
Network Design Foundation

Fall 2011

Lecture 7

Instructor: Mohammad T. Hajiaghayi
Scribe: Anu Bandi

October 12, 2011

1 Overview

In this lecture we explore the problem of Oblivious Routing. Oblivious rout-
ing is used to solve the network flow problem by preselecting the paths to use for
any source-destination pair. Therefore this algorithm is oblivious as to what the
input source-destination pair might be, as well as to other source-destination
pairs.

2 Definitions

OBLIVIOUS ROUTING

Input : A graph G(V, E), where each edge (u, v) has capacity C(u, v). Source
target pairs (si, ti) and a demand di for each pair.

Goal: Find the fixed routing rule to route 1 unit of flow between all possible
source-destination pairs, while keeping congestion close to optimum congestion
for any set of source-destination pairs and demands.

Minimize: maxdemand−matrixD

[
CongestionOBL(D)
CongestionOPT (D)

]
The demand-matrix D contains the congestion between any two vertices. The
congestion on an edge e is defined as follows:

Congestione =
flowe

capacitye

(Note: For the purposes of this algorithm, don’t worry about violating the
capacity. Assume that the flows will be much smaller than the capacity or that
these are soft capacities.)

1

scribe: Anu Bandi
Lecture 7 Date: 10/12/2011

3 Results

1. For undirected graphs there are oblivious routing algorithms with these
competitive ratios. (Note: COMP(OBL) compares with OPT offline.)

• O(lg3n) by [Racke Focs ’02]

• O(lg2n lg lg n) by [HHR ’03]

• O(lg n) by [Racke Stoc ’08]

2. For directed or node weighted graphs, there are directed graphs in which
every oblivious routing algorithm OBL has these COMP(OBL):

• Ω(
√
n) by [ACFKR STOC ’03]

• Ω(
√
n) by [HKRL SODA ’05]

3. If you know the probability of each demand i.e. the demand distribution,
then the competitive ratio for undirected graphs is as follows:

• O(lg n)
• Ω(lg n

lg lg n
)

4. If the demand distribution for a directed graph is know then the competi-
tive ratio is as follows:

• O(lg2n)
• Ω(lg n)

4 COMP(OBL)=Ω(
√
n)

Proof (by construction):

2

scribe: Anu Bandi
Lecture 7 Date: 10/12/2011

Consider this weighted directed graph, where each edge has capacity one. The
commodity pairs are (aij, t). Any oblivious routing scheme defines one unit of
flow from each node aij. Then it follows by the averaging argument, that atleast

one node bx receives ≥
(
k
2

)
/ k units of flow.

Flow(bx) ≥
(
k
2

)
/ k

Congestion(bx) ≥
(k2)/ k
1

=
(
k
2

)
/ k

Congestion(OBL) =
(
k
2

)
/ k = k(k−1)/2

k
= k−1

2

However OPT will avoid bx completely. It will route demands from nodes aix
using the paths aix → bi → t. Similarly it will route demands from nodes axj
using the paths axj → bj → t.

Congestion(OPT) = 1

COMP(OBL) = k−1
2

= Ω(k) = Ω(
√
n)

5 Tree Decomposition

Racke (Focs ’02) introduced a tree decomposition that aims at constructing a
tree that does not approximate point-to-point distances in the input graph (like
Bartal or FRT’s technique) but instead approximates the cut structure of the
graph.

The Model

We are given a graph G(V, E) where |V | = n. We have a capacity function C on
the edges. C(u, v) = C(v, u) since the graph is undirected. Assume C(u, v) > 0
if there is an edge (u, v) and C(u, v) = 0 iff (u, v) /∈ E.

Decomposition Trees

Like Bartal or FRT, a decomposition tree for the graph G is a rooted tree
T = (Vt, Et) whose leaf nodes correspond to nodes in G. Whenever we use the
concept of a decomposition tree for a graph G, we implicitly assume that we are
also given an embedding of T into G using these functions:

• mV : Vt → V that maps tree nodes to nodes in the original graph.

