
course project report • December 2015 • detailed version

Algorithms in the Public-Private
Model to Sub-Additive functions

Brian Brubach, Soheil Ehsani, Karthik A Sankararaman

University of Maryland{
bbrubach,ehsani,kabinav

}
@cs.umd.edu

Abstract

In this work we consider the Public-Private model of graphs introduced by Chierichetti et al [1]. In
the first part, we briefly introduce the model and give the description of the shortest-path algorithm as
described in their paper. In the second part we describe algorithms for Community Detection(Densest
Subgraph problem), Max-Cut and Vertex Cover . We also briefly explain how the above algorithms can be
extended to a small class of sub-additive functions. Finally, we give details of the experimental analysis of
this algorithm run on real-world social network data.

I. The Public-Private Model

The public-private model was introduced in [1] to capture graph problems on social networks. In
this model we have a known public graph G = (V, E) and for each node u ∈ V we have a hidden
private graph Gu = (V, Eu). For each (v, w) ∈ Eu both v and w must be at most a distance of two
from u in the union graph G ∪ Gu. Without loss of generality, we can also assume G ∩ Gu = ∅.

In social networks, nodes represent people/users and edges represent connections between
them (e.g. friendship, shared group membership, etc.). Here we differentiate between edges which
are known to the public, E, and those which are hidden by the user, Eu. For example, a Facebook
user can hide their friend list while other users allow their friend lists to be publicly available.
A 2012 study [2] showed that out of 1.4 million New York City Facebook users, 52.6% hid their
friend list.

To see how this simple public-private model captures phenomena in social networks, we
consider a few examples. If a user u hides their friend list, then the private graph Gu is a star
centered at u. Similarly, if u is part of a private group, then Gu will include a clique containing all
members of the group. Note that in some online social networks, such as Facebook, two users can
be in the same group even if they are not “friends” and we put an edge between them since they
can interact with each other in the group.

When solving problems in this graph model, we assume the public graph G is known in
advance and a private graph Gu for some user u will be revealed. The solution we find should
apply to the union graph G ∪ Gu. Observe that it could be very time consuming to compute some
function on the entire union graph each time a user reveals their public graph. So we wish to do
some preprocessing once on the public graph to answer queries efficiently when private graphs
are revealed. Specifically, our goal is to preprocess the public graph G using poly(|E|) time and
Õ(|V|) space. Then, when Gu is revealed, we should answer queries in time/space that is Õ(|Eu|)
and poly(lg |V|).

II. All Pairs Shortest Path

In this section, we will describe the algorithm for the All Pairs Shortest Path(APSP) problem in
the Public-Private model. APSP is an important problem in social networks since many learning

1

mailto:john@smith.com

course project report • December 2015 • detailed version

algorithms over graphs use it as a feature. For example, a common feature that is often used in
this context is the likelihood of a person A following celebrity B. This can be interpreted well by
the distance on the social network from other celebrities in the related area. In [1], they give an
efficient approximation algorithm to this problem using sampling techniques. We would like to
remark that, even though it is possible to obtain an exact solution to this problem in O(n3) it is
too slow for large social networks.

The central idea of the algorithm is to use the sampling based algorithm due to Das Sharma
et al [3]. In this algorithm, they first generate O(log2 n) random subsets. They use this sample
to estimate distance between any two vertices. in the following subsection, we will give a brief
description of their algorithm.

I. A O(log n) approximation to the APSP in Offline Graphs

In Algorithm 1, we give the details of the algorithm. The running time of the algorithm is
O(m log2 n) because of the following observations.

Observation II.1. For a given set Si, we can compute the element ui corresponding to vertex u for all the
vertices in the graph by performing one BFS.

The observation is true because, we can connect all the vertices in Si to a new vertex di and
start a BFS from this vertex. Since, per set we need O(m) time, we have O(log n) subsets samples
O(log n) times, giving a total running time of O(m log2 n).

Algorithm 1 A O(log n) approximation to the APSP in Offline Graphs

. Sample with replacement r = blog nc+ 1 subsets of vertices S0, S1, . . . , Sr, such that the subset
Si contains 2i vertices
. For any vertex u, let SKETCH(u) denote the vertices u0, u1, . . . , ur such that the closest vertex
from u to set Si is ui
. Repeat the above process of generating r + 1 subsets O(log n) times independently. For each
iteration, append the SKETCH(u) to the SKETCH(u) from the previous iterations. Hence, at
the end, the size of SKETCH(u) is of size O(r log n)
. Define COMMONSKETCH(u, v) = SKETCH(u) ∩ SKETCH(v). Compute dist(u, v) by the

following expression: min{dist(u, w) + dist(w, v)|w ∈ COMMONSKETCH(u, v)}

To prove the correctness of the above algorithm, we prove the following theorem.

