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Overview of My Research

 Provide Algorithmic solutions & provable guarantees

 General algorithmic frameworks for any data

 Develop structural results to enable

these algorithms

 Validate our implemented algorithms on

real-world data, if resources are available.

 Main subjects of studies are Graphs/Networks

 Nodes = computers, people, locations, …

 Edges = links, relationships, roads, …



Real-World Networks
 Social networks

 Google+, Facebook, Twitter, coauthorship, citation, phone calls, …

 Biological networks
 Brain connectome, protein interactome, disease networks

 Computer networks
 Internet IP, web graph, internet backbone, wireless/sensor net.,…

 Transportation networks
 road maps, flight tracks, train maps, …

 …



Our Algorithmic Goals

1. Correct (optimal solution)

2. Fast (polynomial time)

3. Hard problems (NP-hard)

 Pick any two  (assuming 𝑃 ≠ 𝑁𝑃)



Classic Algorithms

1. Correct (optimal solution)

2. Fast (polynomial time)

3. Hard problems (NP-hard)

 Most early algorithms

 Most undergraduate algorithms



Approximation Algorithms

1. Correct (optimal solution)

2. Fast (polynomial time)

3. Hard problems (NP-hard)

 Guarantee solution is near optimal: within some 

multiplicative factor (1.5,  2,  log 𝑛, etc.)

 PTAS (Polynomial Time Approximation Scheme): within factor 1 + 𝜀
for any specified 𝜀 > 0



Fixed-Parameter Algorithms

1. Correct (optimal solution)
2. Fast (polynomial time)
3. Hard problems (NP-hard)

 Confine exponential growth to parameter 𝑘
(often the optimum solution) other than (and 
smaller than) input size 𝑛

 Bad: exp 𝑛 , 𝑛𝑘

 Good: 𝑓 𝑘 𝑛𝑂 1 e.g.  2𝑘 𝑛 or even   22
𝑘
𝑛3

Great: 2𝑂 𝑘 𝑛𝑂 1 — subexponential

r

r



Algorithmic Game Theory

1. Correct (optimal solution)

2. Fast                        (polynomial time)

3. Hard problems (NP-hard)

 Some of the above goals with a new goal

*. Having selfish agents (agents involved in the algorithm 

have their own incentives)



Streaming/Online Algorithms

1. Correct (optimal solution)

2. Fast                        (polynomial time)

3. Hard problems (NP-hard)

 Some of the above goals with a new goal

*. Partial access to input (often due to BIG DATA the input 
arrives bit by bit; no access to the whole data)

 We focus more on these types of algorithms in this talk



BIG Real-World Networks Are Everywhere

 Social networks: Google+,Facebook,

and Twitter, citation network 

(109 nodes)

 Biological networks: brain connectome

(109 nodes)

 Computer networks: Internet IP/web graph

(232 nodes)

 Transportation networks: US road map by

GoogleMap

(108  intersection nodes)



Problems to Solve
 Many natural problems on big graphs:

 Finding botnets/spam detection

 Community detection

 Reachability/distance between nodes

 Summarization/sparsification/visualization

 ….

 Traditional and very basic optimization problems play 

critical roles in solving above natural problems: 

 matching/vertex cover

 set cover/hitting set

 densest subgraph

 cut problems

 connectivity problems

 …



Resource Restrictions and Limitations

 Often only partial access to manipulate data which, e.g., 

 Stored in a relatively slow huge external hard-drive/blu-ray disc

 Stored somewhere in a network cloud  (no space to download)

 Comes too fast and is too much to store, e.g., internet routers

 Potential users may not have supercomputers (cluster) to 

manipulate it as well, e.g.,

 Cell phone user may want to verify blockchain

(a 33GB database of all Bitcoin transactions) 

 E.g., to profile the business's past behavior.

