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Overview of My Research

Provide Algorithmic solutions & provable guarantees
General algorithmic frameworks for any data

Develop structural results to enable
these algorithms

Validate our implemented algorithms on
real-world data, if resources are available.

Main subjects of studies are Graphs/Networks

Nodes = computers, people, locations, ...

Edges = links, relationships, roads, ...



Real-World Networks

Social networks

Google+, Facebook, Twitter, coauthorship, citation, phone calls, ...

Biological networks
Brain connectome, protein interactome, disease networks

Computer networks

Internet IP, web graph, internet backbone, wireless/sensor net.,... THE WHOLE INTERNET

Transportation networks
road maps, flight tracks, train maps, ...
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Our Algorithmic Goals

Correct (optimal solution)

Fast (polynomial time)
Hard problems (NP-hard)

Pick any two (assuming P + NP)



Classic Algorithms

Correct (optimal solution)
Fast (polynomial time)
—Hardproeblems—(NP-hard)}

Most early algorithms

Most undergraduate algorithms



Approximation Algorithms

C | optimalsolution!
Fast (polynomial time)
Hard problems (NP-hard)

Guarantee solution is near optimal: within some
multiplicative factor (1.5, 2, logn, etc.)

PTAS (Polynomial Time Approximation Scheme): within factor 1 + ¢
for any specified € > 0



Fixed-Parameter Algorithms @r

r
Correct (optimal solution)
—+Fast (pelynomial-time)
Hard problems  (NP-hard)

Confine exponential growth to parameter k
(often the optimum solution) other than (and
smaller than) input size n

Bad: exp(n),n”
Good: f(k)n°® eg 2¥n oreven 223
Great: 20(Vk) n0() _ gybexponential




Algorithmic Game Theory

Correct (optimal solution)

Fast (polynomial time)
Hard problems (NP-hard)

Some of the above goals with a new goal

Having selfish agents (agents involved in the algorithm
have their own incentives)



Streaming/Online Algorithms

Correct (optimal solution)

Fast (polynomial time)
Hard problems (NP-hard)

Some of the above goals with a new goal

Partial access to input (often due to BIG DATA the input
arrives bit by bit; no access to the whole data)

We focus more on these types of algorithms in this talk



BIG Real-World Networks Are |

Social networks: Google+,Facebook,
and Twitter, citation network b ¥ -
Biological networks: brain connectome et
(107 nodes)

Computer networks: Internet IP/web graph
(232 nodes)

Transportation networks: US road map by

GoogleMap

(108 intersection nodes)



Problems to Solve

Many natural problems on big graphs:

v

Finding botnets/spam detection

v

Community detection

v

Reachability/distance between nodes

v

Summarization/sparsification/visualization

Traditional and very basic optimization problems play
critical roles in solving above natural problems:

matching/vertex cover

v

»  set cover/hitting set
»  densest subgraph
»  cut problems

»  connectivity problems



Resource Restrictions and Limitations

Often only partial access to manipulate data which, e.g.,
» Stored in a relatively slow huge external hard-drive/blu-ray disc
» Stored somewhere in a network cloud (no space to download)

» Comes too fast and is too much to store, e.g., internet routers

Potential users may not have supercomputers (cluster) to
manipulate it as well, e.g.,
» Cell phone user may want to verify blockchain

(a 33GB database of all Bitcoin transactions)
E.g., to profile the business's past behavior.
» Rare events may need ad-hoc search over heterogeneous data
from multiple sources not index for this use
E.g., data from store cameras, social media,... in Boston Marathon Bombing

» Internet providers may need statistical data of packets through routers



Simplest Way to Handle BIG Data

We investigate the simplest but the most fundamental way
by assuming
» Data arrives in a natural order outside the algorithm's control

» There is only enough memory to store a small summary of data

» Our algorithm can view this stream once or a small (constant)
number of passes

This model is particularly appropriate for
temporally dynamic data
» e.g., online social networks, Bitcoin transactions, internet routers

As a byproduct complex network analysis can be
performed on a single computer (even a mobile device)



Mapreduce and Other Distributed Models

Our solution is often smart sampling and hashing which
are naturally parallel as well

For example, in MapReduce, the hash functions can be shared
state among all machines

This allows Map function to output each sample under each hash
function

Making it straightforward to implement in a variety of
popular distributed models such as MapReduce or Pregel.