Theorem II.1. The estimated distance d(u, v) given by Algorithm 1 is a O(log n) approximation to d(u, v)
with high probability

Proof. (sketch) Let d denote the optimal value of dist(u, v). We will now show that with high
probability there exists a w ∈ COMMONSKETCH(u, v) such that w is at a distance of at most
d log n from both u and v. Hence, this gives that d(u, v) is a O(log n) approximation to d(u, v).

Let Ur denote the set of points that are at a distance of r ∗ d from vertex u. Similarly, let Vr
denote the set of points that are at a distance of r ∗ d from v. Firstly, we can make the following
observation

Observation II.2. Ur ∪Vr ⊆ Ur+1 ∩Vr+1.

2

course project report • December 2015 • detailed version

Proof. This is because for a point in Ur ∪ Vr, the distance from either u or v is at most r ∗ d + d
which is (r + 1) ∗ d.

Suppose there is a set Si such that there is exactly one vertex z such that, z ∈ Ur ∪ Vr and
z ∈ Ur ∩ Vr then clearly z is in COMMONSKETCH(u, v). Now we will show that with high
probability such a set Si exists.

Consider the quantity |Ur∩Vr |
|Ur∪Vr | . We will consider the following two cases

• For some r in range 1, 2, . . . , log n, |Ur∩Vr |
|Ur∪Vr | >

1
2 . Now, consider the vertex z ∈ Ur ∪Vr which

satisfies the property that it is the only vertex from Ur ∪Vr which is in Ur ∩Vr. To this end,
define the event E to be z is the only vertex in Ur ∪Vr which is also in Ur ∪Vr. Hence, the
probability of event E happening is atleast 1

2e .

• For all r in range 1, 2, . . . , log n, |Ur∩Vr |
|Ur∪Vr | ≤

1
2 : From Observation above, we know that

Ur ∪ Vr ⊆ Ur+1 ∩ Vr+1. Hence, |Ur∩Vr |
|Ur∪Vr | ≤

1
2 implies that for all r in range 1, 2, . . . , log n

|Ur ∪ Vr| > 2|Ur−1 ∪ Vr−1|. Since |U0 ∪ V0| = 2 we have |Ulog n ∪ Vlog n| > n which is a
contradiction.

Since we know that for a single sampling of sets S0, S1, . . . , Sr with constant probability there
exists a vertex in the COMMONSKETCH(u, v) which is at a distance at most d log n from both u
and v, using Chernoff bounds we can amplify this probability to a negligibly close quantity to 1
with log n independent trials.

II. Extending the above Offline Algorithm to the Public-Private model

In the Public-Private model, we rephrase the APSP question as follows. Given a public graph and
a private query (u, Gu) we want to give output to dist(u, *) for all vertices * in the graph. The
algorithm first computes the distances on the public graph using the offline algorithm. When a
query arrives, it considers the following three cases and returns the minimum of them.

• distG∪Gu(u, v) does not need to use any edges from the private graph. In this case, we do
not need to do any computation.

• distG∪Gu(u, v) uses exactly one edge from the private graph. In this case we have distG∪Gu(u, v) =
1 + distG(w, v) where w ∈ N(u).

• distG∪Gu(u, v) uses exactly two edges from the private graph. In this case we have distG∪Gu(u, v) =
2 + distG(w, v) where w ∈ N(N(u)).

Since we have the assumption that every vertex in the private graph is at a distance of atmost
2 from u, the above cases is exhaustive. The proof of correctness follows immediately from the
proof of correctness of the offline algorithm.

Note that at the end of offline computation, we only need to store the SKETCH(q) for every
vertex q ∈ V. For an online query, we need O(|Eu| log2 n) time for each of the cases two and three
above. Hence, the total running time in the Online phase is O(|Eu| log2 n).

3

course project report • December 2015 • detailed version

References

[1] Flavio Chierichetti, Alessandro Epasto, Ravi Kumar, Silvio Lattanzi, and Vahab Mirrokni.
Efficient algorithms for public-private social networks. In Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 139–148. ACM, 2015.

[2] Ratan Dey, Zubin Jelveh, and Keith W. Ross. Facebook users have become much more private:
A large-scale study. In PerCom Workshops, pages 346–352. IEEE Computer Society, 2012.

[3] Atish Das Sarma, Sreenivas Gollapudi, Marc Najork, and Rina Panigrahy. A sketch-based
distance oracle for web-scale graphs. In Proceedings of the Third International Conference on Web
Search and Web Data Mining, WSDM 2010, New York, NY, USA, February 4-6, 2010, pages 401–410,
2010.

4

	The Public-Private Model
	All Pairs Shortest Path
	A O(logn) approximation to the APSP in Offline Graphs
	Extending the above Offline Algorithm to the Public-Private model

