
Network Design Foundation
Fall 2015

Iterative Methods in Combinatorial Optimization
Instructor: Mohammad T. Hajiaghayi
Scribe: Saba Ahmadi, Saurabh Kumar

December 10, 2015

1 Preliminaries
1.1 Linear Algebra
In this section, we review some definitions and concepts related to linear algebra
which will be useful in describing the iterative methods later.

Definition 1 The row rank of a matrix A is the maximum number of linearly
independent rows in A. The column rank of a matrix A is the maximum
number of linearly independent columns in A. In other words,

row rank of A = dim(span(row vectors of A))
column rank of A = dim(span(column vectors of A))

Theorem 1 The row rank and column rank of any given matrix are equal and
therefore unambiguously referred to as the rank of the matrix.

The general form of a linear program is as follows (this will be referenced in
the definitions and lemmas given ahead):

min cTx

s.t. Ax ≥ b . . . P

x ≥ 0

Here, P corresponds to the set of feasible solutions (the ones that satisfy both
given constraints) i.e P = {x : Ax ≥ b, x ≥ 0}.

Definition 2 x ∈ Rn is an extreme point solution to P if there is no non-
zero y ∈ Rn s.t x+y and x−y belong to P . Alternately, x cannot be written as a
linear combination of any two y, z ∈ P (i.e x cannot be written as ay+(1−a)z).

1

Saba Ahmadi, Saurabh Kumar
Iterative Methods in Combinatorial Optimization Date: 11/13/2015

Intuitively, if x is an extreme point solution to P , it is located at a corner point
of P . It can be proved that a bounded LP (one with a finite optimum) always
admits an extreme point solution that achieves the optimum.

Lemma 1 (Rank Lemma) Let x be an extreme point solution of P such that
xi > 0 for each i. Then any maximal number of linearly independent constraints
that are tight at x (i.e constraints of the form1 Aix = bi) equal the number of
variables in x.

1.2 Intuition behind Iterative Methods
For NP hard problems, in order to obtain good approximation algorithms, we
will be concerned with two components of iterative methods - iterative rounding
and iterative relaxation.

1.2.1 Iterative Rounding

1. Formulate the NP hard problem as a linear program

2. Fix a threshold and argue the existence of an element greater than the
threshold in the extreme point solution

3. Include that element in solution by rounding up

4. Modify the constraints of the problem to reflect the residual problem

5. Repeat from step 2 until no more constraints remain

1.2.2 Iterative Relaxation

1. Formulate the NP hard problem as an LP with integral extreme points

2. At each step, argue existence of integral element to include in solution or
a constraint (with “low violation”) to relax

3. When all constraints are relaxed, the remaining solution is integral and
has low violation

The following scribe notes are based on [3] and [2].

2 The Assignment Problem
Problem Definition
Given a complete bipartite graph G = (A∪B,A×B) where |A| = |B| = n and
costs cij on edge (i, j) with i ∈ A, j ∈ B. Our aim is to match each vertex in A
with a distinct vertex in B in such a way that the total cost of the matching is
minimized.

1Ai means the ith constraint in A

2

Saba Ahmadi, Saurabh Kumar
Iterative Methods in Combinatorial Optimization Date: 11/13/2015

Approach
We describe an LP which solves the above problem and use iterative relax-
ation with a counting argument to obtain a solution. The LP (after standard
relaxation from an ILP) can be formulated as:

min
∑
i,j

cijxij

s.t.
∑
i∈A

xij ≥ 1 ∀ j ∈ B∑
i∈B

xij ≥ 1 ∀ i ∈ A

xij ≥ 0 ∀ (i, j) ∈ A×B

Here, xij are indicator variables indicating whether or not edge (i, j) is part of
the solution matching. cij denotes the cost of the edge (i, j).

While generally, an LP need not have an integral solution, it turns out that
this LP does. This can be stated in the following theorem.

Theorem 2 Extreme points x∗ of the above relaxed LP are integral.