Streaming Network Model

» The “you get one chance” model:
» See each edge once
» Space used must be sublinear in the size of the input
» Analyze time to process each edge, accuracy of answer, ..

» Variations within the model:
» One pass or a small (constant) number of passes!?
(we focus on one pass in this talk)

» Insertions only, or edges added and deleted (dynamic)?



Often Streaming Is Hard!

With sublinear in n (nodes) space, life is difficult
» Cannot remember whether or not a given edge
(or even a vertex) was seen
» Standard relaxations, specifically randomization, do not help

» Formal hardness proved via communication complexity

Different relaxations are needed to make any progress
» Relax space:allow linear in n space
“Semi-streaming”: linear in n (nodes) but sublinear in m (edges)

» Make assumptions about input — the promised streaming model

“Strictly streaming”: sublinear in n, polynomial or logarithmic



Promised Streaming

We know often very practical and reasonable restrictions/assumptions on the
input instance which is promised to us, e.g., about

» edge density or graph structure (e.g., many real massive graphs are not dense)

» cost/size of the solution

Some examples

» The input graph is a planar or bounded degenerate graph
SODA 2015

» The edges are coming in a random order or from some distributions

» Parameterized Streaming [detailed in this talk]

SODA 2015
SPAA 2015
SODA 2016

» Any combinations of above



Parameterized Streaming

Streaming with space being a function of k, the solution size
(often much smaller than n, the number of nodes)

More precisely we seek space f(k).polylog(n)

Draw inspiration from fixed parameter-tractablility (FPT)
For (NP) Hard problems: assume solution has size k
Naive solutions have time exp(n), n”

Seek solutions with time f(k).poly(n) — reasonable for small k

Report “no” if size is greater than k

For simplification, we start with Vertex Cover a famous NP-
hard problem, though our framework is much more general



Kernelization

A key technique is kernelization

» Reduce input (graph) G to a smaller (graph) instance G’
» Such that solution on G’ corresponds to solution on G
» Size of G’ is poly(k) (or even exponential in k)

» So naive (exponential) algorithm on G’ is FPT
Kernelization is a powerful technique

» Any problem that is FPT has a kernelization solution



Kernelization on Graph Streams

)
Vertex cover (hub detection): find a set of vertices
S so every edge has at least one vertex in S

\.
A simple algorithm for insertions only

i.e., store an incoming edge in G' if does not share endpoints with previous
stored edges of M

» For any v in the matching, keep up to k edges incident on v in G’
(Why? if the degree becomes larger than k, v will be in the vertex cover)

» If IM|>k, quit

(Why? since size of matching M is a lower bound on size of vertex cover and
thus vertex cover has size more than k)

» At any time, run kernelization algorithm on stored edges G’



Why Does It Work?

Proof outline: argue that kernelization on G' mimics that on G
» Every step on G’ can be applied to G correspondingly
» We keep “enough” edges on a node to test, if it is high-degree

As a result we obtain any approximation for vertex cover on
G'and thus G

Guarantees O(k?) space: at most k edges on 2k nodes of M

» We prove tight lower bound of Q(k?) in the streaming model for
vertex cover via communication complexity



Kernelization on Dynamic Graph Streams
Much more challenging case: dynamic graph streams

Edges are inserted or deleted (friend or unfriend in Facebook)

Previous algorithm breaks: if a matched edge is deleted we no
longer can update the (maximal) matching since we forgot edges

