Network Design Foundation
Fall 2011
Graph Balancing : A special case of scheduling on
unrelated machines

Manish Purohit, Avinash Das

December 6, 2011

1 Introduction

Here, we consider approximation algorithms for the GRAPH BALANCING
problem which is a special case of the job scheduling on unrelated parallel
machines to minimize the makespan. We present an interpretation of the 2-
approximation LP-rounding algorithm given by Lenstra et al. to the special
case of graph balancing. We then show how the approximation guarantee
can be improved by the technique of adding additional valid constraints to
the linear program.

2 Generalized Problems

2.1 Scheduling on unrelated parallel machines

In this scheduling problem, we are given n machines and m jobs which
need to be scheduled on these machines. Each job needs to be assigned to
one of the machines. Job j requires processing time pj; on machine i. The
objective is to find a schedule that minimizes the makespan. Makespan is
the time at which the last job finishes. It can also be defined as the load
on the most heavily loaded machine. Lenstra et al. [2] gave an elegant 2-
approximation for this problem and also proved that approximating it with
an approximation ratio better than 1.5 is NP-hard.



2.2 Restricted Assignment

Restriced Assignment is a special case in which for a particular job j, the py;
entries are either co or the same value p;. Thus, a job has fixed processing
time irrespective of the machine but can only be scheduled on a given subset
of the machines.

3 Graph Balancing

Graph Balancing [I] is a special case of the Restricted Assignment problem
in which every job can be scheduled on at most 2 machines. The problem
is called Graph Balancing as one can consider the machines as vertices of a
graph and the jobs as undirected edges between them. The problem would
now be to simply direct the edges towards one of its end points. Further, in
order to account for jobs that can be scheduled on one machine alone, we
assign certain dedicated loads to each vertex.

Even this special case of graph balancing is NP-hard to approximate
with a ratio better than 1.5.

3.1 Problem Formulation

The graph balancing problem can thus be formalized as shown. Given a
multigraph G = (V, E,p, q) where V are vertices corresponding to machines
and E are the edges corresponding to the jobs respectively. Weights p. on
edges denote the processing times while weights ¢, on vertices denote their
dedicated loads. The desired output is an orientation of edges, which is
defined as a mapping A : E — V such that A(e) is incident with e for each
e € E. The objective is to minimize the maximum load on any vertex where
load on a vertex is defined as as the sum of its dedicated load (qy) and the
Pe of edges oriented towards it (i.e. A(e) =v).

3.2 Relaxed decision procedure

Using binary search for the optimal makespan d and scaling all weights ap-
propriately, we can convert the optimization problem to its decision version
where we need to test if there exists an orientation with maximum load at
most 1. It can be easily seen that if we have a p-relaxed decision procedure
for the problem, then we obtain a p-approximation algorithm. A p-relaxed
decision procedure is one that when asked if there exists any orientation
with maximum load at most 1 returns “NO” if no such orientation exists
and otherwise returns an orientation with maximum load at most p.



4 Approximation Algorithms

We present an interpretation of the 2-approximation of Lenstra et al. for
the scheduling on unrelated machines to the special case of graph balanc-
ing. We then note a very simple deterministic rounding scheme to obtain
2-approximation. Finally, we show a 1.75 approximation for the graph bal-
ancing problem as obtained by Ebenlendr et al.

4.1 2-approximation - Lenstra et al

Consider a decision version of the problem where we are interested to know
if there is a feasible solution with maximum load 1. A natural LP formula-
tion of the same is given below.

Linear Program LP1

Find values X¢, > 0 for each e € E and v € e,
subject to:

For each edge e € E, u,vee:
Xeu + Xey = 1
For each vertex ve V :

qV + Ze;vge Xevpe S ]

Its a feasibility LP with no objective function. For every edge e =
(u,v), we have two variables, x¢, and X, denoting the orientation. The first
constraint simply says that each edge needs to be oriented towards one end
point. The second constraint ensures that the maximum load on any vertex
is at most 1. Of course, its hard to find integral solutions for the variables
satisfying these constraints. Hence, we solve the LP in polynomial time to
obtain the fractional x., values. In case the LP has no feasible solution, we
surely do not have any integral solution satisfying the constraints and we
can return “NO”.