Proof: We make the following claim which we prove subsequently - at any
extreme point for the above LP, there exists an edge with an x∗ value of 1.
Assuming the above claim, we then use the following algorithm to obtain our
solution:

1. Solve the above fractional LP

2. If any x∗ij = 0, remove that edge to obtain a smaller problem.

3. If any x∗ij = 1, we take this pair as part of our final solution and delete it
(both nodes and the edge) to obtain a smaller problem.

4. Repeat procedure until no edges remain.

In each iteration, because we either choose an edge with 0 or 1 weight, we
pay exactly what the fractional solution would pay and therefore, at the end
of the above procedure, the cost of our (integral) solution is exactly that of
the (potentially) fractional one i.e our integral solution is optimal (this can be
proved rigorously by induction as well).

Finally, we now prove the claim we made in the previous proof.

Claim 1 At any extreme point x∗, there exists an edge (i, j) such that x∗ij = 1
i.e there exists a 1-edge.

Proof: At any given iteration of the above algorithm, construct a support graph
Gs = (A′ × B′, Es) where Es contains only edges with non-zero values at the
extreme point (and which have not been deleted in previous iterations). Let
|A′| = |B′| = n′. If possible, suppose that there is no 1-edge.

3

Saba Ahmadi, Saurabh Kumar
Iterative Methods in Combinatorial Optimization Date: 11/13/2015

From our assumption, for all edges (i, j) ∈ Es, we have 0 < xij < 1. This
implies that each vertex i in A′ must have at least two edges incident on it since∑
j∈B xij ≥ 1 (as per the LP constraint) and xij < 1 ∀ j ∈ B. Therefore, the

graph contains at least 2n′ edges. In other words, The number of variables is
at least 2n′.

On the other hand, in the LP, we have 2n′ constraints (one for each vertex
in A ∪ B). However, the sum of the constraints for all vertices in A equals the
sum of the constraints for all vertices in B. More formally,∑

i∈A

∑
j∈B

xij =
∑
j∈B

∑
i∈A

xij

Therefore, the system of constraints is linearly dependent and hence the number
of linearly independent constraints is at most 2n− 1.

However, by the rank lemma, at an extreme point, the number of variables
equals the number of tight linearly independent constraints. This is a contra-
diction. Therefore, there must exist a 1-edge in the extreme point.

3 Extension: Generalized Assignment
In this problem, we are given a set of jobs J and machines M , for each job j ∈ J
and machine i ∈M there is a processing time pij and cost cij .
The goal is to assign each job to some machine such that the total cost is min-
imized and no machine is scheduled for more than P time.

Approach:
We describe an LP which solves this problem and use iterative relaxation with
a counting argument to obtain a solution. The LP formulation is as following:

min
∑
i,j

cijxij∑
i∈M

xij ≥ 1 ∀j ∈ J∑
j∈J

pijxij ≤ P ∀i ∈M

xij ≥ 0 ∀i, j

Here, xij are indicator variables indicating whether or not an edge (i, j) is part
of the solution.

Preparation:
In the bipartite graph, we could prune edges with pij > P , because they can

4

Saba Ahmadi, Saurabh Kumar
Iterative Methods in Combinatorial Optimization Date: 11/13/2015

never be used in a feasible solution of LP.
If in the optimal solution of LP for some edge e, xe = 1, then include this as-
signment in the solution. Also delete the job and decrease makespan constraint
for the machine.
If in the optimal solution of LP for some edge e, xe = 0, remove the edge to
obtain a smaller problem.

Relaxation:
If there is a machine with degree 1 in the support then we could remove its
makespan constraint, since the single job using it fractionally cannot have
pij > P , so final makespan of the machine is at most P .
If there is a machine with degree 2 in the support then remove its makespan
constraint, now final makespan of the machine is at most 2 ∗ P .

