
Network Design Foundation

Fall 2011

Lecture 1

Instructor: Mohammad T. Hajiaghayi
Scribe: Daniel Apon

August 31, 2011

1 Introduction

Network Design Foundation is the theoretical study of “incentive-aware algo-
rithm design” in the context of networks. The algorithmic challenges involved
frequently arise from practical scenarios. For example, the Internet is the largest
network in the world, and AT&T has millions of dollars riding on the optimiza-
tion of their Internet-related network design decisions.

While the affiliated topic, graph algorithms, focuses on manipulating “dumb”
objects toward some goal, networking algorithms must deal with “smart,” self-
ish agents. These agents will not necessarily behave how you, the algorithm
designer, tell them to. As such, there is a large overlap with mechanism design
and algorithmic game theory, the general study of algorithms in the context of
self-interested agents.

Similarly, an abundance of natural problems encountered in Network Design
Foundation are NP-hard to solve exactly. Yet these problems must be solved in
practice anyway. As a result, there is also a large overlap with approximation
algorithm design, the search for efficiently computable solutions that are close
to optimal, especially those that appear to work well in practice.

2 Overview

In this lecture, we motivate three classical, NP-complete problems that arise in
the context of network design: Set Cover, Unique Coverage, and Max-
imum Coverage. Then we discuss two approximation algorithms for Set
Cover and a matching inapproximability result (up to constant factors).

1

Scribe: Daniel Apon
Lecture 1 Date: 08/31/2011

3 Preliminaries

We are interested in the following three problems:

(1) Set Cover (or Minimum Weighted Set Cover)

Input: A universe U = {e1, . . . , en} of n elements, a collection S = {S1, . . . , Sk}
of subsets of U such that U =

⋃
i Si, and a cost function cost : S→ Q+.

Goal: Find a subcollection S ′ ⊆ S such that S ′ covers U, i.e. U =
⋃

S∈S ′ S,
with minimum total cost.

(2) Unique Coverage

Input: A universeU = {e1, . . . , en} of n elements and a collection S = {S1, . . . , Sk}
of subsets of U such that U =

⋃
i Si.

Goal: Find a subcollection S ′ ⊆ S that maximizes the number of elements
covered by exactly one S ∈ S ′.

(3) Maximum Coverage (or Budgeted Maximum Coverage)

Input: A universe U = {e1, . . . , en} of n elements, a collection S = {S1, . . . , Sk}
of subsets of U such that U =

⋃
i Si, a cost function cost : S → Q+, a weight

function weight : U→ Q+, and a constant cost bound B ∈ Q+.

Goal: Find a subcollection S ′ ⊆ S that maximizes the total weight of covered
elements such that the total cost of the chosen subsets S ∈ S ′ is at most B.

Definition 1 The frequency of an element e, denoted f(e), is the number of
sets in a collection that contain e. Then define the parameter F := maxe∈U f(e).

Definition 2 Let OPT be an optimum solution for a given problem. Then
an α-approximation algorithm is an algorithm that is guaranteed to output an
approximate solution with value/cost f(x) that is no worse than a factor α 6= 1
times the value/cost of OPT on all instances x. That is,

cost(OPT) ≤f(x) ≤ α · cost(OPT), if α > 1,

α · value(OPT) ≤f(x) ≤ value(OPT), if α < 1.

3.1 Motivation

Wireless networking has many applications for these problems. For example,
suppose Verizon wants to build a series of cell towers to cover a new area.
Each tower has some coverage radius and a cost associated with constructing
or maintaining it. Ideally, we will choose an arrangement that covers the entire
area while minimizing the associated cost.

Consider the following example:

2

Scribe: Daniel Apon
Lecture 1 Date: 08/31/2011

In this example, we make the modeling assumption of discretizing the given
2-dimensional space by laying a grid across it. The intersections of grid lines
become the legal positions for cell towers as well as the points we must cover
(and hence, the elements of the universe ei ∈ U). The radius of the cell tow-
ers determine the set of elements covered, so each possible cell tower location
determines a distinct subset of the collection, i.e. Sj ∈ S. In this example, the
size of the subset associated with the right tower is constrained by a geometric
obstruction (e.g. a mountain), so its associated elements marked with ×’s are
fewer.

It is easy to see that Set Cover can be used to find a network of towers that
cover every point in the space and has minimum cost. If a limiting budget is
added, then Maximum Coverage could be used to find a network that covers
the maximum within the budget’s constraints. Similarly, Unique Coverage
could be used to minimize interference among the transmission towers.

