
Network Design Foundation

Fall 2011

Lecture 8

Instructor: Mohammad T. Hajiaghayi
Scribe: Manish Purohit

October 19, 2011

1 Overview

We have studied distance preserving probabilistic mapping of graph metrics into
tree metrics by Bartal and FRT and also studied a similar probabilistic mapping
by Racke which preserves the cuts / bottlenecks in the graph. In this lecture
we show the equivalence between the FRT and Racke decompositions.

We also look at some other classical problems for which oblivious or incre-
mental algorithms are desirable.

2 Racke ⇔ FRT decompositions

2.1 Preconditions

Throughout the following discussion, without loss of generality, we assume that
the FRT / Racke trees do not contain any steiner nodes. This is true because
as shown by Anupam Gupta, any steiner nodes can be removed by increasing
the distance between any nodes by at most a factor of 8. Further, once we have
such a tree without any steiner nodes, we only need that dT (u, v) ≥ dG(u, v)
to maintain the dominance.

Similarly, we can consider the capacity of an edge to be c(eT) =
∑
e ′∈δ(eT) c(e

′)

where δ(eT) is a cut in the graph defined by the edge eT .
Thus, in both cases, the structure of the tree is important and not the weights

on edges.

1

Scribe: Manish Purohit
Lecture 8 Date: 10/19/2011

2.2 Preliminaries

Recall from the previous lecture, the following functions:

mE : ET → E∗ (Maps a tree edge to a path in G)

m ′E : E→ E∗T (Maps a graph edge to a path in T)

mV : VT → V (Maps a tree vertex to a vertex in G)

m ′V : V → VT (Maps a graph vertex to a vertex in T)

Te ′,e = No. of times e ′ appears on mE(m
′
E(e))

We define the length of the edges in T by

dT (et) =
∑

e∈m(et)

dG(e)

Now we try to define the stretch (in FRT) and congestion (in Racke) in terms

of Te ′,e. The stretch of the mapping is defined as maxe∈E
dT (e)

dG(e)
. Now,

dT (e) =
∑

et∈m ′(e)

dT (et) =
∑

e ′∈unique path in G
corresponding to e in T

dG(e
′)

∴ dT (e) =
∑
e ′

Te ′,e · dG(e ′) (1)

The congestion of an edge e ∈ E is defined as maxe
loadT (e)

cG(e)
. Now,

loadT (e) =
∑

eT∈ET :e∈mE(eT)

c(eT)

By the definition c(eT),

loadT (e) =
∑

eT∈ET :e∈mE(eT)

∑
e ′∈E:e ′∈δ(eT)

c(e ′)

Rearranging the summations,

loadT (e) =
∑
e ′∈E

∑
eT∈Unique path(e ′)

e∈mE(eT)

c(e ′)

loadT (e) =
∑
e ′∈E

Te,e ′ · c(e ′) (2)

2

Scribe: Manish Purohit
Lecture 8 Date: 10/19/2011

2.3 Important Lemmas

Lemma 1 For every ρ ≥ 1 and every family of trees, there is a probabilistic
mapping with distortion at most ρ iff for every non-negative co-efficient αe,
there is a tree such that ∑

e∈E

αe
dT (e)

dG(e)
≤ ρ

∑
e∈E

αe

Proof: Consider a zero sum game in which the player MAP chooses an admis-
sible mapping to a tree T, and the player EDGE chooses an edge e. The value
of the game for EDGE is the stretch of e in the mapping, and hence EDGE
wishes to maximize the stretch whereas MAP wishes to minimize it. A prob-
abilistic mapping, λ, is a randomized strategy for MAP. Choosing nonnegative
coefficients αe (and scaling them so that

∑
αe

= 1) is a randomized strategy for
EDGE.

In such a formulation, let MTe denote the payoff matrix. Now, by the
minimax theorem, we have,

minλmaxα
∑
T

∑
e

λTαeMTe = maxαminλ
∑
T

∑
e

λTαeMTe

where λT denotes the probability of choosing tree T and αe denotes the
probability of choosing and edge e. The Lemma 1 follows as a direct application
of the above minimax theorem and is left as an exercise.

Lemma 2 For every ρ ≥ 1 and every family of trees, there is a probabilistic
mapping with congestion at most ρ iff for every non-negative co-efficient βe,
there is a tree such that ∑

e∈E

βe
loadT (e)

cG(e)
≤ ρ

∑
e∈E

βe

Proof: The proof of Lemma 2 is similar to the proof of Lemma 1.