Lemma 2 For any extreme point solution x′ to fractional LP, either there is a
makespan constraint to relax, or there is an edge like e, such that xe ∈ {0, 1}.

Proof: Suppose for contradiction there is no edge like e, such that xe ∈ {0, 1}.
Also there is no machine with degree 1 or 2. Thus degree of jobs is at least 2
and degree of machines is at least 3.
Thus |E| ≥ 2|J|+3|M |

2 . But number of tight constraints is at most |J | + |M |.
Thus number of edges is greater than number of tight constraints which is a
contradiction of the rank lemma.

Apply the lemma repeatedly by either relaxing a makespan constraint or
deleting an edge which has value 0 or 1, then resolve the residual problem. Fi-
nally the solution will have optimal cost and makespan at most 2 ∗ P .

4 Minimum Spanning Trees
Spanning Tree Polyhedron

min
∑
e∈E

cexe

s.t
∑

e∈E(V)

xe = |V | − 1 Any tree has n− 1 edges.

s.t
∑

e∈E(S)

xe ≤ |S| − 1 ∀S ⊂ V, Subtour Elimination

xe ≥ 0 ∀e ∈ E
E(S) shows set of edges with both endpoints in S.

Uncrossing Technique For a set F ⊂ E, let χ(F) denote the characteristic
vector in R|E| that has a 1 corresponding to each edge e ∈ F and 0 otherwise.

5

Saba Ahmadi, Saurabh Kumar
Iterative Methods in Combinatorial Optimization Date: 11/13/2015

Proposition 1 For X,Y ⊂ V ,
χ(E(X)) + χ(E(Y)) ≤ χ(E(X ∪ Y)) + χ(E(X ∩ Y))

Proof: Observe that,
χ(E(X)) + χ(E(Y)) = χ(E(X ∪ Y)) + χ(E(X ∩ Y))− χ(E(X \ Y, Y \X))
So the proposition follows.

Let F = {S ⊂ V |χ(E(S)) = |S| − 1} be the family of tight constraints.

Lemma 3 If S, T ∈ F and S ∩ T 6= ∅, then both S ∩ T and S ∪ T are in F .
Also, χ(E(S)) + χ(E(T)) = χ(E(S ∩ T)) + χ(E(S ∪ T)).

Proof:

|S| − 1 + |T | − 1 = χ(E(S)) + χ(E(T)) S, T ∈ F
≤ χ(E(S ∩ T)) + χ(E(S ∪ T)) Proposition. 1
≤ |S ∩ T | − 1 + |S ∪ T | − 1 according to the LP costraints for S ∩ T, S ∪ T
= |S| − 1 + |T | − 1 |S ∩ T |+ |S ∪ T | = |S|+ |T |

Now we could conclude that χ(E(S∩T))+χ(E(S∪T)) = |S∩T |−1+|S∪T |−1.
Thus χ(E(S ∩ T)) = |S ∩ T | − 1 and χ(E(S ∪ T)) = |S ∪ T | − 1, which means
that both S ∩T and S ∪T are in F . Also χ(E(S)) +χ(E(T)) = χ(E(S ∩T)) +
χ(E(S ∪ T)).

Following lemma is based on uncrossing arguments.

Lemma 4 Independent set of tight constraints defining an extreme point can
be chosen s.t. corresponding subset of vertices form a Laminar family L. [Cor-
nuejols et. al. ’88]

Iterative Algorithm: While G is not a singleton, solve LP to obtain ex-
treme point x∗. Remove all edges s.t x∗e = 0.
Contract all edges s.t x∗e = 1.

Lemma 5 Support E of any extreme point x∗ of the LP has an edge with x∗-
value 1.

Proof: There are |L| tight constraints in the form
∑
e∈E(S) xe = |S| − 1, thus

according to the rank lemma |E| = |L|.
Assign one token per edge in E. For each edge e, collect xe fractional token
from the smallest tight set containing both endpoints of e, then we show some
extra leftover tokens which implies that |E| > |L| giving us a contradiction of
rank lemma.
Let S be any set in L, 2 cases might happen:
1- S is a leaf node, then: χ(S) = |S| − 1 ≥ 1.

