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1 Summary

In the notes, we will explore three problems: a) set cover, b) unique-coverage
and ¢) maximum coverage problems.

2 Maximum coverage

In the previous lectures, we defined maximum coverage problem. Let us briefly
summarize the definition and greedy algorithm to solve the problem.
Definition

Input: Given a universe set U = {Uy,---,U,}, a collection 8§ = {S7...Sy} of
subsets of U, a cost function ¢ : § — Q' and a weight function w: U — Q%
and a budget L € Q.

Goal: Find a 8’ C 8, so that the total weight of 8 i.e, w(8’) is maximized and
cost of 8 is less than the budget L (c(8') < L).

In the unit cost version of the problem, cost of all set is one. The maximum-
coverage problem, even the unit cost version, is NP-hard. The problem can
be trivially reduced to the set-cover problem: Try minimum L that can cover
everything.

Now, we give a greedy algorithm to find an approximate solution of the
maximum-coverage problem.

Theorem 1 Thereis a (1 — 15) approzimation greedy algorithm for the maximum-
coverage problem.

Unit cost version: At each step pick a set maximizing the weight of the un-
covered elements. The output will be a collection of sets that will cover all the
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elements of U.

Proof: Let opt denote the optimal solution for the unit cost maximum-coverage
problem. Let S;---Sp be the sets that we pick respectively in iteration 1...L
where L is the budget. Let G; = |J;,_; Sn and let w(F) denote the total weight
of the elements in F.

Lemma 1

w(Gi) —w(Gi—1) > — (w(opt) —w(Gi_1)) (1)

fori>1

—] —

Proof:

Let W]-/ be the total weight of the elements in S; not covered in Gi—_;. We
note that for set S; we have w! = w(G;) — w(Gi_1). In i'" iteration we are
choosing Si, such that wy is maximum. Thus for any set S; in the optimum
solution, we have w! < w/. Therefore since opt has at most L sets, we have:
w(opt) —w(Gi—1) < L w/. [ |

Lemma 2 w(Gi) > (1—(1—{)")w(opt)

Proof: We prove the lemma using induction. The case for i = 1 follows directly
from lemma 1: w(Gy) > w(opt)/L.
Suppose the inequality holds for 1,--- ;i— 1. We have

W(Gi) = wW(Gi—1)+ W(Gi) —w(Gi_1)]
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opt) —w(Gi_1)] by lemma 1

—
—_

1 1., 1
) (1 —(1- )11> w(opt) + iw(opt) by induction hypothesis

L L
— (1= L)wlopt) — (1= 1)iw(opt) + T w(opt)
Lvep [ Wiopt T piviop
1.
= (1= (1= D)wlopy)
|
Using the above 2 lemmas, we can easily prove the theorem.
T
w(Gi) = (1—0 =) )wlopt)
1
> (1- E)W(Opt) (2)
|
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Lets us apply the greedy algorithm of adding the most cost effective set, to
the maximum coverage problem when sets have different costs. Suppose U =
{X1, X2} and S7 = {X1},S2 = {Xa}c(S1) = 1,¢(S2) = py,w(X7) = ,w(Xz) =
p + land budget p. So, opt ={S,}. The greedy algorithm will choose S; and it
will get stuck. Therefore, greedy algorithm does not work when each set has a
different cost.

The greedy algorithm can be improved to give a (1 — %) approximation
algorithm for the maximum-coverage problem with sets of unequal costs. We
simply fix a constant k and we find the best subset of size k of S at the beginning.
The output of the algorithm would be either this collection or the output of the
greedy algorithm, whichever has the higher total weight.

In the next section, we will show that maximum coverage problem even with
unit cost cannot be approximated to (1 — 1 — ¢) unless, NP C DTIME(n'e9to9n),

Theorem 2 (Hardness theorem) The mazimum coverage with unit cost can-
not be approximated with a factor better than (1 — ]E) unless,

NP C DTIME (nte9(toan) (3)

Proof:
To prove this theorem we will use Feige theorem that we covered in last
lecture.

Theorem 3 (Feirge) If a set cover problem is approxzimable within a factor of
1 —eln(n), for e > 0. Then,

NP C DTIME (nte9togm) (4)

Consider a unit cost set-cover. Weight of each element is one.
Say there is an algorithm A with an approximation factor o« > 1—1/e.
We guess the number of the sets in the optimal solution of set-cover. Let it be
k. Since the number of sets in the optimal solution is k, it is possible to cover
all the elements using at most k sets.