• mE : Et → E∗ that maps an edge et = (ut, vt) of T to a path Puv between
the corresponding end points u = mv(ut) and v = mv(vt) in G.

In addition we also introduce the following functions:

3

scribe: Anu Bandi
Lecture 7 Date: 10/12/2011

• m ′V : V → Vt that maps nodes in the graph to leaf nodes in T.

• m ′E : E→ E∗t that maps an edge e = (u, v) ∈ E of G to the unique shortest
path in T between m ′v(u) and m ′v(v).

For a multicommodity flow fT on a decomposition tree we use m(fT) to denote
the multicommodity flow obtained by mapping fT to G via the edge mapping
function mE. For a flow f in G we define m ′(f) as the flow in T.

Given a decomposition tree T for G we define the capacity C(ut, vt) of a tree
edge et = (ut, vt) as c(ut, vt) =

∑
u∈Vut,v∈Vvt

c(u, v), where Vut and Vvt
denote the two partitions of V induced by the cut corresponding to edge eT .

Theorem 1 Suppose you are given a multicommodity flow f in G with conges-
tion CG. Then the flow m ′(f) obtained by mapping f to some decomposition tree
T results in a flow in T that has congestion CT ≤ CG.

Proof: Suppose an edge et = (ut, vt) in the tree has congestion CT . All
traffic that traverse the cut in G between Vut,Vvt contributes to this edge. The
total capacity of all edges over this cut is exactly C(et). Hence by a simple
averaging argument, one of these edges must have relative load at least CT .
Thus CT ≤ CG.

6 O(lg n) Bound

Given a decomposition tree with an embedding of this tree into graph G we can
ask for the load that is induced on a graph edge e by this embedding. Let

• loadT (e) =
∑
et∈ET :e∈mE(et)

c(et)

• rloadT (e) = loadT (e)
c(e)

Like Bartal or FRT, we are looking for a convex combination of decomposition
trees such that for every edge the expected relative load is small, i.e.

minimize B = maxe∈E
∑
i [λirloadTi(e)] = maxe∈E

∑
i

λiloadTi
(e)

ce

Where tree i has probability λi ≥ 0. And
∑
λi = 1.

Theorem 2 Suppose we are given a convex combination of decomposition trees
with maximum expected relative load B and suppose that we are given for each
tree Ti a multicommodity flow fi that has congestion C in Ti. Then the multi-
commodity flow

∑
λimTi(fi) has congestion at most BC when mapped to G.

(Note: This is like FT or Bartal.)

Proof: Fix a tree Ti. Routing the flow fi in the tree generates congestion
at most C, which means that the amount of traffic that is sent along an edge

4

scribe: Anu Bandi
Lecture 7 Date: 10/12/2011

et = (ut, vt) is at most C(et). Hence the total traffic that is induced on
a graph edge e when mapping λifi to G is at most CλiloadTi(e). There-
fore the relative load induced on e when mapping all flows λifi is at most

C
∑
i

loadTi
(e)

C(e) = C
∑
i λirloadTi(e) ≤ CB.

[Racke Stoc ’08] shows that we can indeed obtain a convex combination of de-
composition trees for which B = O(lgn).

New Oblivious Routing Algorithm: The convex combination of decom-
position trees defines a unit flow for every source-target pair, by combining for
a pair (u, v) the paths between u and v in trees Ti where the path from Ti is
weighted with λi.

Proof: Given a demand vector that can be routed with congestion C in G,
routing it in a decomposition tree creates congestion less than C in any tree by
Thm 1. Now mapping the flows from all decomposition trees back (and thus scal-
ing it by a factor λi) the thing that indeed we have done in our oblivious routing
gives a solution in G with congestion at most BmaxiCOPT (Ti) ≤ BCOPT (G) due
to Thm 2. Hence the oblivious routing scheme has competitive ratio O(lg n)
as desired.

This convex combination of trees has several other applications like the Bar-
tal/FRT result. Ex. min bisection, sparset cut, multicost routing, online multi-
cut, etc. It gives O(lg n) approximation.

5