6

Saba Ahmadi, Saurabh Kumar
Iterative Methods in Combinatorial Optimization Date: 11/13/2015

2- S has children c1, c2, ..., ck for some k ≥ 0, we have that:
χ(S)−

∑
1≤i≤k χ(ci) = |S| −

∑
1≤i≤k |ci|+ k − 1 = χ(A)

where A = E(S) \ (∪iE(ci)). If A = 0, then χ(S) =
∑

1≤i≤k χ(ci), then these
tight constraints in L are not independent which is a contradiction. Also χ(A)
is an integer and is at least one, giving S at least one token.
Since for all edges like e, xe is fractional, now every edge has 1 − xe leftover,
which is a contradiction.

5 Minimum Degree Bounded Spanning Trees
5.1 Problem Definition
Given a graph G = (V,E), edge costs ce for edge e ∈ E and an upper bound Bv
on the degree for each vertex v ∈ V . Our aim is to find a minimum spanning
tree which satisfies the degree bounds.

5.2 Approach
Here, we consider a more general case where degree bounds are specified for a
subset W ⊆ V . For S ⊆ V , let E(S) be the set of edges with both endpoints
in S and let δ(S) be the set of edges with exactly one endpoint in S. Also, for
E′ ⊆ E, define as shorthand x(E′) =

∑
e∈E′ xe. We formulate the relaxed LP

for this problem as follows:

min
∑
e∈E

cexe (5.1)

s.t. x(E(V)) = |V | − 1 (5.2)
x(E(S)) ≤ |S| − 1 ∀ S ⊂ V, S 6= ∅ (5.3)
x(δ(v)) ≤ Bv ∀ v ∈W (5.4)
xe ≥ 0 ∀ e ∈ E (5.5)

The constraint formulation of this problem is related to the traveling salesman
problem and subtour elimination. A spanning tree of vertices in set S has at
most |S| − 1 edges (any more and we would have a cycle). Constraint (5.2)
eliminates any subtours (cycles) that could have formed in the overall MST.
Constraint (5.3) eliminates any subtour that could have formed in E(S) for all
proper subsets S of V . Constraint (5.4) is our degree bound (Note that δ(v)
denotes the set of edges incident on v).

In the above LP, the number of constraints is exponential (due to constraint
set (5.3)), but we can devise a polynomial time separating oracle for testing
feasibility using min cut. This allows us to solve the LP in polynomial time.
Another approach is to recast the above LP using a polynomial number of
constraints which is also possible. Either way, we can solve the above LP in
linear time.

7

Saba Ahmadi, Saurabh Kumar
Iterative Methods in Combinatorial Optimization Date: 11/13/2015

For the following discussion, remember that an extreme point solution is the
unique solution defined by n lineary independent tight inequalities, where n is
the number of variables in the linear program. Also, an extreme point solution
is characterized by tight inequalities whose corresponding sets form a laminar
family.

Lemma 6 Let x∗ be an extreme point solution to the above LP with xe > 0
for each e ∈ E. For a set F ⊆ E, let χ(F) denote the characteristic vector in
R|E| that has a 1 for each edge e ∈ F and 0 otherwise. Then, there exists a set
T ⊆W and a laminar family L such that:

1. x(δ(v)) = Bv for each v ∈ T and x(E(S)) = |S| − 1 for each S ∈ L

2. The characteristic vectors in {χ(E(S)) : S ∈ L} ∪ {χ(δ(v)) : v ∈ T} are
linearly independent.

3. |L|+ |T | = |E|

1 Approximation Algorithm There exists an additive one approximation
to the above LP (this algorithm and its analysis is based on [2]). In it, we do
not perform any rounding at all, we simply relax vertex degree constraints one
by one to obtain the final solution. The algorithm is:

1. While W 6= ∅ do

(a) Solve the LP to find an optimal extreme point solution x∗ (note that
W may have been updated from a previous iteration).

