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1 Overview

We study constant factor approximation algorithms for CONNECTED FA-
CILITY LOCATION and METRIC UNCAPACITATED FACILITY
LOCATION.

2 Connected facility location

Suppose we are given a graph G = (V, E), with a metric cost function c over the
edges. (that is, a cost function which satisfies the triangle inequality). Suppose
we have a set of clients D ⊆ V. Consider that facilities can be opened at any
client vertex. Each client i ∈ D has an associated demand di. There are no
facility opening costs. The task is to connect each client to a facility. Let us
call this the connection cost. Additionally, all the opened facilities need to be
connected to each other, via higher-cost edges. Let us call this second cost the
Steiner cost. Let a set of facilities F ⊆ D be the set of opened facilities. For-
mally, we need to minimize the following objective function:

Minimize
∑
j∈D

dj · lc(i∗(j), j) +m · c(T)

The first term in the objective function is the connection cost, and the
second term is the Steiner cost. T is the Steiner tree used to connect the opened
facilities. i∗(j) is the closest opened facility to client j ∈ D. lc(v, u) is the
minimum distance between vertex v and u. Finally, each edge used in T costs
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a multiplicative m ≥ 1 more than an edge used for the connection cost. The
real world intuition is the following: For connecting the facilities we buy our
infrastructure (therefore it costs a factor m more). For the connection cost we
can afford to rent the paths (since the clients may change with time).

Assume that all demands are 1 for now. Let us define the following algorithm:

Algorithm Connected facility location
1. For each j ∈ D mark it with probability 1

m
. Let the set of marked

vertices be D ′ ⊆ D.
2. Construct an ρST -approximation Steiner tree of F = D ′ ∪ {r}, where
r is an arbitrary root vertex.
3. For each j ∈ D assign it to the closest facility in F.

Note: ρST represents the best constant for an approximation algorithm for
Steiner tree, which at the time of the writing is 1.39.

Theorem 1 The above algorithm is a 2+ρST -approximation for CONNECTED
FACILITY LOCATION. (shown in [1])

The analysis will proceed in two steps. First, let Z∗ = C∗+S∗ be an optimal
cost solution, where C∗ is the connection cost, and S∗ is the Steiner cost in the
optimal solution.

Lemma 1 The expected Steiner cost S is at most ρST · Z∗.

Proof: We will show that the expected cost of the optimal Steiner tree
is at most Z∗ (we pay a factor of ρST to find it). Let T∗ be the Steiner tree
in the optimal solution. Construct a Steiner tree T on F as follows: For each
vertex v ∈ T∗ open a facility and connect them using the edges in T∗; for the
vertices u ∈ F \ T∗ use the shortest path from u to T∗. Now, for the vertices
already in T∗ we pay S∗, because we use the existing Steiner tree. Each of the
other vertices v ∈ F \ T∗ needs to be connected to T with probability 1

m
. The

expected cost of connecting them, assuming the worst case where F ∩ T = ∅, is

at most
∑
j∈D

1

m
·m · lc(j, i∗(j)) ≤ C∗. Therefore, the total cost of T is at most

Z∗. However, we can only find an ρST -approximation. The expected Steiner
cost S is then at most ρST · Z∗.

Lemma 2 The expected connection cost C is at most 2Z∗.

Proof: The key intuition is that the expected connection cost is independent
of the the particular Steiner tree used in the previous step. Therefore let us use
the minimum spanning tree on D (again, we consider the metric completion of
the graph G). We will order the vertices in the order Prim’s Minimum Spanning
Tree Algorithm would visit them. Start with an arbitrary vertex v, and let
S = {v}. Now, at each step consider j ∈ D \ S such that lc(j, S) is minimized.
Flip a coin:
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• with probability 1
m

add this vertex to the existing Steiner tree S, paying
m · lc(j, S). Add it to S and to a set A which hold the current Steiner tree.

• with probability 1 − 1
m

connect this vertex to the existing Steiner tree,
paying lc(j, S). Add it to S and to a set B which holds all vertices for
which we pay the connection cost.

For each j ∈ B, primcostBj = (1 − 1
m
) · lc(j, S) < lc(j, S) = 1

m
· m ·

lc(j, S) = primcostAj is the cost, in expectation, paid for connecting it to
the Steiner tree. Observe that it is smaller than the cost paid for adding it to
the Steiner tree (primcostAj). Therefore, we can bound the total connection

cost
∑
j∈B

primcostBj by the Steiner cost
∑
j∈D

primcostAj. Observe now that

the Steiner cost in the algorithm is precisely the cost of the Minimum Span-
ning Tree. We know that the Minimum Spanning Tree is a 2-approximation for

Steiner Tree. Therefore,
∑
j∈B

primcostBj ≤ 2 · Z∗.

Combining Lemma 1 and Lemma 2 we get a 2+ρST approximation algorithm
for CONNECTED FACILITY LOCATION.

It remains to be said that this approach can be generalized to general de-
mands by adjusting the probability for a vertex j ∈ D to be marked to

dj

m
.

3 Metric uncapacitated facility location

As in the previous problem, we are given a graph G = (V, E), with a metric cost
function on the edges c(e), e ∈ E (that is, a cost function which satisfies the
triangle inequality). Suppose we have a set of clients D ⊆ V. Consider that
we are given a set F ⊆ V where we can open facilities. Each client i ∈ D has
an associated demand di. This time each facility i ∈ F has an opening cost
fi. Additionally, we can have capacitated or uncapacitated facilities (here we
only consider the uncapacitated version). The task is to connect each client to
a facility, which needs to be opened beforehand. Let us call this the connection
cost. Additionally, we pay an opening cost for all facilities which are used. Let
us call this second cost the opening cost. Formally, we need to minimize the
following objective function:

Minimize
∑
i∈F

fi +
∑
i∈F

∑
j∈D

djcijxij

subject to
∑
i∈F

xij = 1, ∀j ∈ D

xij ≤ yi, ∀i ∈ F, j ∈ D
xij ∈ {0, 1}, ∀i ∈ F, j ∈ D
yi ∈ {0, 1}, ∀i ∈ F
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What we gave above is an Integer Linear Program (ILP). Obviously, we can-
not solve it efficiently. Therefore, we need to consider the fractional relaxation,
where xij ≥ 0,∀i ∈ F, j ∈ D and yi ≥ 0,∀i ∈ F.

