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Overview of My Research

 Provide Algorithmic solutions & provable guarantees

 General algorithmic frameworks for any data

 Develop structural results to enable

these algorithms

 Validate our implemented algorithms on

real-world data, if resources are available.

 Main subjects of studies are Graphs/Networks

 Nodes = computers, people, locations, …

 Edges = links, relationships, roads, …



Real-World Networks
 Social networks

 Google+, Facebook, Twitter, coauthorship, citation, phone calls, …

 Biological networks
 Brain connectome, protein interactome, disease networks

 Computer networks
 Internet IP, web graph, internet backbone, wireless/sensor net.,…

 Transportation networks
 road maps, flight tracks, train maps, …

 …



Our Algorithmic Goals

1. Correct (optimal solution)

2. Fast (polynomial time)

3. Hard problems (NP-hard)

 Pick any two  (assuming 𝑃 ≠ 𝑁𝑃)



Classic Algorithms

1. Correct (optimal solution)

2. Fast (polynomial time)

3. Hard problems (NP-hard)

 Most early algorithms

 Most undergraduate algorithms



Approximation Algorithms

1. Correct (optimal solution)

2. Fast (polynomial time)

3. Hard problems (NP-hard)

 Guarantee solution is near optimal: within some 

multiplicative factor (1.5,  2,  log 𝑛, etc.)

 PTAS (Polynomial Time Approximation Scheme): within factor 1 + 𝜀
for any specified 𝜀 > 0



Fixed-Parameter Algorithms

1. Correct (optimal solution)
2. Fast (polynomial time)
3. Hard problems (NP-hard)

 Confine exponential growth to parameter 𝑘
(often the optimum solution) other than (and 
smaller than) input size 𝑛

 Bad: exp 𝑛 , 𝑛𝑘

 Good: 𝑓 𝑘 𝑛𝑂 1 e.g.  2𝑘 𝑛 or even   22
𝑘
𝑛3

Great: 2𝑂 𝑘 𝑛𝑂 1 — subexponential

r

r



Algorithmic Game Theory

1. Correct (optimal solution)

2. Fast                        (polynomial time)

3. Hard problems (NP-hard)

 Some of the above goals with a new goal

*. Having selfish agents (agents involved in the algorithm 

have their own incentives)



Streaming/Online Algorithms

1. Correct (optimal solution)

2. Fast                        (polynomial time)

3. Hard problems (NP-hard)

 Some of the above goals with a new goal

*. Partial access to input (often due to BIG DATA the input 
arrives bit by bit; no access to the whole data)

 We focus more on these types of algorithms in this talk



BIG Real-World Networks Are Everywhere

 Social networks: Google+,Facebook,

and Twitter, citation network 

(109 nodes)

 Biological networks: brain connectome

(109 nodes)

 Computer networks: Internet IP/web graph

(232 nodes)

 Transportation networks: US road map by

GoogleMap

(108  intersection nodes)



Problems to Solve
 Many natural problems on big graphs:

 Finding botnets/spam detection

 Community detection

 Reachability/distance between nodes

 Summarization/sparsification/visualization

 ….

 Traditional and very basic optimization problems play 

critical roles in solving above natural problems: 

 matching/vertex cover

 set cover/hitting set

 densest subgraph

 cut problems

 connectivity problems

 …



Resource Restrictions and Limitations

 Often only partial access to manipulate data which, e.g., 

 Stored in a relatively slow huge external hard-drive/blu-ray disc

 Stored somewhere in a network cloud  (no space to download)

 Comes too fast and is too much to store, e.g., internet routers

 Potential users may not have supercomputers (cluster) to 

manipulate it as well, e.g.,

 Cell phone user may want to verify blockchain

(a 33GB database of all Bitcoin transactions) 

 E.g., to profile the business's past behavior.