(b) Remove all edges e such that x∗e = 0. Let E be the support of x∗.
(c) (Relaxation) If there exists a vertex v ∈ W such that degE(v) ≤

Bv +1, remove v from W (remove that vertex’s degree bound) i.e set
W ←W − {v}.

2. Return E

Lemma 7 The above algorithm returns a spanning tree

Proof: At each step we remove a vertex bound constraint (we prove that we can
do this in the subsequent lemmas). Once the degree constraints are removed,
the LP is identical to the one for the standard MST problem which is known to
be integral. Therefore the algorithm returns a tree.

Lemma 8 Let x∗ be the an extreme point solution to the above LP with xe > 0.
Let L and T ⊆ W be the tight set constraints and the tight degree constraints
defining x (based on the Lemma 6). If T 6= ∅, there exists a vertex v ∈W with
degE(v) ≤ Bv + 1.

Proof: We can use a fractional token counting argument to prove this lemma.
If possible, suppose that T 6= ∅ and for each v ∈ W , we have that degE(v) >
Bv + 2. Assign one token to each edge in E. We perform the following token
redistribution: each edge e ∈ E gives:

8

Saba Ahmadi, Saurabh Kumar
Iterative Methods in Combinatorial Optimization Date: 11/13/2015

1. xe fraction of its token to the smallest set in the laminar family which
contains both the endpoints of e.

2. (1−xe)/2 fraction of its token to each endpoint for the degree constraints.

Now, let S be any set in L with children S1, S2, ...Sk for k ≥ 0. Then, since our
laminar family is tight, we must have that x(E(S)) = |S| − 1 and x(E(Si)) =
|Si| − 1 for each i. If we subtract these expressions, we obtain,

x(E(S))−
k∑
i=1

x(E(Si)) = |S| −
k∑
i=1
|Si|+ k − 1

Let A = E(S) −
⋃
iE(Si). In other words, A is the set of edges where both

endpoints are in S but not in any child of S. Therefore, we have:

x(A) = x(E(S))−
k∑
i=1

x(E(Si)) = |S| −
k∑
i=1
|Si|+ k1 (5.6)

Now, by the way we defined the redistribution, we are giving xe fraction of a
token to the smallest set in the laminar family containing both endpoints of e.
In other words, S obtains token fraction xe for each edge in A (since edges A
are not contained in any smaller subset) i.e S obtains x(A) token (by definition
of x(A)). Since from the above x(A) is integral (Equation 5.6), it is at least
one, and so each set in the laminar family gets at least one token. Note that if
A = ∅, then χ(E(S)) =

∑
i χ(E(Si)) which contradicts linear independence of

the sets of these constraints in L.
For a vertex v ∈ T , by our redistribution scheme, it receives fraction (1 −

xe)/2 token for each edge e incident on it. This gives a total value of:∑
e∈δ(v)

1− xe
2 =

∑
e∈δ(v)

1
2 −

∑
e∈δ(v)

xe
2

= degE(v)
2 − x(v)

2

= degE(V)−Bv
2 . . . since the degree constraints are tight for T

≥ 1 . . . initial assumption: degE(v) > Bv + 2 for v ∈ T

Therefore, each vertex gets a token value of at least 1.
So far, we have proved the existence of |L| tokens (from each set in the

laminar family) and an additional |T | tokens (from each vertex in T). If we can
show that some tokens are left over, we will have contradicted the statement
that |E| = |T |+ |K|.

If V /∈ L, then there exists an edge e which is not contained in any set of
the laminar family. Therefore, this edge’s token xe fraction has not yet been
counted (since previously, we only counted edges fully contained in a minimal

9

Saba Ahmadi, Saurabh Kumar
Iterative Methods in Combinatorial Optimization Date: 11/13/2015

set). Hence, our total token count has now exceeded |L|+ |T | and therefore |E|.
Contradiction.

