I terative Methods in Combinatorial Optimization

R. Ravi Carnegie Bosch Professor Tepper School of Business Carnegie Mellon University <u>ravi@cmu.edu</u>

Combinatorial Optimization

- "Easy" Problems : polynomial time solvable (P)
 - Matchings
 - Spanning Trees
 - Matroid Basis
- "Hard" Problems : NP-hard
 - Survivable Network Design
 - Facility Location
 - Scheduling Problems

Linear Programming

LP-based Methods for Approximation Algorithms

- Rounding large fractional variables
 - (Vertex Cover: Nemhauser-Trotter '75, BarYehuda-Even '81)
- Randomized Rounding
 - (Packing and Covering Programs: Raghavan-Thompson '88)
- Metric Embedding & Rounding
 - (Max Cut Goemans-Williamson '94; Multiway Cut: Calinescu-Karloff-Rabani '98)
- Primal-Dual Methods
 - (Network Design: AKR '91, GW '92)

LP-based Methods for Approximation Algorithms

- I terative Rounding
 - (Survivable Network Design Problem: Jain '98)
- I terative Relaxation
 - (Degree bounded SNDP : Lau-Naor-Salvatipour-Singh '07, Degree bounded Spanning Trees: Singh-Lau '07)

Typical Rounding:

I terative Rounding

- 1. Formulate NP-hard problem as covering LP
- 2. Argue existence of large-valued element in extreme point solution
- 3. Round up large-valued element to include in solution
- 4. Modify constraints to reflect residual problem
- 5. Repeat until no more constraints remain

I terative Relaxation

- 1. Formulate base problem as LP with integral extreme points
- 2. Design a proof using an iterative method
- 3. Consider base problem with extra constraints
- 4. Iterative Relaxation Solution Framework
 - Follow iterative proof of integrality of base pblm
 - Add a step of relaxing (deleting) constraints that have "low" violation
 - Argue existence of either an integral element to include or a constraint to relax at each step
 - When all constraints are relaxed, remaining soln is integral with low violation

I terative Method: Key Ingredients

- Small number of independent tight constraints at extreme point solution implies large valued element
- 2. Bound number of independent tight constraints at extreme point
- 3. Incorporate side constraints into the argument for 1 with appropriate relaxation

Application

- Addition to toolkit of LP-based design of approximation algorithm
- New proofs of classical integrality results of easy problems
- Allows adaptation to designing approximation algorithm for NP-hard variant with side constraints

Easy Problems to Hard Problems

Base Problem	Base problem with more constraints
Spanning Tree	Bounded-degree spanning trees [Singh-Lau] Multi-criteria spanning trees [GRSZ11]
Matroids	Constrained Matroids [LKS08]
Submodular Flow	Constrained Submodular Flow [LKS08]
Bipartite Matchings	Scheduling in Unrelated Parallel Machines [Shmoys-Tardos]
SNDP	SNDP with degree constraints [LNSS]

Outline

- Preliminaries
- Iterative Relaxation (Global Argument)
 - Assignment
 - Generalized Assignment
- I terative Relaxation (Local Argument)
 - Minimum Spanning Tree
 - Degree-bounded Min-cost Spanning Tree
- [Alternate proof of SNDP rounding]
- Extensions, Open problems

Preliminaries

Matrix of real numbers A Row rank = dim (span (row vectors)) Column rank = dim (span (column vectors))

Key elementary fact: Row rank = Column rank (= rank(A))

Column rank \geq Row rank

Consider m X n matrix A Take a basis for span(rows) $x_1, x_2, ..., x_r$ (in Rⁿ) Note each Ax_i is in span(columns) $Ax_1, Ax_2... Ax_r$ are linearly independent For otherwise $(c_1Ax_1 + c_2Ax_2... c_rAx_r) = 0$ implying $(c_1x_1 + c_2x_2... c_rx_r) = 0$