 Rare events may need ad-hoc search over heterogeneous data 

from multiple sources not index for this use

 E.g., data from store cameras, social media,… in Boston Marathon Bombing 

 Internet providers may need statistical data of packets through routers



Simplest Way to Handle BIG Data

 We investigate the simplest but the most fundamental way 

by assuming

 Data arrives in a natural order outside the algorithm's control

 There is only enough memory to store a small summary of data

 Our algorithm can view this stream once or a small (constant) 

number of passes

 This model is particularly appropriate for

temporally dynamic data

 e.g., online social networks, Bitcoin transactions, internet routers 

 As a byproduct complex network analysis can be 

performed on a single computer (even a mobile device)



Mapreduce and Other Distributed Models

 Our solution is often smart sampling and hashing which 

are naturally parallel as well

 For example, in MapReduce, the hash functions can be shared 

state among all machines

 This allows Map function to output each sample under each hash 

function

 Making it straightforward to implement in a variety of 

popular distributed models such as MapReduce or Pregel.



Streaming Network Model

 The “you get one chance” model:

 See each edge once

 Space used must be sublinear in the size of the input

 Analyze time to process each edge, accuracy of answer, ..

 Variations within the model:

 One pass or a small (constant) number of passes?

(we focus on one pass in this talk)

 Insertions only, or edges added and deleted (dynamic)?



Often Streaming Is Hard!

 With sublinear in n (nodes) space, life is difficult

 Cannot remember whether or not a given edge 

(or even a vertex) was seen

 Standard relaxations, specifically randomization, do not help

 Formal hardness proved via communication complexity

 Different relaxations are needed to make any progress

 Relax space: allow linear in n space 

 “Semi-streaming”:  linear in n (nodes) but sublinear in m (edges)

 Make assumptions about input – the promised streaming model

 “Strictly streaming”: sublinear in n, polynomial or logarithmic



Promised Streaming

 We know often very practical and reasonable restrictions/assumptions on the 

input instance which is promised to us, e.g., about

 edge density or graph structure (e.g., many real massive graphs are not dense)

 cost/size of the solution

 Some examples

 The input graph is a planar or bounded degenerate graph 

[Esfandiari, H., Liaghat, Monemizadeh, Onak, SODA 2015]

 The edges are coming in a random order or from some distributions 

[Esfandiari, H., Monemizadeh, Submitted manuscript]

 Parameterized Streaming [detailed in this talk] 

[Chitnis, Cormode, H., Monemizadeh, SODA 2015], 

[Chitnis, Cormode, Esfandiari, H., Monemizadeh, SPAA 2015], 

[Chitnis, Cormode, Esfandiari, H., McGregor, Monemizadeh,  Vorotnikova, SODA 2016]

 Any combinations of above



Parameterized Streaming

 Streaming with space being a function of k, the solution size 

(often much smaller than n, the number of nodes)

 More precisely we seek space f(k).polylog(n)

 Draw inspiration from fixed parameter-tractablility (FPT)

 For (NP) Hard problems: assume solution has size k

 Naïve solutions have time exp 𝑛 , 𝑛𝑘

 Seek solutions with time f(k).poly(n) – reasonable for small k

 Report “no” if size is greater than k

 For simplification, we start with Vertex Cover a famous NP-

hard problem, though our framework is much more general



Kernelization

 A key technique is kernelization

 Reduce input (graph) G to a smaller (graph) instance G′

 Such that solution on G′ corresponds to solution on G

 Size of G′ is poly(k) (or even exponential in k)

 So naïve (exponential) algorithm on G′ is FPT

 Kernelization is a powerful technique

 Any problem that is FPT has a kernelization solution

G G′



Kernelization on Graph Streams

 A simple algorithm for insertions only

 Maintain a matching M (greedily) on the graph seen so far

i.e., store an incoming edge in G′ if does not share endpoints with previous

stored edges of M

 For any v in the matching, keep up to k edges incident on v in 𝐆′

(Why? if the degree becomes larger than k,  v will be in the vertex cover)

 If |M|>k, quit

(Why? since size of matching M is a lower bound on size of vertex cover and 

thus vertex cover has size more than k)

 At any time, run kernelization algorithm on stored edges 𝐆′

GVertex cover (hub detection): find a set of vertices 

S so every edge has at least one vertex in S



Why Does It Work?