Therefore, henceforth, we assume that V ∈ L. Also, since e is a tight set of
two vertices, we have e ∈ span(L) for each e such that xe = 1 (since therefore,
the set corresponding to this edge has one token).

In a similar vein, if there is a vertex v ∈W − T , then it has an unnecessary
token and this again gives us a contradiction similar to the previous. Further-
more, if there exists a vertex v ∈ V − T , then each edge e incident on it either
has xe < 1, meaning that v has a fraction (1− xe)/2 which is extra (giving the
contradiction), or xe = 1.

We have,

2χ(E(V)) =
∑
v∈V

χ(δ(v))

=
∑
v∈T

χ(δ(v)) +
∑

v∈V−T
χ(δ(v))

=
∑
v∈T

χ(δ(v)) +
∑

v∈V−T

∑
e∈δ(v)

χ(e)

By our previous assumption, V ∈ L and e ∈ span(L) for each edge e ∈ δ(v) for
v ∈ V −T . We also have T 6= ∅ and so the above implies the linear independence
of the tight constraints in T and L. Contradiction.

6 SNDP
We consider a general version of the problem as follows: we are given a graph
G = (V,E) where each edge e has a non-negative cost ce and a requirement
function f : 2V → Z. Our aim is to find a minimum cost subgraph such that
for each S ⊆ V , the number of edges crossing the cut defined by S is greater
than or equal to the requirement of S.

We can write the LP for this problem as:

Min
∑
e∈E

cexe

s.t. x(δ(S)) ≥ f(S) . . . ∀S ⊆ V
1 ≥ xe ≥ 0

Now, we introduce two types of functions - skew supermodular functions and
strongly submodular functions.

Definition 3 (Skew Supermodular Function) A function g is skew super-
modular iff at least one of the following holds:

g(A ∪B) + g(A ∩B) ≥ g(A) + g(B)

10

Saba Ahmadi, Saurabh Kumar
Iterative Methods in Combinatorial Optimization Date: 11/13/2015

g(A−B) + g(B −A) ≥ g(A) + g(B)

Definition 4 (Strongly Submodular Function) A function h is strongly sub-
modular iff both of the following hold:

g(A ∪B) + g(A ∩B) ≤ g(A) + g(B)
g(A−B) + g(B −A) ≤ g(A) + g(B)

Note that if g is skew supermodular and h is strongly submodular, then g−h
is also skew supermodular.

It can be shown that the function x(δ(S)) (which denotes the sum of the
xe variables for each edge e crossing the cut i.e the edge boundary) is strongly
submodular.

6.1 2 Approximation for SNDP
Jain gave 2 approximation for SNDP when the requirement function f is weakly
supermodular as follows:

1. Initialize F = ∅, f ′ = f

2. While f ′ 6= ∅

(a) Solve the above LP and obtain an extreme point x∗

(b) Remove any edge e for which xe = 0
(c) If there exists an edge e such that xe ≥ 1/2, add e to F and for each

subset S ⊆ V , set f ′(S) = f ′(S)− |e ∩ δ(S)|

3. Return H = (V, F)

Note that in step 2, the condition f ′ 6= ∅ means that there exists at least one
set S ⊆ V such that f ′(S) 6= 0. In step 2.c, we will prove later that an edge e
with xe ≥ 1/2 can always be found. Once found, we add e to F and reduce the
requirement for each subset S for which e is a crossing edge.

Lemma 9 We can choose an independent set of tight constraints uniquely defin-
ing x∗ in such a way that the subsets corresponding to each tight constraint form
a laminar family (Note that a tight constraint corresponds to a set S satisfying
x(δ(S)) = f(S)).

Theorem 3 (Jain [1]) Any extreme point of the above LP relaxation has an
edge e with xe ≥ 1/2.