LP

Linear Program $Min c^{T} x$ s.t. $A x \ge b$ (P) $x \ge 0$

Defn: x is an extreme point solution to (P) if there is no nonzero vector y s.t. both x+y and x-y belong to (P) Alt: x cannot be written as a y + (1-a) z for y and z both in (P)

Extreme point optimal solutions

If min $c^T x : Ax \ge b$, $x \ge 0$ has an optimum that is finite, there is an extreme-point solution achieving this value

Extreme point solutions

Let P = {x: $Ax \ge b$, $x \ge 0$ }, and for x in P, A⁼ be the rows that are tight at x, and A⁼_x be the submatrix of A⁼ consisting of columns corresponding to nonzeros in x.

x is an extreme point iff A⁼_x has linearly independent columns (full column rank)

• If x is not an ext pt, for some y

$$A^{=}(x - y) \ge b$$
 and $A^{=}(x + y) \ge b$
while $A^{=}x = b$, so $A^{=}y = 0$

 If A⁼ has linearly dependent columns, start with A⁼ y = 0, extend y to all columns by adding 0's to show that (x + εy) and (x - εy) are both feasible

Rank Lemma

Let P = {x': $Ax' \ge b$, $x' \ge 0$ }, and x be an extreme point solution in P with all positive entries. Then any maximal number of linearly independent constraints that are tight at x (rows obeying $A_i x = b_i$) equal the number of variables in x

Proof: A⁼_x = A⁼ since all entries positive A⁼ has full column rank = no. of vars Row rank of A⁼ = I ts column rank

Outline

- Preliminaries
- Iterative Relaxation (Global Argument)
 - Assignment
 - Generalized Assignment
- I terative Relaxation (Local Argument)
 - Minimum Spanning Tree
 - Degree-bounded Min-cost Spanning Tree
- [Alternate proof of SNDP rounding]
- Extensions, Open problems

Example: Assignment

 Complete bipartite graph (A, B, A × B) with |A| = |B| = n

Theorem: Extreme points x^{*} of the above relaxation are integral

I terative Proof of Integrality

- Claim: At any extreme point x^{*}, there exists edge ij: x^{*}_{ij} = 1 (1-edge)
- To prove theorem, apply lemma repeatedly by deleting matched edge and its endpoints (including it in solution) and re-solving
- Note: we can also remove any edge with x^{*}_{ij} = 0 (*O*-edge) in the graph when resolving

Proof Approach

- Support graph: graph of edges with nonzero value at extreme point x^{*}
- Suppose for contradiction there is no 1-edge
- (LB) Lower bound number of edges in support using property of no 1-edges
- (UB) Upper bound number of independent constraints tight at extreme point x^{*}
- Show LB > UB
- But at extreme point x^{*}, # support edges = # tight constraints (since column rank = row rank of nonsingular matrix defining it) !

Global Counting Argument

- (LB) Since every node in A has x*degree 1 and there are no 1-edges, there are at least 2n edges in support
- (UB) The following system is dependent

 $\begin{array}{ll} \sum_{i \ \in \ A} \ x_{ij} = 1 \ \forall \ j \ \in \ B \\ \sum_{j \ \in \ B} \ x_{ij} = 1 \ \forall \ i \ \in \ A \\ \end{array}$ Hence maximum number of independent constraints tight at x^{*} is at most 2n -1

Outline

- Preliminaries
- Iterative Relaxation (Global Argument)
 - Assignment
 - Generalized Assignment
- I terative Relaxation (Local Argument)
 - Minimum Spanning Tree
 - Degree-bounded Min-cost Spanning Tree
- [Alternate proof of SNDP rounding]
- Extensions, Open problems

Extension: Generalized Assignment

- Bipartite graph (Jobs J, Machines M) plus processing times p_{ij} and costs c_{ij} of job j on machine I
- Find min cost schedule with makespan at most P

Preparation

- Prune edges with p_{ij} > P (They can never be used in an integral feasible solution)
- If optimal solution x' has 1-edges, the problem can be reduced (delete the job, decrease makespan constraint rhs for the machine; include this assignment in solution)
- If x' has 0-edges, they can be removed