 Proof outline: argue that kernelization on G′mimics that on G

 Every step on G′ can be applied to G correspondingly

 We keep “enough” edges on a node to test, if it is high-degree

 As a result we obtain any approximation for vertex cover on 

G′ and thus G

 Guarantees O(k2) space: at most k edges on 2k nodes of M

 We prove tight lower bound of W(k2) in the streaming model for 

vertex cover via communication complexity



Kernelization on Dynamic Graph Streams
 Much more challenging case: dynamic graph streams

 Edges are inserted or deleted (friend or unfriend in Facebook)

 Previous algorithm breaks: if a matched edge is deleted we no 

longer can update the (maximal) matching since we forgot edges

 First we solved a promised problem that vertex cover at all 

times is at most size k [Chitnis, Cormode, H., Monemizadeh, SODA 2015]       

(simplified in [Chitnis, Cormode, Esfandiari, H., Monemizadeh,  SPAA 2015] )

 Removing the promise was an important open problem and very 

recently solved 
[Chitnis, Cormode, Esfandiari, H., McGregor, Monemizadeh, Vorotnikova. , SODA 2016]

 Need additional existing technologies, in particular 

k-Sparse Recovery and k-Sampler data structures



k-Sparse Recovery and k-Sample Algorithm

 k-Sparse Recovery:

 A data structure which accepts insertions and deletions of n elements

 At any moment if the current number of elements stored is at most k, 

then these can be recovered in full

 Deterministic construction: requires O(k polylog n) space

 k-Sampler (l0 sampling):

 A data structure which accepts insertions and deletions of n elements

 At any moment it can provide a sample of size k from the elements 

stored in it, provided there are at least k elements in it

 Randomized construction: requires O(k polylog n) space 

(via k-sparse recovery)



Dara Structures for Promised Algorithm

 Our data structure has two parts

 A set of k-sparse recoveries (as well k-samplers)

 Each keeps the neighboring edges of a vertex with degree at least k

 A set of edges L

 These edges are induced by vertices of degree less than k



Insert Edges: Both Endpoints Have Degrees <k

 After the insertion both endpoints have degrees less than 

k:

 Add the edge to the set of edges L

K= 3



Insert Edge: Endpoint Has Degree k

 After the insertion an endpoint has degree k:

 Initiate an empty k-sparse recovery (as well as k-sampler)

for this vertex

 Move all of the neighbors of this vertex from L to k-sparse 
recovery (as well as k-sampler) 

 Put a time stamp on k-sparse recovery 

K= 3



Insert Edge: Endpoint Has k-Sparse Recovery

 If one of endpoints has a k-sparse recovery (as well as k-sampler) 

 Just add the edge to the k-sparse recovery (as well as k-sampler)

 If both endpoints have k-sparse recoveries

 Add the edge to the k-sparse recovery 

(as well as k-sampler) with smaller time stamp

K= 3



Delete Edge: Edge Is in L

 If the deleted edge is in the set of edges L

 Just delete it from the set of edges L

K= 3



Delete Edge: Edge Is in One k-Sparse Recovery

 If one of the endpoints has k-sparse recovery

 Just delete the edge from the k-sparse recovery (as well as k-
sampler) 

 If both endpoints have k-sparse recoveries

 Delete the edge form the k-sparse recovery (as well as k-
sampler) with the smaller time stamp

K= 3



k-Sparse Recovery Has <k Edges

 If after a deletion, a k-sparse recovery has less than k edges

 Retrieve edges from the k-sparse recovery and add them 

to the edge set L

 Remove k-sparse recovery (as well as k-sampler)

K= 3



Proof Outline

 We have one k-sparse recovery (as well as k-sampler) for each 

vertex with degree ≥ k

 We know all vertices with degree ≥ k (all will be in the vertex cover)

 We can sample a set P of k edges from k-samplers 

(only use of k-samplers)