Proof: The key idea in the proof is that the sets corresponding to the inde-
pendent tight constraints form a laminar family L. We use a fractional token
redistribution argument.

If possible, assume that for all e ∈ E, xe < 1/2.
Our distribution scheme is as follows:

11

Saba Ahmadi, Saurabh Kumar
Iterative Methods in Combinatorial Optimization Date: 11/13/2015

1. Assign 1 token to each edge (u, v) ∈ E

2. Assign token fraction xe to the smallest set containing u

3. Assign token fraction xe to the smallest set containing v

4. Assign the remaining 1−2xe token to the smallest set which contains both
u and v

From our assumption xe < 1/2 and so none of the token fractions above are
negative.

First we show that every set in the L receives at least one token.
Consider a set S with the children R1, R2, ..., Rk in the laminar family.

Note that each set corresponds to a tight constraint. We define three sets of
edges A, B and C. Let S′ denote the set of vertices in S that are not in any
child of S. A contains edges with one vertex in S′ and the other vertex outside
S. B contains edges with one edge in a child and the other in S′. C contains
edges with one vertex in a child and the other in another child.

Then, we have the following:

x(δ(S))−
∑
j

x(δ(Rj)) = f(S)−
∑
j

f(Rj) . . . sets have tight constraints

x(δ(S))−
∑
j

x(δ(Rj)) = x(A)− x(B)− 2x(C) . . . by a counting argument

Note that we must have x(δ(S)) −
∑
j x(δ(Rj)) 6= 0 since otherwise, the con-

straints would be linearly dependent. Therefore, x(A)− x(B)− 2x(C) 6= 0 and
must be integral (since it equals f(S)−

∑
j f(Rj) which is integral). Therefore,

x(A)− x(B)− 2x(C) is at least 1.
Now, the tokens assigned to S are given by:∑

e∈A
xe +

∑
e∈B

(1− xe) +
∑
e∈C

(1− 2xe)

=x(A) + |B| − x(B) + |C| − 2x(C)
=|B|+ |C|+ x(A)− x(B)− 2x(C)
≥|B|+ |C|+ 1

So each set in L receives at least one token. Therefore the number of tokens is
at least |L|.

Consider a maximal set M in L. It has at least one edge (u, v) leaving it.
No set in L contains one of the vertices of the edge. So a fraction 1 − 2xuv is
still unassigned. Therefore, the total tokens > |L|. But by the rank lemma, we
must have |E| = |L| and initially one token was assigned per edge for a total of
|E| tokens. Contradiction.

Therefore an edge with xe ≥ 1/2 can always be found. This gives us a 2
approximation to this problem.

12

Saba Ahmadi, Saurabh Kumar
Iterative Methods in Combinatorial Optimization Date: 11/13/2015

SNDP Suppose we are given a graph G = (V,E) where each edge e has cost
ce. We are also given a set of source and destination pairs {(si, ti)}. Our aim is
to find a minimum cost subgraph with ri edge disjoint paths between si and ti.

We can formulate the LP for this problem as follows:

Min
∑
e∈E

cexe

s.t. x(δ(S)) ≥ ri . . . ∀S ⊆ V separating si and ti

xe ≥ 0

where as usual, xe indicates whether edge e is part of the final solution. δ(S) is
the set of edges with exactly one end in S (i.e the edges crossing the graph cut
induced by the partition S and V − S).

Suppose we define a function f : 2V → Z such that:

f(S) = max
(si,ti) cut by S

ri

Then we can show that f is supermodular. So Jain’s algorithm above gives a
2-approximation to SNDP.

References
[1] Kamal Jain. A factor 2 approximation algorithm for the generalized steiner

network problem. Combinatorica, 21(1):39–60, 2001.

[2] Lap Chi Lau, Ramamoorthi Ravi, and Mohit Singh. Iterative methods in
combinatorial optimization, volume 46. Cambridge University Press, 2011.

[3] R Ravi. Iterative methods in combinatorial optimization.

13

