general

unsplittable flow, degree bounded flow)
• Algorithms that avoid solving LP

Lap-chi Lau (CUHK) &
Mohit Singh (McGill):
co-authors on a
monograph from
Cambridge University
Press. A non-printable
copy is available on
the web

