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1 Overview

Some problems which are hard on general metrics, can be trivially solved on
more constrained metrics such as trees. This serves as the motivation for ‘em-
bedding’ graphs into trees. In this lecture, we define what an embedding is
and then study some applications of probabilistic embeddings of a graph into a
distribution of trees.

2 Metric spaces and graphs

Definition 1 A metric space is a set X, along with a metric d : X2 7→ R≥0,
such that:

d(i, i) = 0 ∀i ∈ X
d(i, j) = d(j, i) ∀i, j ∈ X [Symmetry]

d(i, k) + d(k, j) ≥ d(i, j) ∀i, j, k ∈ X [Triangle inequality]

A metric space is often represented as the pair (X,d). An example of metric
spaces is (Rn, Lk), where Lk is the k-norm over Rn for given n, k ∈ Z≥1. We
can represent a finite metric space (X, d) by a symmetric matrix S, of size
nxn, where Si,j = d(i, j) and |X| = n. Metric spaces can be visualized using
undirected graph G, where S is distance matrix for G. Conversely, given a graph
G(V, E), we can represent it as a metric space (V, d), where d(i, j) is length of
the shortest path between i, j ∈ V.

1



scribe:Anshul Sawant
Lecture 4 Date: 09/21/2011

2.1 Metric completion of a graph

Not all undirected graphs obey the metric property as distances between nodes
can be assigned arbitrarily. However if we define dG(x, y) to be the length of
shortest path between nodes of a graph G, then dG satisfies the metric property.
(G,dG) is called the metric closure of G and this technique of converting a
general graph to a metric is called metric completion.

3 Embeddings

Definition 2 Given metric spaces (X, dX) and (Y, dY), an embedding is a map-
ping f : X 7→ Y. A distance preserving mapping is called an isometric mapping.

As pointed out earlier, we can use an embedding to map more general metrics
to more constrained metrics. Such simplification usually has to be paid for
my some ‘distortion’ of the original metric and hence isometric embeddings are
generally not useful for this purpose.

Definition 3 Contraction of an embedding is equal to maxx,y∈X

{
dX(x,y)

dY(f(x),f(y))

}
.

Expansion of an embedding is equal to maxx,y∈X

{
dY(f(x),f(y))
dX(x,y)

}
. Distortion, α,

of an embedding is defined as the product of its contraction and expansion.

Distortion is invariant under scaling. Hence, we can assume an embedding to
be non-contractive without affecting its distortion. In which case, distortion is
equal to expansion and:

dX(x, y) ≤ dY(f(x), f(y)) ≤ αdX(x, y) (1)

4 Embedding into a distribution of trees

It would be ideal if we could embed a graph into a tree without too much
distortion, but it is generally not possible. Even an embedding of Cn, a cycle of
length n, into a tree has a distortion Ω(n). However, much better results can
be obtained if one tries to embed a graph into a distribution of trees instead of
one tree, so that expected distances are preserved.

Definition 4 The support of a distribution D, is the set of all x, such that
D(x) > 0.

Definition 5 We say a metric (X, d) embeds probabilistically into a distribu-
tion, D, of trees with distortion α, if and only if:

• Each tree, T(VT , ET ), in support of D contains points of the metric, i.e.,
VT ⊇ X. Furthermore, the distances in T dominate those in d, i.e.,

dT (x, y) ≥ d(x, y) (2)
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• Let Pi be probability of Ti. Then ∀x, y ∈ G, the expected distance between
x and y is within a factor α of the distance between them in G.

E(dT (x, y)) =

k∑
i=1

PidTi(f(x), f(y)) ≤ αdG(x, y)∀x, y ∈ X (3)

For a cycle, Cn, we can find such an embedding with α = 2. D would consist
of n distinct trees that can be formed by deleting one edge from the cycle. The
probability distribution would be uniform with each tree assigned a probability
of 1
n

. The expected distance between two vertices can then easily be calculated

to be 2(1− 1
n
).