2.4 Main Theorem

Theorem 1 For every ρ ≥ 1 and family of trees, statements (1) and (2) are
equivalent.
(1) For every collection of lengths dG(e) there is a probabilistic mapping with
distortion at most ρ.
(2) For every collection of capacities cG(e) there is a probabilistic mapping with
congestion at most ρ.

Proof: We prove that (1) ⇒ (2).
Assume that there is a probabilistic mapping from G = (V, E) having stretch at
most ρ. Therefore, from Lemma 1, we have,∑

e∈E

αe
dT (e)

dG(e)
≤ ρ

∑
e∈E

αe

3

Scribe: Manish Purohit
Lecture 8 Date: 10/19/2011

Substituting from eq. (1), ∑
e ′,e

αeTe ′,e
dG(e

′)

dG(e)
≤ ρ

∑
e∈E

αe

Put αe = βe and dG(e
′) =

βe ′

cG(e ′)
,

∴
∑
e ′,e

(βe) (Te ′,e)

(
βe ′

cG(e ′)

)
(

βe

cG(e)

) ≤ ρ∑
e∈E

βe

∴
∑
e ′,e

(βe ′) (Te ′,e)
cG(e)

cG(e ′)
≤ ρ

∑
e∈E

βe

Substituting from eq. (2), ∑
e ′∈E

βe ′
loadT (e

′)

cG(e ′)
≤ ρ

∑
e∈E

βe

∴
∑
e∈E

βe
loadT (e)

cG(e)
≤ ρ

∑
e∈E

βe

Therefore, from Lemma 2 there exists a probabilistic mapping with congestion
at most ρ.
Similarly, it can be proved that (2) ⇒ (1) and hence the two statements are
equivalent.

3 Minimum Bisection Problem

Given a graph G = (V, E) with |V | = 2k, the Minimum Bisection Problem is
to partition the graph into two equal parts each having k vertices so that the
width of the cut is minimized, where width is the total capacity of all the edges
in the cut.

3.1 Algorithm

1. Find a probabilistic mapping into spanning trees with congestion at most δ.
By using results from Abraham et al. and above reduction, δ = Õ(logn). Note
that number of such trees in support of the distribution is O(n logn).
2. In each spanning tree, find the optimal bisection using dynamic programming
by taking the capacity of each edge to be equal to its load.
3. Of all the bisections found above, choose the one which has the smallest
width in G. By the dominance property, the width of the solution is at most
Õ(logn)OPT .

4

Scribe: Manish Purohit
Lecture 8 Date: 10/19/2011

3.2 Analysis

Let OPT be the width of the minimum bisection in the graph. Let OPTt be the
mapping of this optimal bisection on the subtree t i.e. it contains those edges
in OPT which are present in t only the capacity of each edge is now taken to be
its load.
Now to due to the probabilistic decomposition, we have

Õ(logn)OPT ≥
∑
t

PtOPTt

Now, let Ct be the width of the optimal bisection in tree t. Therefore, we get

Õ(logn)OPT ≥
∑
t

PtCt

Let C∗ be the width of the best solution among all trees. Therefore, we get

Õ(logn)OPT ≥
∑
t

PtC
∗

≥ C∗
∑
t

Pt

≥ C∗

∴ C∗ ≤ Õ(logn)OPT

Hence we have a Õ(logn) approximation.

4 Other problems with oblivious / incremental
algorithms

4.1 Universal Travelling Salesman Problem

Given an undirected graph G = (V, E) with lengths on edges, the Universal
Travelling Salesman Problem is to provide an universal ordering of nodes,
so that given any subset of nodes, one can visit all the nodes in the subset by
travelling the least distance.

For planar graphs, Platzman and Bartholdi (in JACM, 1989) gave an algo-

rithm withO(logn) competitive ratio. In 2006, HKL proved anΩ

(
6

√
logn

log logn

)
lower bound on planar graphs.

For general graphs, the best known bounds are O(log2n) (by GHR, in 2006)
and Ω(logn) (by GKSS, in 2010).

5

Scribe: Manish Purohit
Lecture 8 Date: 10/19/2011

4.2 Oblivious Network Design

In 2006, GHR studied the problem of Oblivious Network Design which
deals with routing multicommodity flows between multiple (source,sink) pairs
with minimum cost in an oblivious manner, i.e., without knowing the demands
between other pairs and also without knowing the precise cost function.

An algorithm withO(log2n) competitive ratio is introduced by GHR wherein
it is assumed that the demands between all pairs are uniform.

4.3 Incremental Algorithms

For a number of problems such as k-median, k-MST and k-Set Cover, incre-
mental algorithms are known which are only a constant factor worse than the
corresponding offline algorithms. For a number of practical applications, incre-
mental algorithms are essential as it is not practically feasible to undo previously
made decisions.

6