4 Set Cover

We will now show the following:

Theorem 1 There is a min (O (logn) , F)-approximation algorithm for Set Cover.

Proof: There are two greedy algorithms, described below, that give an O (logn)-
approximation and F-approximation respectively. We can run both in polyno-
mial time and take the better solution between the two.

Remark 1 In practice, we could decide which to run based on the instance.

4.1 Greedy Algorithm 1 – O (logn)-approximation

Consider an instance of Set Cover with universe U and collection S.

3

Scribe: Daniel Apon
Lecture 1 Date: 08/31/2011

Greedy Algorithm 1:

1. set B← ∅, C← ∅, t← 1.

2. while C 6= U (i.e. U 6=
⋃

i Ci), do:

(a) find a set B ∈ S that is the most cost-effective, i.e. the set that
minimizes the quantity

αt := min
A⊆S

cost(A)

|A\C|
,

(b) select B, and for each e ∈ B\C, set price(e) = αt

(c) set Ct ← B, t← t+ 1.

Output: C (a collection of sets that cover U, i.e. U =
⋃

t Ct)

Analysis:

Suppose we select sets one at a time in an optimal fashion. LetOPTt={S1, . . . , Sk}
be an optimal set cover for the universe Ut = U\Ct, where Ct is the collection
chosen by Greedy Algorithm 1 at iteration t.

Lemma 1 In each iteration t of Greedy Algorithm 1, there exists a set with
cost-effectiveness at least

cost(OPTt)

|U− C|

Proof:

cost(OPTt) =

k∑
i=1

cost(Si)

=

k∑
i=1

cost(Si)

|Si|
|Si|

≥
k∑

i=1

αt|Si|

≥ αt|U− C|.

Therefore at iteration t,

αt ≤
cost(OPTt)

|U− C|

4

Scribe: Daniel Apon
Lecture 1 Date: 08/31/2011

Let ALG be the solution output by Greedy Algorithm 1. Then,

cost(ALG) =
∑
e∈U

price(e)

=

n∑
i=1

price(ei)

≤
n∑

i=1

cost(OPTi)

n− i+ 1
(by definition of ei and Lemma 1)

= cost(OPT)

n∑
i=1

1

i

= cost(OPT)Hn (by definition of the harmonic numbers)

= cost(OPT) ·Θ(ln(n)).

Therefore,
cost(ALG) ≤ Θ(ln(n) · cost(OPT))

and Greedy Algorithm 1 is an O(logn)-approximation for Set Cover.

4.2 Worst-case behavior example

In order to see that the above analysis is tight for Greedy Algorithm 1,
consider the following instance of Set Cover [1], for an arbitrarily small ε > 0:

Observe that Greedy Algorithm 1 will choose sets in the following order
– S1, S2, . . . , Sn – despite the optimal solution being to simply choose S∗. The
cost of choosing all of the Si is 1+ ln(n), whereas the cost of the optimal choice
of S∗ is 1+ ε.

5

Scribe: Daniel Apon
Lecture 1 Date: 08/31/2011

4.3 Greedy Algorithm 2 – F-approximation

Consider an instance of Set Cover with universe U and collection S where the
cost of all sets is 1.

Remark 2 Note that it is possible to modify the following algorithm to handle
the weighted case (i.e. where the cost of all sets is not all 1), though we omit
that discussion here.

Greedy Algorithm 2:

1: Set A← ∅, U ′ ← ∅.
2: While U has an element e not covered by A, add all sets containing e to
A and add e to U ′.

Output: A (a cover of U)

Analysis:

The number of sets chosen is at most F · |U ′| and no set can cover two elements
of U ′. Therefore,

cost(ALG) ≤ |U ′| · F

and
OPT ≥ |U ′|

and Greedy Algorithm 2 is an F-approximation for Set Cover.

4.4 Almost-Matching Inapproximability Result

Ferge gives a matching inapproximability result for Set Cover (ignoring a
constant factor hidden in the O(·) notation):

Theorem 2 (Ferge) There is no (1− ε) lnn-approximation algorithm for Set
Cover unless NP ⊆ DTIME

(
nlog logn

)
.

Remark 3 Note that NP (DTIME
(
nlog logn

)
is a mildly stronger assumption

than P 6= NP as nlog logn is superpolynomial. At the same time, the asymptotic
growth of nlog logn is so close to polynomial that the difference is near negligible.

6