The interesting case occurs when the LP does return feasible fractional
Xev Values. Now, we need to obtain an integral solution so that the maximum
load on any vertex does not exceed 2. This rounding is done in two steps,
Rotation and Tree assignment.

Rotation: Arbitrarily choose a cycle C in the graph that has all edges
fractionally oriented and orient it in an arbitrary direction and perform the
rotation operation. Rotation modifies the solution x, so that it is still feasible
and the number of integral values in x increases. Repeat this procedure until



the fractionally oriented edges induce a forest, i.e. there are no fractional
cycles. The Rotate procedure is as follows. Here, the x¢, and x., values are
perturbed along the cycle so that one of the edges gets completely oriented
and the LP still remains feasible.

Algorithm 1: Rotate Procedure
Procedure Rotate (x, C)

foreach edge e in C, where e is directed from u to v do
d¢ = XeuPe

end

0 = mineec ¢

foreach edge e in C, where e is directed from u to v do

Xeu = Xeu —

Pe
XCV - Xe\) + —
Pe
end
return x

Tree Assignment: Once the graph induced by the fractional edges forms
a forest, root every tree at an arbitrary vertex and direct all edges away
from the root. Since, after the rotation process the LP is still feasible, the
load on every vertex is at most 1. Hence, as figure [1] indicates, after tree
assignment, the load on any vertex can be at most 2. Further, all edges
are now directed towards one of their end points. We thus obtain a feasible
solution to the graph balancing problem with maximum load at most 2 and
hence obtain a 2-approximation.

4.2 2-approximation - Deterministic LP-rounding

For the special case of graph balancing, the LP-rounding procedure described
above is overkill. Since for every edge e = (u,Vv), we have Xey +Xey = 1, it is
guaranteed that either x¢, > = or x¢, > =. Breaking ties arbitrarily, orient

the edge towards the end-point with larger fractional orientation, i.e. direct

the edge towards u if xe > 7 and vice versa. Let X, and X, be indicator

variables to denote if the edge e is directed towards u or v.
This simple rounding scheme is also a 2-approximation. Consider,

Newload(v) = gy + Z XevPe

evee



<1

Osl

(a) Before

Figure 1: Tree Assignment

But, Xey < 2x¢, as per the rounding scheme

. Newload(v) < qv+2 Z XevPe

evee

< Z(qv + Z Xevpe)

evEe
< 2load(v)
.. Newload(v) <2

However, the rounding scheme of Lenstra et al. is important as their ap-
proach can be extended to obtain a better approximation ratio of 1.75.

4.3 Integrality Gap of LP1

Unfortunately, the integrality gap of the LP1 considered above is 2. As
shown in figure consider a long path of edges each of weight (1 — €).
Let both the end points of the path have dedicated loads of 1. It is easy to

see that if the length of the path is more than l, LP1 is feasible but the
best integral solution has maximum load 2 — 2e. %ence it is not possible to
obtain a better approximation for the graph balancing problem by simply
strengthening the analysis.




o000
1-2 1-e A 1-8 1- 1-g

Figure 2: Integrality Gap of LP1

4.4 1.75 approximation

The essence of graph balancing lies in the critical observation of orientation

1
of big edges. Big edges are defined as edges with p > 5 If 2 big edges

are oriented to a vertex, load of vertex will be more than 1. Therefore, the
orientation of big edges and vertices will be one to one on a graph induced
with big edges.