Bartal provided an algorithm for embedding with distortion of O(log2(n)).
The bound for general graphs is Ω(log(n)). This is the bound even for diamond
graphs. An algorithm with this distortion was given by Fakcharoenphol, Rao,
and Talwar. FRT algorithm requires existence of steiner nodes in the trees of
embedding. The best known result, when all the trees in support of D are sub-
graphs of G is Ω(log(n).log(log(n)).(log(log(log(n))))3) due to Abraham,
Bartal, Neiman. It was an improvement over earlier result of Elkin, Emek,
Spielman, Teng. We can, however, delete steiner nodes from trees by incurring
a penalty of factor 8 (Anupam Gupta). It is easier to work with algorithm of
Abraham et al. but we can usually get better bound by working with the FRT
algorithm.

5 Steiner tree problem

Consider a graph, G, and a given cut (S, T) on G and a root node, r. We are
required to find a tree of minimum cost that spans all nodes in T ∪ {r}. We
can use any subset of nodes from S. Nodes in T are called terminal nodes and
nodes in S are called steiner nodes. Steiner tree problem on trees can be solved
trivially. We simply remove all the nodes that don’t lie on a path from a terminal
node to the root. However, the problem is not trivial on general graphs. Using
the result of FRT, we can easily find O(log(n)) approximation to this problem.
Note that, for connectivity problems such as steiner tree problem, if the original
graph is not a metric, we can always work with metric closure of the original
graph.

5.1 Algorithm

Input: MetricG with root r and its probabilistic embedding into {P1, .., Pk} with
support {T1, .., Tk}; a cut (S,T) on G. Let α be the distortion of the embedding.
Output: A tree spanning T ∪ {r}, which is O(α) approximation to the steiner
tree problem.

1. Solve steiner tree problem on each of the trees in support of D. Let Ck
be the solution for tree, Tk.
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2. Let Cmin be the minimum cost solution among all the solutions computed
in the above step. If the input embedding was an embedding into subtrees
(eg., if we used Abraham et al. to find the embedding), Output Cmin.
Else (eg., if we used FRT), goto step 3.

3. For any edge (u, v) in Cmin that is not in G, we replace it by the shortest
path connecting u with v in G. Due to domination property of probabilis-
tic embeddings, cost of solution can only go down.

Proof: Let OPT be the optimum solution. Let Ci be the optimum solution on
Ti. Let OPTi be partial mapping of OPT in tree Ti. Let Cmin be the optimum
solution on the embedding and the CGmin be the solution obtained in the final
step of the above algorithm. Now,

α
∑
e∈OPT

d(e)

≥
∑
e∈OPT

k∑
i=1

PidTi(e) [From (3)]

=

k∑
i=1

Pi
∑
e∈OPT

dTi(e)

=

k∑
i=1

PiOPTi [From definition of OPTi]

≥
k∑
i=1

PiCi [Ci is the optimal solution in Ti]

≥ Cmin
k∑
i=1

Pi

= Cmin

≥ CGmin [From (2)]

Therefore, with FRT, we get an O(log(n))-approximation and with Abraham
et al., we get an Õ(log(n))-approximation.

A related problem is the steiner forest problem. Here instead of being given
one root, we are given pairs of terminals to be connected and we have to find
the minimum cost forest connecting all the terminals. For this problem too, we
can easily find an O(log(n))-approximation with the same approach. It should
be noted that the best know approximation factors for the steiner trees and the
steiner forest problems are 1.38 and 2− 1

n
respectively.

However, for another related problem the above embedding leads to the
best possible approximation of O(log3(n)). This problem is the group steiner
problem.

4



scribe:Anshul Sawant
Lecture 4 Date: 09/21/2011

Group steiner problem: Given a graph G(V, E) and S1, .., Sp ∈ V, we
are required to find a minimum cost tree that has atleast one vertex from each
Si, i ∈ {1, .., p}. For the tree case we have an O(log2(n)) algorithm for this
problem, which matches the theoretical bound as this problem is Ω(log2−ε(n))
hard. A further factor of log(n) comes from the probabilistic embedding.

For directed graphs we cannot use this technique since directed graphs are
not metrics. The best approximation for directed steiner on trees is O(nε) and
on general metrics the problem is O(2log1−ε(n)) hard.
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