First we solved a promised problem that vertex cover at all
times is at most size k SODA 2015
(simplified in SPAA 2015 )

Removing the promise was an important open problem and very

recently solved
SODA 2016

Need additional existing technologies, in particular

k-Sparse Recovery and k-Sampler data structures



k-Sparse Recovery and k-Sample Algorithm

k-Sparse Recovery:
» A data structure which accepts insertions and deletions of n elements

» At any moment if the current number of elements stored is at most k,
then these can be recovered in full

Deterministic construction: requires O(k polylog n) space

k-Sampler (I, sampling):
» A data structure which accepts insertions and deletions of n elements

» At any moment it can provide a sample of size k from the elements
stored in it, provided there are at least k elements in it

Randomized construction: requires O(k polylog n) space

(via k-sparse recovery)



Dara Structures for Promised Algorithm

Our data structure has two parts

A set of k-sparse recoveries (as well k-samplers)

Each keeps the neighboring edges of a vertex with degree at least k

A set of edges L

These edges are induced by vertices of degree less than k



Insert Edges: Both Endpoints Have Degrees <k

© ®

o

After the insertion both endpoints have degrees less than
k:

» Add the edge to the set of edges L



2

Insert Edge: Endpoint Has Degree k

After the insertion an endpoint has degree k:

» Initiate an empty k-sparse recovery (as well as k-sampler)
for this vertex

» Move all of the neighbors of this vertex from L to k-sparse
recovery (as well as k-sampler)

» Put a time stamp on k-sparse recovery



Insert Edge: Endpoint Has k-Sparse Recovery

If one of endpoints has a k-sparse recovery (as well as k-sampler)

» Just add the edge to the k-sparse recovery (as well as k-sampler)

If both endpoints have k-sparse recoveries
» Add the edge to the k-sparse recovery

(as well as k-sampler) with smaller time stamp



Delete Edge: Edge [s in L

K=3

If the deleted edge is in the set of edges L
Just delete it from the set of edges L



Delete Edge: Edge Is in One k-Sparse Recovery

If one of the endpoints has k-sparse recovery

» Just delete the edge from the k-sparse recovery (as well as k-
sampler)

If both endpoints have k-sparse recoveries

» Delete the edge form the k-sparse recovery (as well as k-
sampler) with the smaller time stamp



k-Sparse Recovery Has <k Edges

If after a deletion, a k-sparse recovery has less than k edges
» Retrieve edges from the k-sparse recovery and add them
to the edge set L

» Remove k-sparse recovery (as well as k-sampler)



Proot Outline

We have one k-sparse recovery (as well as k-sampler) for each
vertex with degree = k

We know all vertices with degree 2 k (all will be in the vertex cover)
We can sample a set P of k edges from k-samplers
(only use of k-samplers)

We know all the other edges in the edge set L

L U P is enough to create the kernel G’ to find
a vertex cover



Space Complexity

We need O(k? polylog n) space for k-sparse recoveries

(as well as k-samplers) since

» Each k-sampler corresponds to a vertex in the vertex cover

» Size of the vertex cover is not more than k (by the promise)

» Thus the number of k-sparse recoveries (as well as k-samplers) is < k

» Each k-sparse recoveries (as well as k-samplers) requires O(k polylog n) space

We have at most O(k?) edges in L
» Each vertex in the vertex cover covers at most k of these edges
» Size of the vertex cover is not more than k

In total O(k? polylog n) space

Very simple to implement...