Theorem 2 METRIC UNCAPACITATED FACILITY LOCATION has
a constant factor approximation. (shown in [2])

The key intuition is that figuring out the y ′s is the hard part.

Definition 1 (g-closeness) Given the values gj, ∀j ∈ D, we say a feasible
solution (x, y) is g-close if whenever xij > 0 we have that cij ≤ gj, ∀j ∈ D.

For a client j ∈ D sort all the i ∈ F facilities according to cij. Let cπ(1),j ≤
cπ(2),j ≤ . . . ≤ cπ(f),j be the sorted order.

Definition 2 (α-point) The α-point for a client j ∈ D is defined as cj(α) =

cπ(i∗),j, where i∗ = min{i :

i∑
k=1

xπ(k),j ≥ α}.

Basically, cj(α) gives us an α-fraction of the ball centered in j (use the above
picture for visual reference). Let us get a bound on the α-point at j ∈ D, in
terms of the cost spent over client j. Define S = {i : cij ≥ cj(α)}. We have that∑
i∈S

xij ≥ 1− α.
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∑
i∈F

xijcij ≥
∑
i∈S

xijcij ≥ (1− α)cj(α)

=⇒ cj(α) ≤
1

1− α

∑
i∈F

xijcij

Thus, cj(α) is intuitively the average cost connection. Now, let us use this
bound to change feasible solutions (x, y) to feasible solutions (x̄, ȳ) which are
cj(α)-close without losing too much on the optimal solution. Formally,

Lemma 3 For α ∈ (0, 1) we can change a feasible solution (x, y) to find a
feasible solution (x̄, ȳ) which is cj(α)-close and∑

i∈F

fiȳi ≤
1

α

∑
i∈F

fiyi.

Proof: For each j ∈ D, let αj =
∑

i∈F,cij≤cj(α)

xij. Then, just set

x̄ij =

{ xij
αj

if cij ≤ cj(α)
0 otherwise

Additionally, for each i ∈ F set ȳi = min{
yi

α
, 1}. Then, (x̄, ȳ) will satisfy our

requirement, because αj ≥ α,∀j ∈ D.

Lemma 4 Given a feasible, fractional g-close solution, we can find a feasible
integer 3g-close solution (x̂, ŷ) such that∑

i∈F

fiŷi ≤
∑
i∈F

fiȳi.

Proof: Let F̂ = {i ∈ F : 0 < ŷi < 1} (this is the set of partially opened facilities).
Let D̂ be the set of clients assigned to facilities in F̂. Note that xij > 0 =⇒ i ∈ F̂.
Also, gj = cj(α).
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Now sort the clients by gj. For client j ′ ∈ D̂, taken in the sorted order do
the following:

• 1. Let Sj ′ = {i ∈ F̂ : x̂ij ′ > 0} (this is the set of currently open facilities
that j ′ is connected to. We will close all but one of these).

• 2. Let i ′ be the facility with minimum opening cost. Assign j ′ completeley
to it (set ŷ ′i = 1 and ŷ ′′i = 0,∀i ′′ ∈ S \ {i ′}). Adjust x̂ij ′ accordingly. This
does not increase the total facility opening cost.

• 3. Let T = {j ∈ D : ∃i ∈ S such that xij > 0}. T is exactly the set of
clients which were assigned to facilities in S which are closed. Connect all
these clients to i ′, by adjusting x̂i ′j accordingly.

The process ends when all clients j ∈ D have xij > 0 coressponding to a
facility i where ŷi = 1. Fully assign these clients to facility i (set x̂ij = 1).

Let’s see how much the total cost went up.
In step 2 we started with a solution which was already cj(α)-close, therefore the
total connection cost can increase by a factor of at most 1

1−α .
In step 3, we have for a client j ∈ D that gj ≥ g ′j, due to the way the algorithm
considers the clients. Now, the new connection cost, due the fact that that the
cost distance function is metric, is less than ci ′j = ci ′j ′+cj ′i+cij ≤ gj+g ′j+g ′j ≤
3gj (refer to the above picture for visual reference). Therefore the connection
cost of elements in T increases by a factor of at most 3.

The final cost of (x̂, ŷ), which is integral, is therefore
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cost(x̂, ŷ) =
∑
i∈F

fiŷi +
∑
i∈F

∑
j∈D

djcijx̂ij

≤ 1

α

∑
i∈F

fiŷi + 3
∑
j∈D

djcj(α)

≤ 1

α

∑
i∈F

fiŷi + 3
1

1− α

∑
j∈D

dj
∑
i∈F

cijxij

(choose α =
3

1− α
=⇒ α =

1

4
)

= 4
∑
i∈F

fiyi + 4
∑
i∈F

∑
j∈D

djcijxij

= 4 · LPOPT

Therefore we obtained a 4-approximation, which concludes the proof.

By choosing α at random we obtain a 3.16 approximation (see the paper for
details). The best current algorithm, due to Byrka, obtains a 1.5-approximation.
The current best lower bound is 1.463 (so almost tight), assuming that NP (
DTIME(nlglgn).
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