4.4.1 Pre-processing

Let us discuss some notation that will be used for this document. Given a
weighted graph G = (V,E), EB ={e € E: p. > 1/2} be set of big edges and
GB = (V,EB), be the graph induced by the set of big edges. Further, given
a fractional solution of a LP, Ex ={e € E: 0 < xey < 1} be set of edges for
which LP gives a fractional solution and Gy = (V, Ey), be the graph induced
by these fractional edges. Composing, G = (V,E® N E,) is a graph induced
by the set of big edges with fractional assignments. Finally, given a tree T =
(V,E), a leaf pair is defined L(T) ={(v,e) € VX E:v € V,deg(v) =1,v € e}.

A one to one orientation on a cycle in EB implies that if there is a vertex
v € GP which is not the part of the cycle but is connected to the cycle by
a big edge e, then e must be oriented away from the cycle in any integral
feasible solution as shown in figure Thus, we can preprocess the input
instance to remove all such edges from the graph and assign their weights
as dedicated load on the vertices. The graph induced by the big edges, G&,
would thus contain only disjoint cycles and trees.

4.4.2 Tree constraint

Let us discuss the implication of big edges on some tree T C GB. The
number of edges in a tree is one less than number of the vertices. One to
one mapping of edges to vertices implies that there would be exactly one
vertex which would not be assigned any big edge. Therefore there can be at



>1/2 >]/2‘7©

>1/2

Figure 3: Illustration of a cycle in G?

most one leaf in the tree that does not have a big edge oriented towards it.
Therefore, any integral solution of the LP1 will follow:

Z XevPe = Z Pe| —1

(v,e)eL(T) (v,e)eL(T)

The LP1 can thus be reformulated to:

Linear Program LP2

Find values X, > 0 for each e € E and v € e,
subject to:

For each edge e €c E, u,vee:

Xeu + Xey = 1 (Edge e)
For each vertex ve V :

qv + ZEZVEE XevPe <1 (Load at v)
For each tree T C GB :

2_(ve)el(T) XevPe = 2_(y e)er(T) Pe — | (Tree T)

The LP2 has exponential constraints for the tree condition. It can be
solved using methods like the ellipsoid algorithm. Ebenlendr et al.[I] give a
rounding scheme that gives a 1.75 approximation algorithm for graph bal-
ancing. The Round procedure given below describes their rounding scheme.




Algorithm 2: Round Procedure
Procedure ROUND (G = (V,E,p, q),x)
while Gy has an edge do // Main While
if Gy has a leaf pair (v,e) then
Let u be the vertex u € e, uw # v,

if xeupe < 0.75 then // Leaf Assignment
(Xevy Xeu) = (1,0)

end

else // Tree Assignment

Let T = (V/,E’) be the component of G? containing e
foreach e’ € E/,v/;u’ € e’ such that v’ is on the path from
viou inTdo

(Xe/v’> Xe’u’) = (O> 1 )

end
end
end
else // Rotation

Find a directed cycle C in the following way:

Start a walk in an arbitrary vertex and repeat
Append a new edge to the end of the walk; if possible,
choose a big edge

until the walk contains a cycle, denote it C.;

Rotate(x, C)
end
end
Let y(e) := v for all pair (e,v) with x¢, = 1
return y

4.4.3 Analysis of round procedure

We will prove that the rounding procedure indeed gives an 1.75 approxima-
tion for the graph balancing problem by proving that following invariance
is maintained for every iteration of the rounding procedure.

Theorem 1 Before and after each iteration of (Main While) during the
round procedure for every vertexv € V :

1. The load of v is at most 1.75.



2. If v is incident to any edge in Gy, it has load at most 1.25.

3. If v is incident to a big edge in G2, it has load at most 1.
4. For every tree T that is a subgraph of G2, the constraint (Tree T) is
not violated.