 We know all the other edges in the edge set L

 L ∪ P is enough to create the kernel G′ to find 

a vertex cover 



Space Complexity

 We need O(k2 polylog n) space for k-sparse recoveries 

(as well as k-samplers) since
 Each k-sampler corresponds to a vertex in the vertex cover

 Size of the vertex cover is not more than k (by the promise)

 Thus the number of k-sparse recoveries (as well as k-samplers) is ≤ k

 Each k-sparse recoveries (as well as k-samplers) requires O(k polylog n) space

 We have at most O(k2) edges in L
 Each vertex in the vertex cover covers at most k of these edges

 Size of the vertex cover is not more than k

 In total O(k2 polylog n) space

 Very simple to implement…



 Let 𝑘 be the size of vertex cover at the end

(before 𝑘 was the max size at ALL times)

 Needs a more sophisticated vertex sampling

 Hash each vertex to a number in [1, 𝑘]

Removing the Promise

1

1

2

1

3 3

2



 For each pair of numbers 𝑖, 𝑗 ∈ ( 1, 𝑘 , [1, 𝑘]), maintain one 

edge of data stream, if any exists

Removing the Promise
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 We run this procedure O(log 𝑘) times in parallel

 Let G′ be the graph containing all stored edges

 Thus we only need to run any approximation algorithm for vertex cover in 
G′ (to find one in G)

 We use 𝑂 𝑘3polylog 𝑛 space in total since

 One 𝑘-sampler for each pair 𝑖, 𝑗 ∈ ( 1, 𝑘 , [1, 𝑘]) (𝑂 𝑘2 in total)

 It can be improved to 𝑂 𝑘2polylog 𝑛 with more sophistication

 The results are very general and work for optimization of any
property preserved under ``vertex contraction’’ including: 
 matching, b-matching, hitting set, set cover, k-colorable subgraph, 

several maximum subgraph problems, etc.

Algorithm Summary

Assuming that size of the vertex cover is 𝑘 at

the end, w.h.p. G′ and G have the same set

(and size) vertex cover (and matching) 



Experimental Results for BIG DATA:
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Brain and World Web Graphs

Brain graphs: 

http://mrbrain.cs.jhu.edu/disa/download/

World web graph: 

http://webdatacommons.org/hyperlinkgraph

☛ Some raw data size are over 1.3 Tb

☛ Refined data size is 200 Gb
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Implementation Difficulties

☛A typical graph needs 200 GB space 
☛ Most classical algorithms  (i.e BFS, DFS, etc) cannot be 

implemented without additional hard drives

☛Most editors crash while openinig the data

☛25m to lookup an entry

☛1h,40m to sort the data
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Experimental Results

☛ World Graph: 

☝ Vertex: subdomain/host.

☝ Edge: hyperlink between subdomain/hosts

☝ n = 101,717,775 m=2,043,203,933



40

☛ Brain Graph (KKI): 

☝ Vertex: Brain cell

☝ Edge: Connections between cells

☝ n = 34,143,521 m=2,679,090,553

Experimental Results
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Experimental Results

☛ Brain Graph (MRN): 

☝ Vertex: Brain cell

☝ Edge: Connections between cells

☝ n = 74,256,292 m=6,516,647,674
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Implemented Algorithms

Dataset Time Memory Matching Size

Webgraph 2h,15m 1.8 MB 24,432,528

KKI 3h,10m 2 MB 6,302,146

MRN 7h,25m 1.3 MB 27,189,228

Running time on Samsung Laptop with an external hard-drive



Codes and Data Available at BigDND Website



Looking Forward

 Can other parameterized-algorithm ideas inspire new 

streaming algorithms and vice versa?

 Implementation in MapReduce and other distributed models

 More algorithms with provable guarantees specifically

when we know real-world assumptions on input

 More algorithmic frameworks (meta-algorithms) for 

streaming

 Special thanks to Google Faculty Research Award (twice), 

NSF IIS (BIGDATA), DARPA GRAPHS, ONR Young 

Investigator Award, NSF CAREER, NSF CCF (Medium)

Thank you!