 Rare events may need ad-hoc search over heterogeneous data 

from multiple sources not index for this use

 E.g., data from store cameras, social media,… in Boston Marathon Bombing 

 Internet providers may need statistical data of packets through routers



Simplest Way to Handle BIG Data

 We investigate the simplest but the most fundamental way 

by assuming

 Data arrives in a natural order outside the algorithm's control

 There is only enough memory to store a small summary of data

 Our algorithm can view this stream once or a small (constant) 

number of passes

 This model is particularly appropriate for

temporally dynamic data

 e.g., online social networks, Bitcoin transactions, internet routers 

 As a byproduct complex network analysis can be 

performed on a single computer (even a mobile device)



Mapreduce and Other Distributed Models

 Our solution is often smart sampling and hashing which 

are naturally parallel as well

 For example, in MapReduce, the hash functions can be shared 

state among all machines

 This allows Map function to output each sample under each hash 

function

 Making it straightforward to implement in a variety of 

popular distributed models such as MapReduce or Pregel.



Streaming Network Model

 The “you get one chance” model:

 See each edge once

 Space used must be sublinear in the size of the input

 Analyze time to process each edge, accuracy of answer, ..

 Variations within the model:

 One pass or a small (constant) number of passes?

(we focus on one pass in this talk)

 Insertions only, or edges added and deleted (dynamic)?



Often Streaming Is Hard!

 With sublinear in n (nodes) space, life is difficult

 Cannot remember whether or not a given edge 

(or even a vertex) was seen

 Standard relaxations, specifically randomization, do not help

 Formal hardness proved via communication complexity

 Different relaxations are needed to make any progress

 Relax space: allow linear in n space 

 “Semi-streaming”:  linear in n (nodes) but sublinear in m (edges)

 Make assumptions about input – the promised streaming model

 “Strictly streaming”: sublinear in n, polynomial or logarithmic



Promised Streaming

 We know often very practical and reasonable restrictions/assumptions on the 

input instance which is promised to us, e.g., about

 edge density or graph structure (e.g., many real massive graphs are not dense)

 cost/size of the solution

 Some examples

 The input graph is a planar or bounded degenerate graph 

[Esfandiari, H., Liaghat, Monemizadeh, Onak, SODA 2015]

 The edges are coming in a random order or from some distributions 

[Esfandiari, H., Monemizadeh, Submitted manuscript]

 Parameterized Streaming [detailed in this talk] 

[Chitnis, Cormode, H., Monemizadeh, SODA 2015], 

[Chitnis, Cormode, Esfandiari, H., Monemizadeh, SPAA 2015], 

[Chitnis, Cormode, Esfandiari, H., McGregor, Monemizadeh,  Vorotnikova, SODA 2016]

 Any combinations of above



Parameterized Streaming

 Streaming with space being a function of k, the solution size 

(often much smaller than n, the number of nodes)

 More precisely we seek space f(k).polylog(n)

 Draw inspiration from fixed parameter-tractablility (FPT)

 For (NP) Hard problems: assume solution has size k

 Naïve solutions have time exp 𝑛 , 𝑛𝑘

 Seek solutions with time f(k).poly(n) – reasonable for small k

 Report “no” if size is greater than k

 For simplification, we start with Vertex Cover a famous NP-

hard problem, though our framework is much more general



Kernelization

 A key technique is kernelization

 Reduce input (graph) G to a smaller (graph) instance G′

 Such that solution on G′ corresponds to solution on G

 Size of G′ is poly(k) (or even exponential in k)

 So naïve (exponential) algorithm on G′ is FPT

 Kernelization is a powerful technique

 Any problem that is FPT has a kernelization solution

G G′



Kernelization on Graph Streams

 A simple algorithm for insertions only

 Maintain a matching M (greedily) on the graph seen so far

i.e., store an incoming edge in G′ if does not share endpoints with previous

stored edges of M

 For any v in the matching, keep up to k edges incident on v in 𝐆′

(Why? if the degree becomes larger than k,  v will be in the vertex cover)

 If |M|>k, quit

(Why? since size of matching M is a lower bound on size of vertex cover and 

thus vertex cover has size more than k)

 At any time, run kernelization algorithm on stored edges 𝐆′

GVertex cover (hub detection): find a set of vertices 

S so every edge has at least one vertex in S



Why Does It Work?