Relaxation

- If there is a machine with degree 1 in support, remove its makespan constraint
 - Single job using it fractionally cannot have
 p_{ij} > P, so final makespan is at most P
- If machine with degree 2 in support, remove its makespan constraint
 - Each of the two jobs potentially fully assigned to it cannot have p_{ij} > P, so its final makespan is at most 2P

I terative Proof

- Claim: For any extreme point x', either there is a makespan constraint to relax, or there is a 1-edge
- Apply lemma repeatedly by either relaxing and re-solving or deleting matched edge and its endpoints (as well as removing 0-edges)
- Induction proof gives

Theorem (Shmoys-Tardos' 93): Generalized Assignment LP can be rounded to give solution with optimal cost and makespan at most 2P

Global Counting Argument

- Suppose for contradiction there is no 1-edge, no machine with degree 1 or 2
- No 1-edge, so degree of jobs at least 2
- No machine with degree 1 or 2, so degree of machines at least 3
- So # edges ≥ (2 #jobs + 3 # machines)/2
- But, number of tight constraints at most number of jobs plus number of machines
- (2 #jobs + 3 # machines)/2

> # jobs + # machines
(contradiction)

I terative Method: Key Ingredients

- Small number of independent tight constraints at extreme point solution implies large valued element
- 2. Bound number of independent tight constraints at extreme point
- 3. Incorporate side constraints into the argument for 1 with appropriate relaxation

Degree-bounded MSTs

- Given graph with edge costs, integer k, find a spanning tree with maximum degree at most k of minimum cost
- NP-hard: k=2 same as minimum cost Hamiltonian path
- With non-metric costs, no approximation of cost possible without violating the degree bound

Outline

- Preliminaries
- Iterative Relaxation (Global Argument)
 - Assignment
 - Generalized Assignment
- I terative Relaxation (Local Argument)
 - Minimum Spanning Tree
 - Degree-bounded Min-cost Spanning Tree
- [Alternate proof of SNDP rounding]
- Extensions, Open problems

E(S): set of edges with both endpoints in S

Equivalent compact formulations [Wong '80]

Polynomial time separable [Cunningham '84]
 Theorem (Edmonds '71): Extreme points x* of the above relaxation are integral
Extreme Points of Spanning Tree Polyhedron

Claim: Independent set of tight constraints defining x* can be chosen s.t. corresponding subsets of vertices form a laminar family L [Cornuejols et al '88]

Follows from standard uncrossing arguments [Edmonds '71]

Extreme Points of Spanning Tree Polyhedron

Uncrossing Argument

$$x(E(A \cap B)) + x(E(A \cup B)) \ge x(E(A)) + x(E(B))$$

 $\le \qquad \le \qquad = \qquad =$
 $|A \cap B| - 1 + |A \cup B| - 1 = |A| - 1 + |B| - 1$

I terative Proof of Integrality $\Sigma_{ein E} c_{e} x_{e}$

٠

s.t.
$$\sum_{e \text{ in } E(V)} x_e = |V| - 1$$

 $\sum_{e \text{ in } E(S)} x_e \le |S| - 1 \quad \forall S \subseteq V$
 $x \ge 0$

While G is not a singleton

- Solve LP to obtain extreme point x*
 - Remove all edges s.t. x^{*}_e=0
- Contract all edges s.t. x*_e =1

Counting Argument

Claim: Support E of any extreme point x^* of the LP has an edge with x^* -value 1.