Removing the Promise
Let k be the size of vertex cover at the end

(before k was the max size at ALL times)
Needs a more sophisticated vertex sampling

Hash each vertex to a number in |1, k]

3 3



Removing the Promise

For each pair of numbers (i,]) € (|1, k], [1, k]), maintain one
edge of data stream, if any exists



Algorithm Summary

We run this procedure O(log k) times in parallel
Let G’ be the graph containing all stored edges

Assuming that size of the vertex cover is k at
the end, w.h.p. G' and G have the same set
. (and size) vertex cover (and matching)

Thus we only need to run any approximation algorithm for vertex cover in
G’ (to find one in G)

We use O(k3polylog n) space in total since
One k-sampler for each pair (i,j) € ([1, k], [1, k]) (O(kz) in total)
It can be improved to 0(k?polylogn) with more sophistication

The results are very general and work for optimization of any
property preserved under vertex contraction” including;

matching, b-matching, hitting set, set cover, k-colorable subgraph,
several maximum subgraph problems, etc.



Experimental Results for BIG DATA:




Brain and World Web Graphs
Brain graphs:

World web graph:

w Some raw data size are over 1.3 Tb
w Refined data size 1s 200 Gb



Implementation Difficulties

w A typical graph needs 200 GB space

w Most classical algorithms (i.e BFS, DFS, etc) cannot be
Implemented without additional hard drives

w Most editors crash while openinig the data

w-25m to lookup an entry
w-1h,40m to sort the data



Experimental Results

w \World Graph:
g Vertex: subdomain/host.

# Edge: hyperlink between subdomain/hosts
ﬂ — —



Experimental Results

w Brain Graph (KKI):
g Vertex: Brain cell

# Edge: Connections between cells
ﬂ —_ —_



Experimental Results

w Brain Graph (MRN):
g Vertex: Brain cell

# Edge: Connections between cells
ﬂ —_ —_



Implemented Algorithms

Dataset Time Memory Matching Size
Webgraph 1.8 MB 24,432,528
KKI 2 MB 6,302,146

MRN 1.3 MB 27,189,228

Running time on Samsung Laptop with an external hard-drive



Codes and Data Available at BigDND Website

L C' | projects.csail.mit.edu/dnd/
Apps ¥ Bookmarks Eg EDAS (258776 - haji... & OneStop ™M Inbox (2,879) megabus.com # md.speedtest.rcn.net  4€X» Customer Service EP 2012 Elect

BigDND: Big Dynamic Network Data
Erik Demaine (MIT) & MohammadTaghi Hajiaghayi (UMD)

Networks are everywhere, and there is an increasing amount of data about networks viewed as graphs: nodes and edges/connections. But this data typically ignores a third key component of networks: time. This repository provides free, big datasets for real-world networks viewed as a dynamic (multi)graph. with two types of temporal data:

1. A timesertes of instantaneous edge events. such as messages sent between people. Many such events can occur between the same pair of nodes.
2. Timestamped edge insertions and edge deletions. such as friending and defriending in a social network. Generally only one such edge can exist at any specific time. but the same edge can be added and deleted multiple times.

lgorith fixed ter. external ry. streaming. and network-analysis algorithms.

Our hope 1s that these datasets will promote new research into the dynamics of complex networks. improving our understanding of their behavior, and helping the community to experimentally evaluate their big-data

Help us:

o Ifyou have a dynamic network dataset. email us at dnd (at) csail.mit.edu with a brief description about the data. 1ts format. its license. and how/where to download 1t. We will link to it with appropriate credit/citation.
» Ifyou have interesting visualizations and/or analysis of these data sets. email us at cnd (ar) csail. mit.edu and we will post it with appropriate credit/citation.

DBLP Data
News: Ranking of CS departments based on the number of DBLP papers in theoretical computer science has just been released. A similar ranking for other areas of CS and a general CS ranking is coming in the future.
‘The computer science bibliography DBLP offers its entire dataset of bibliography entries in XML format under the Open Data Commons Attribution License (ODC-BY 1.0). The data is updated daily. and includes years with each publication, making for timeseries data. As of October 2014. it consists of 4.215.613 papers and 9,086,030 edges between papers and authors.

We have developed free software to compute timestamped graph data for this DBLP data

Social Network Data from MPI-SS
The Max Planck Institute for Software Systems has gathered several large dynamic network datasets in a variety of soctal networks. This data is publicly available by emailing Alan Mislove at amislove (at) mpi-sws (dot) org.