Proof: At the beginning all invariances are true, as LP gives a solution
with load for each vertex is at most 1. Now, for each case we will verify if
the invariance are all true:

o (leaf assignment): As the edges are oriented toward the leaf, we
need to check if the increase in load of leaf v i.e. (pe —XeyPe) does not
violate any invariance. We will consider 2 cases separately:

1. Pe > 1/2: Pe — XevPe = XeuPe < 0.75. As v is connected to a big
edge, load(v) < 1 before this iteration. Thus, after this iteration

load(v) < 1.75. Further v is no longer incident to any edge in
Gx.

2. Pe < 1/2: pe — XevPe < pe < 0.5. The load of v can be at most
1.25 before the iteration. Thus, after this iteration load(v) <
1.75. Again, v is no longer incident to any edge in Gy.

Tree constraint is maintained during the leaf assignment. Therefore,
all the invariances are maintained during the leaf assignment.

e (tree assignment): p. > 1/2. In the tree T(V/,E') C G2 :v € L(T),
consider any vertex u’ € V'. Let e’ be an edge on the path connecting
v to u' in T such that u’ € e’. As the edges are oriented away from
the v in the tree T, we need to check that the increase in load(u’) i.e.
Per — XerwPer does not violate any invariance. Path joining v to u/
in T is also a subtree of G5 and will hence follow the tree constraint
XevPe + Xe'u/'Pe’ = Pe + Pe’ - 1. Therefore:

Per — Xerw'Per < 1— (pe _Xevpe)

< 1-0.75=0.25
Therefore, increase in load of any vertex is at most 0.25. Since, before
the iteration any vertex is connected to a big edge in GB, its load will

be at most 1. After the iteration it will be at most 1.25. Therefore,
invariance is maintained during tree assignment.



e (Rotation): As discussed in the previous section, the rotation does
not change any of the relevant sum of loads hence first 3 invariances are
maintained. Finally, it is easy to notice that even the tree constraint
is not violated.

4.5 Integrality gap of LP2

The integrality gap of LP2 is indeed 1.75. This can be seen from the example
given in figure [4 . There are three long disjoint paths between two terminal
vertices each having odd number of edges. Every vertex has a dedicated load
of 0.25 and the edge weights alternate between 1 and 0.5— € where the edges
connected to the terminal nodes have weight 1. Again, for sufficiently long
paths, the LP is feasible while any integral orientation will have to assign
at least two edges to a vertex which leads to maximum load of 1.75 — €.

Figure 4: Integrality gap of LP2 is 1.75

4.6 Open Problems

Ebenlendr et al. show that it is NP-hard to approximate graph balancing
with an approximation ratio better than 1.5 via a reduction from a variant of

10




3-SAT. It would be interesting to either obtain an approximation algorithm
better than 1.75 or to improve the inapproximability bound. Since even LP2
has an integrality gap of 1.75, a more careful analysis of the same LP cannot
be used to give a better approximation ratio. It may be possible to tighten
the analysis by adding some more valid constraints to the linear program.

References

[1] Tom4as Ebenlendr, Marek Kiéal, and Jifi Sgall. Graph balancing: a
special case of scheduling unrelated parallel machines. In Proceedings of
the nineteenth annual ACM-SIAM symposium on Discrete algorithms,
SODA 08, pages 483-490, Philadelphia, PA, USA, 2008. Society for
Industrial and Applied Mathematics.

[2] Jan Karel Lenstra, David B. Shmoys, and Eva Tardos. Approxima-
tion algorithms for scheduling unrelated parallel machines. Mathematical
Programming, 46:259-271, 1990. 10.1007/BF01585745.

11



	Introduction
	Generalized Problems
	Scheduling on unrelated parallel machines
	Restricted Assignment

	Graph Balancing
	Problem Formulation
	Relaxed decision procedure

	Approximation Algorithms
	2-approximation - Lenstra et al
	2-approximation - Deterministic LP-rounding
	Integrality Gap of LP1
	1.75 approximation
	Pre-processing
	Tree constraint
	Analysis of round procedure

	Integrality gap of LP2
	Open Problems