Proof Approach: Assume no such edge

- x* is extreme implies independent tight constraints form a laminar family L
- Assign one token per edge in E and collect one per tight set in laminar family: show leftover token
- Contradicts row rank = column rank for tight linear subsystem defining extreme point x*

Fractional Token Redistribution

Definition: An edge in the support *belongs* to a set in L if it is the smallest set containing both ends of e E.g., e belongs to R; f belongs to S

Edge e gives x_e of its token to the set it belongs to

Fractional Token Collection

Definition: An edge in the support *belongs* to a set in L if it is the smallest set containing both ends of e

Claim: The x_e tokens from edges that belong to a tight set in L can pay for it (i.e., give it one unit)

- Leaf sets S have $x(S) = |S| 1 \ge 1$
- For others,
- $x(S) \sum_{\text{children C}} x(C) = (|S|-1) \sum_{\text{children C}} (|C| 1)$ ≠ 0 by independence
- Every edge has (1- x_e) left over for contradiction

Outline

- Preliminaries
- Iterative Relaxation (Global Argument)
 - Assignment
 - Generalized Assignment
- I terative Relaxation (Local Argument)
 - Minimum Spanning Tree
 - Degree-bounded Min-cost Spanning Tree
- [Alternate proof of SNDP rounding]
- Extensions, Open problems

Bounded Degree MST

Extend spanning tree polyhedron min $\sum_{e \text{ in } F} C_e X_e$ s.t. $\sum_{e \text{ in } E(V)} x_e = |V|-1$ $\sum_{e \text{ in } E(S)} x_e \leq |S| - 1 \forall S \subseteq V$ Spanning tree $\sum_{e \text{ in } \delta(v)} \mathbf{x}_e \leq \mathbf{B}_v \forall v \text{ in } \mathbf{W}$ Degree bounds $x_{e} \ge 0 \forall e \text{ in } E$ (Note $W \subset V$)

I terative Relaxation Algorithm

Initialize $F = \phi$.

While W ≠ ¢

- 1. Solve LP to obtain extreme point x^* .
- 2. Remove all edges e s.t. $x_e^*=0$.
- 3. (Relaxation) If there exists a vertex v in W such that $\deg_{E}(v) \le B_{v}+1$, then remove v from W (i.e., remove its degree constraint).

Key Claim: There is always a vertex to remove in (3.)

Local Counting Argument

Claim: x* is extreme implies I ndependent tight constraints defining it form a laminar family L of subtour constraints and $T \subseteq W$ of tight degree constraints

Fractional Token Proof Outline:

- Assign 1 token per edge in support E
- Use $x_{\rm e}$ of each edge's token to "pay" for the laminar sets in L
- Use remaining (1 x_e)/2 for each endpoint's degree constraint in T
- All edge tokens used contradicts independence of L U T constraints

Token Redistribution

Fractional Token Argument

Definition: An edge in the support *belongs* to a set in L if it is the smallest set containing both ends of e

Claim: Tokens from edges that belong to a tight set in L can pay for it (i.e., give it one unit) (same proof as before)

Claim: Tokens from edges incident to node t in T can pay for its degree constraint

Tokens =
$$\sum_{e \text{ in } \delta(t)} (1 - x_e)/2 = (\text{deg}_E(v) - B_v)/2 \ge 1$$

(by relaxation condition)

Fractional Token Argument If all tokens from E are "used up" in paying for sets in L and T, their constraints are dependent

All edge tokens x_e used up in laminar sets \rightarrow $\sum_{e \text{ in E}} x_e = \text{sum of constraints of maximal sets in L}$

All edges tokens $(1 - x_e)/2$ used up in T implies Every edge in E is incident to T or

$$\sum_{t \text{ in T}} \sum_{e \text{ in } \delta(t)} \mathbf{x}_e = \sum_{e \text{ in E}} \mathbf{x}_e$$

Maximal tight sets in L and degree constraints in T are dependent!

History: Degree-bounded MSTs

Reference	Cost Guarantee	Degree
Furer and Raghavachari '92	Unweighted Case	k+1
	Not possible	k
Konemann, R '01, '02	O(1)	O(k+log n)
CRRT '05 '06	O(1)	O(k)
R, Singh 06	MST	k+p (p=#distinct costs)
Goemans '06	1	k+2
Singh, Lau '07	1	k+1