 Proof outline: argue that kernelization on G′mimics that on G

 Every step on G′ can be applied to G correspondingly

 We keep “enough” edges on a node to test, if it is high-degree

 As a result we obtain any approximation for vertex cover on 

G′ and thus G

 Guarantees O(k2) space: at most k edges on 2k nodes of M

 We prove tight lower bound of W(k2) in the streaming model for 

vertex cover via communication complexity



Kernelization on Dynamic Graph Streams
 Much more challenging case: dynamic graph streams

 Edges are inserted or deleted (friend or unfriend in Facebook)

 Previous algorithm breaks: if a matched edge is deleted we no 

longer can update the (maximal) matching since we forgot edges

 First we solved a promised problem that vertex cover at all 

times is at most size k [Chitnis, Cormode, H., Monemizadeh, SODA 2015]       

(simplified in [Chitnis, Cormode, Esfandiari, H., Monemizadeh,  SPAA 2015] )

 Removing the promise was an important open problem and very 

recently solved 
[Chitnis, Cormode, Esfandiari, H., McGregor, Monemizadeh, Vorotnikova. , SODA 2016]

 Need additional existing technologies, in particular 

k-Sparse Recovery and k-Sampler data structures



k-Sparse Recovery and k-Sample Algorithm

 k-Sparse Recovery:

 A data structure which accepts insertions and deletions of n elements

 At any moment if the current number of elements stored is at most k, 

then these can be recovered in full

 Deterministic construction: requires O(k polylog n) space

 k-Sampler (l0 sampling):

 A data structure which accepts insertions and deletions of n elements

 At any moment it can provide a sample of size k from the elements 

stored in it, provided there are at least k elements in it

 Randomized construction: requires O(k polylog n) space 

(via k-sparse recovery)



Dara Structures for Promised Algorithm

 Our data structure has two parts

 A set of k-sparse recoveries (as well k-samplers)

 Each keeps the neighboring edges of a vertex with degree at least k

 A set of edges L

 These edges are induced by vertices of degree less than k



Insert Edges: Both Endpoints Have Degrees <k

 After the insertion both endpoints have degrees less than 

k:

 Add the edge to the set of edges L

K= 3



Insert Edge: Endpoint Has Degree k

 After the insertion an endpoint has degree k:

 Initiate an empty k-sparse recovery (as well as k-sampler)

for this vertex

 Move all of the neighbors of this vertex from L to k-sparse 
recovery (as well as k-sampler) 

 Put a time stamp on k-sparse recovery 

K= 3



Insert Edge: Endpoint Has k-Sparse Recovery

 If one of endpoints has a k-sparse recovery (as well as k-sampler) 

 Just add the edge to the k-sparse recovery (as well as k-sampler)

 If both endpoints have k-sparse recoveries

 Add the edge to the k-sparse recovery 

(as well as k-sampler) with smaller time stamp

K= 3



Delete Edge: Edge Is in L

 If the deleted edge is in the set of edges L

 Just delete it from the set of edges L

K= 3



Delete Edge: Edge Is in One k-Sparse Recovery

 If one of the endpoints has k-sparse recovery

 Just delete the edge from the k-sparse recovery (as well as k-
sampler) 

 If both endpoints have k-sparse recoveries

 Delete the edge form the k-sparse recovery (as well as k-
sampler) with the smaller time stamp

K= 3



k-Sparse Recovery Has <k Edges

 If after a deletion, a k-sparse recovery has less than k edges

 Retrieve edges from the k-sparse recovery and add them 

to the edge set L

 Remove k-sparse recovery (as well as k-sampler)

K= 3



Proof Outline

 We have one k-sparse recovery (as well as k-sampler) for each 

vertex with degree ≥ k

 We know all vertices with degree ≥ k (all will be in the vertex cover)

 We can sample a set P of k edges from k-samplers 

(only use of k-samplers)