New algorithm for the set-cover:

e Run A with limit L = k. It will cover at least « n elements.
e Choose sets for this cover C of an elements.

e Remove C and elements which are covered.

e Iterate by running A in the reduced set.

Analysis: Let n; denote the number of the uncovered elements at the start
of the it" iteration. Since, A covers at least om; at iteration i'"™ we have
Ni1 <ni(1—o.

Suppose we iterate L + 1 times for ny > 1

T<n <n (- <n2(l-w)?<---<n(1 -t



scribe: Avinash Das

Lecture 3 Date: 09/14/2011
Therefore,
L < ln:L

n(=3)

o<

n (%)

— opt Inn
= —
n(v=5)

foa>1-— 1; then, ﬁ > e therefore, 1n1l—(X > 1. This is contradiction to
the Feirge theorem. ]

Till now we have covered mostly the minimization problems. Maximization
problems are usually harder. This is because of many reasons, including there
are few standard functions in which a maximization can reduces to.

3  Unique-Coverage

Definition:

Given a universe U of n elements and given a collection S of subsets of U, we
want to find a sub-collection S’ C S which maximizes the number of elements
uniquely covered, i.e., appeared in exactly one set in S’.

One can apply a normal greedy algorithm to add a set that maximizes num-
ber of uniquely covered elements. But it can get stuck at some step. Therefore
normal greedy algorithm does not works for this problem.

3.1 Budgeted unique-coverage

Definition:

Given profits for the elements and costs for the subsets, given also a budget B,
find a sub-collection S’ C S, such that total cost is at most B and that maxi-
mizes the total cost of uniquely covered elements.

Budgeted unique-coverage is a special case of the coverage problem, moti-
vated by an application at Bell-labs of low coverage problem described described
below.

Low coverage problem: Find a subset of base stations and options within
the total budget that maximizes the total satisfaction weighted by client densi-
ties, where satisfaction Sy for covering a region by k base stations, is given in
the form So =0,S1 > S, >--- > 0.

So, St =1 and S; = S3--- =0 will be the budgeted unique coverage problem.
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Though the budgeted unique-coverage is similar to maximum-coverage prob-
lem, it is a relatively harder problem. The problem is generalization of max-cut
problem. It has also similarity with radio broadcast coverage problem. We will
cover this in later parts of the lecture.

For simplicity we will only focus on the unique coverage, although the gener-
alization is not very hard. This problem has important applications in envy-free
pricing in computational economics.

Simple O(log(n)) algorithm:

e Partition the elements into log(n) classes according to their degrees, i.e.,
the number of sets that cover the element. So class i contains all the
elements which are covered with at least 2t and at most 217 sets.

e Let 1 be the class of the maximum cardinality.

e Choose any set with probability %

Lemma 3 The expected number of the elements uniquely covered from class i
18 61—2 fraction of the element in class 1i.

Proof: Consider an element X in class 1 and say its degree is d in S’, where
2i <d< 21*+1:

1 1
P(X covered uniquely in S’) = df(] — f)d’1
2t 1 5in
> f“ - 5)
12
1
=
|
Therefore, the total profit of uniquely covered elements is at least m X

opt.

If the maximum degree of the sets is d then the approximation ratio is O(1/log(d)).
If we can get by some way O(log n) approximation for budgeted unique-coverage
we can also get logB, where B is the size of the set.

Theorem 4 : The unique coverage is hard to approzimate within a factor better
than O(logn) for 0 < ¢ < 1 unless NP has a sub-exponential algorithm (it
implies there is no 2°™) algorithm to solve it, it is also called, exponential time
hypothesis (ETH)).
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Remark:O(log%n) or even o(logn) approximation is hard under stronger
but still plausible complexity assumptions.

Is there any subset such that cannot be uniquely covered 101 — fraction of
all the elements. A bad instance: A bad instance that cannot be covered
is shown in the Figure 1. A log n collection of subsets B; is made from U.
Each of the elements of U can belong to the set B; with probability 271, In
this example, at most o(log n) elements can be uniquely covered by sets of A

according to |Al.
O
O
5 | B
O

n elements
B(i)
B(logn)
Figure 1: Bad instance where we cannot cover ; 0; - fraction