Related Work

- First use of iterative relaxation with rounding for degree-bounded SNDP [Lau, Naor, Salvatipour and Singh STOC '07]
- Degree bounded matroids & submodular flows [Kiraly, Lau and Singh, IPCO'08]
- First use of fractional token argument [Bansal,Khandekar,Nagarajan STOC '08]
- Fractional token argument for LP extreme points for STSP and SNDP [Nagarajan, Ravi, Singh '08]

Outline

- Preliminaries
- Iterative Relaxation (Global Argument)
 - Assignment
 - Generalized Assignment
- I terative Relaxation (Local Argument)
 - Minimum Spanning Tree
 - Degree-bounded Min-cost Spanning Tree
- [Alternate proof of SNDP rounding] skip
- Extensions, Open problems

Survivable Network Design Problem

Given undirected graph with edge costs, find minimum cost subgraph with r_i edge disjoint paths between (s_i, t_i) .

- Special cases
 - Shortest path, Spanning tree
 - Steiner tree
 - Generalized Steiner Forest
 - k-edge-connected subgraph

SNDP LP Relaxation

 $\begin{array}{ll} \mbox{Min} \sum_{e \mbox{ in } E} c_e \ x_e \\ x(\delta(S)) \geq r_i & \forall \ S \subseteq V \mbox{ separating } s_i \ \mbox{and } t_i \\ x_e \geq 0 & \forall \ e \ \mbox{in } E \\ \delta(S) = \mbox{set of edges with exactly one end in } S \end{array}$

Theorem (Jain): Any extreme point x of the above relaxation has an edge e with $x_e \ge \frac{1}{2}$ Corollary: There is a polynomial-time 2-approximation algorithm for SNDP

Skew Supermodular function

f is skew supermodular iff $f(A \cup B) + f(A \cap B) \ge f(A) + f(B)$ OR $f(A-B) + f(B-A) \ge f(A) + f(B)$

E.g. $f(S) = \max r_i$ over (s_i, t_i) separated by S

LP Relaxation

$$\begin{split} & \text{Min} \sum_{e \text{ in } E} c_e x_e \\ & x(\delta(S)) \ge f(S) \quad \forall S \subseteq V \\ & 1 \ge x_e \ge 0 \quad \forall e \text{ in } E \end{split}$$

Recall $f(S) = \max r_i$ over (s_i, t_i) separated by S

Theorem (Jain): Any extreme point x of the above relaxation for integral skew supermodular f(.) has an edge e with $x_e \ge \frac{1}{2}$

Edge Boundaries are Strongly Submodular

x(δ (S)) is strongly submodular iff x(δ (A∪B)) + x(δ (A∩B)) ≤ x(δ (A)) + x(δ (f(B)) AND x(δ (A-B)) + x(δ (B-A)) ≤ x(δ (f(A)) + x(δ (f(B))

Note: f(.) - x(.) is also skew-supermodular if x(.) is strongly submodular

Jain's I terative Rounding Algorithm

Initialize $F = \phi$; f' = f

While f' ≠ ¢

- 1. Solve LP to obtain extreme point x^* .
- 2. Remove all edges $e s.t. x_e^*=0$.
- 3. (Rounding) If there exists an edge e in E such that $x_e^* \ge \frac{1}{2}$ add e to F, and update f'(S) = f'(S) $|e \cap \delta(S)|$

Remark: Updated f' is also skew-supermodular

Key Claim: There is always an edge to add to F in (3.)

Extreme Points

Claim: Independent set of tight constraints uniquely defining x* can be chosen s.t. corresponding subsets of vertices form a laminar family L [Jain '98]

Tight Sets:
$$x(\delta(S)) = f(S)$$

Uncrossing Argument

I terative Local Proof

Lemma: x* is extreme implies Independent tight constraints defining it form a laminar family L

Proof Approach:

- Assume for contradiction no $x_e \ge 1/2$
- Show number of nonzero variables is greater than number of tight constraints at extreme points
- Contradicts row rank = column rank for tight linear subsystem defining x*

I terative Local Proof

Lemma: x* is extreme implies Independent tight constraints defining it form a laminar family L

Fractional Token Redistribution:

- Assign total of 1 token per edge (u,v) in E
- Assign $x_{\rm e}$ of its token to each of the smallest sets containing u and v
- Assign remaining (1-2 $x_{\rm e}$) to the smallest set containing both u and v
- All of the above are nonzero if no $x_e \ge 1/2$

Token Redistribution

I terative Local Proof Claim: Every set in L receives at least one token Consider leaf set S

 $\mathsf{x}(\delta(\mathsf{S})) = \mathsf{f}(\mathsf{S}) \neq 0$

I terative Local Proof

Claim: Every set in L receives at least one token Consider set S with children R1, R2, ..., Rk in L $x(\delta(S)) - x(\delta(R1)) - x(\delta(R2)) - ... - x(\delta(Rk))$ = f(S) - f(R1) - f(R2) - ... - f(Rk) $\neq 0$ (else these sets are dependent) = x(A) - x(B) - 2x(C)

I terative Local Proof

Claim: Every set in L receives at least one token Consider set S with children R1, R2, ..., Rk in L

Tokens assigned to S

$$= \sum_{e \text{ in } A} x_e + \sum_{e \text{ in } B} (1 - x_e) + \sum_{e \text{ in } C} (1 - 2x_e) = x(A) + |B| - x(B) + |C| - 2x(C) = |B| + |C| + nonzero integer$$

I terative Local Proof Not all tokens from E are "used up" in paying for sets in L

Consider a maximal set S in L

It has at least one edge (u,v) leaving it

No set in L contains both u and v, and hence its $(1 - 2x_{uv})$ token is unassigned

SNDP LP Relaxation

$$\begin{split} & \text{Min} \sum_{e \text{ in } E} c_e x_e \\ & x(\delta(S)) \ge f(S) \quad \forall S \subseteq V \\ & 1 \ge x_e \ge 0 \quad \forall e \text{ in } E \end{split}$$

Denote $f(S) = \max r_i$ over (s_i, t_i) separated by S

Theorem (Jain): Any extreme point x of the above relaxation for integral skew supermodular f(.) has an edge e with $x_e \ge \frac{1}{2}$

I terative Method

- Inductive method for finding (near) optimal solutions from linear programming relaxations
- Overview
 - Formulate generic LP relaxation
 - I dentify element with high fractional value to
 - (Round) Pick element in solution or
 - (Relax) Remove some constraints whose violation can be bounded
 - Formulate residual problem in generic form and iterate (Prove by induction)

I terative Method: Key Ingredients

- Small number of independent tight constraints at extreme point solution implies large valued element
- 2. Bound number of independent tight constraints at extreme point
- 3. Incorporate side constraints into the argument for 1 with appropriate relaxation

Examples of Base Problems

- Bipartite Matching and Vertex Cover
- Spanning trees (undirected and directed)
- Max weight matroid basis and 2-matroid intersection
- Rooted k-connected subgraphs
- Submodular Flows
- Network Matrices
- General Graph Matchings

Examples of Approximations

- Generalized Assignment, Maximum Budgeted Allocation
- Degree bounded variants of spanning trees, matroid bases, submodular flows and Survivable Network Design Problem
- Partial covering (e.g. vertex cover)
- Multi-criteria problems (spanning trees)
- Earlier results: Discrepancy, Unsplittable Flow, Bin packing
- Recent developments: I terated randomized rounding for Steiner trees
Open Directions

- New proofs of integral polyhedra (e.g. TU matrices, TDI systems)
- Adding side constraints to other well behaved polyhedra (e.g. Network Matrices?)
- Traveling Salesperson Problems
- Packing problems (e.g. general unsplittable flow, degree bounded flow)
- Algorithms that avoid solving LP

Lap-chi Lau (CUHK) & Mohit Singh (McGill): co-authors on a monograph from Cambridge University Press. A non-printable copy is available on the web

CAMBRIDGE TEXTS IN APPLIED MATHEMATICS

Iterative Methods in Combinatorial Optimization

LAP CHI LAU R. RAVI MOHIT SINGH

CAMBRIDGE