 We know all the other edges in the edge set L

 L ∪ P is enough to create the kernel G′ to find 

a vertex cover 



Space Complexity

 We need O(k2 polylog n) space for k-sparse recoveries 

(as well as k-samplers) since
 Each k-sampler corresponds to a vertex in the vertex cover

 Size of the vertex cover is not more than k (by the promise)

 Thus the number of k-sparse recoveries (as well as k-samplers) is ≤ k

 Each k-sparse recoveries (as well as k-samplers) requires O(k polylog n) space

 We have at most O(k2) edges in L
 Each vertex in the vertex cover covers at most k of these edges

 Size of the vertex cover is not more than k

 In total O(k2 polylog n) space

 Very simple to implement…



 Let 𝑘 be the size of vertex cover at the end

(before 𝑘 was the max size at ALL times)

 Needs a more sophisticated vertex sampling

 Hash each vertex to a number in [1, 𝑘]

Removing the Promise

1

1

2

1

3 3

2



 For each pair of numbers 𝑖, 𝑗 ∈ ( 1, 𝑘 , [1, 𝑘]), maintain one 

edge of data stream, if any exists

Removing the Promise

1

1

2

1

3 3
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 We run this procedure O(log 𝑘) times in parallel

 Let G′ be the graph containing all stored edges

 Thus we only need to run any approximation algorithm for vertex cover in 
G′ (to find one in G)

 We use 𝑂 𝑘3polylog 𝑛 space in total since

 One 𝑘-sampler for each pair 𝑖, 𝑗 ∈ ( 1, 𝑘 , [1, 𝑘]) (𝑂 𝑘2 in total)

 It can be improved to 𝑂 𝑘2polylog 𝑛 with more sophistication

 The results are very general and work for optimization of any
property preserved under ``vertex contraction’’ including: 
 matching, b-matching, hitting set, set cover, k-colorable subgraph, 

several maximum subgraph problems, etc.

Algorithm Summary

Assuming that size of the vertex cover is 𝑘 at

the end, w.h.p. G′ and G have the same set

(and size) vertex cover (and matching) 



Experimental Results for BIG DATA:
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Brain and World Web Graphs

Brain graphs: 

http://mrbrain.cs.jhu.edu/disa/download/

World web graph: 

http://webdatacommons.org/hyperlinkgraph

☛ Some raw data size are over 1.3 Tb

☛ Refined data size is 200 Gb



38

Implementation Difficulties

☛A typical graph needs 200 GB space 
☛ Most classical algorithms  (i.e BFS, DFS, etc) cannot be 

implemented without additional hard drives

☛Most editors crash while openinig the data

☛25m to lookup an entry

☛1h,40m to sort the data
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Experimental Results

☛ World Graph: 

☝ Vertex: subdomain/host.

☝ Edge: hyperlink between subdomain/hosts

☝ n = 101,717,775 m=2,043,203,933
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☛ Brain Graph (KKI): 

☝ Vertex: Brain cell

☝ Edge: Connections between cells

☝ n = 34,143,521 m=2,679,090,553

Experimental Results
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Experimental Results

☛ Brain Graph (MRN): 

☝ Vertex: Brain cell

☝ Edge: Connections between cells

☝ n = 74,256,292 m=6,516,647,674
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Implemented Algorithms

Dataset Time Memory Matching Size

Webgraph 2h,15m 1.8 MB 24,432,528

KKI 3h,10m 2 MB 6,302,146

MRN 7h,25m 1.3 MB 27,189,228

Running time on Samsung Laptop with an external hard-drive



Codes and Data Available at BigDND Website



Looking Forward

 Can other parameterized-algorithm ideas inspire new 

streaming algorithms and vice versa?

 Implementation in MapReduce and other distributed models

 More algorithms with provable guarantees specifically

when we know real-world assumptions on input

 More algorithmic frameworks (meta-algorithms) for 

streaming

 Special thanks to Google Faculty Research Award (twice), 

NSF IIS (BIGDATA), DARPA GRAPHS, ONR Young 

Investigator Award, NSF CAREER, NSF CCF (Medium)

Thank you!