«  Facebook: 60.290 users. 1.545.686 friendships. 838.092 timestamped wall posts. [Viswanath. \hslo\e Cha. Gummadi 2009]
o Flickr: 1.620.392-2.570.535 users. 11.195.144 photos. 17.034.807-33.140.018 timestampe: - 34./34.221 imestamped favorite markings. from November 2-December 3, 2006 and February 3-May 18. 2007. [Cha. Mislove. Gummadi 2009

« YouTube, LiveJournal. and Orkut data also available

Google+ Social Network Data with Node Attributes
UC Berkeley has published four snapshots taken at four times of the same subset of the Google+ social network. Thus each object has a coarse notion of timestamp, between 1 and 4. The network starts with 4,693,129 nodes and 47,130,325 edges. and grows to 28,942,911 nodes and 462,994,069 edges. Nodes additionally have optional attributes of employer. school. major and places lived.

Twitter Data
‘The Max Planck Institute for Software Systems has gathered Twitter data encompassing 54.981.152 user accounts, 1.963.263.821 follow links (based on a snapshot in August 2009. no timestamps). and 1.755.925.520 timestamped tweets. This data is publicly available by emailing twitter-contact (at) mpi-sws.org.

Paper Citation Data

In these networks. nodes represent papers/publications and directed edges represent citations.

physics phenomenology). 34,546 timestamped papers and 421.578 citations, from January 1993 to April 2003. Available for download from SNAP. [From KDD Cup 2003
physics theory). 27.770 timestamped papers and 352.807 citations, from January 1993 to April 2003. Available for download from SNAP. [From RDD Cup 2

. rg HEP-
. LS-\ Patents. 3.774.768 time amped patents and 16.518.948 citations, from 1975 to 1999. Available for download from SNAP. [From National Bureau of Economic Research|

. alXi\',mg HEP-PH (high en

HUGE: Brain Connectome Data
Johns Hopkins University's Open Connectome Project has gathered a huge amount of brain network/connectome data. All data is available for download

HUGE: Web Graph Data

University of Mannheim has gathered a Web Hyperlink Graph based on the Common Craw] 2012 web corpus, featuring 3.500.000,000 webpages and 128,000.000,000 hyperlinks. All data is available for download.
Codes

‘We have provided two codes for measuring quantitative properties of graphs. These algorithms are specifically designed to run on large graphs.

1 matching.cpp approximates the size of the largest matching of a graph based on the work of Esfandiari et al
2. Jense.cpp approximates the size of the densest subgraph ofa graph based on the work of Esfandiari et al.

About Us

‘We have been designing graph algorithms for our whole lives. and collaborating together since 2001 with over 60 joint publications. Erik Demaine is a MacArthur Fellow. Sloan Fellow. Guggenheim Fellow. Presburger Award recipient. and Polya Lecturer: he has published over 400 papers with over 340 co-authors. and has given over 225 plenary and nvite
/ Investigator recipient. Google Faculty Research Award (twice): he has published over 165 papers with over 160 co-authors. has givert over 45 mvited talks around the world. and has over 10 granted or filed patents

12-1-0423. NSF grant CCF-1161626. NSF CAREER award 1053605, and ONR YIP award N000141110662

Our work 1s currently supported in part by DARPA GRAPHS grant FA955



Looking Forward

Can other parameterized-algorithm ideas inspire new
streaming algorithms and vice versa!

Implementation in MapReduce and other distributed models

More algorithms with provable guarantees specifically
when we know real-world assumptions on input

More algorithmic frameworks (meta-algorithms) for
streaming

Special thanks to Google Faculty Research Award (twice),
NSF IS (BIGDATA), DARPA GRAPHS, ONR Young

Investigator Award, NSF CAREER, NSF CCF (Medium)
Thank you!



