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1 Introduction
Here we consider approximation algorithms for the Connected Dominating prob-
lem using both global and local information.

A dominating set is one in which each vertex is either in the dominating set
or adjacent some vertex in the dominating set. The Connected Dominating Set
problem is defined as follows.

Definition 1 (Connected Dominating Set (CDS)) Find a minimum size
subset S of vertices, such that the subgraph induced by S is connected and S
forms a dominating set.

This problem is known to be NP-hard, so we can only approximate it. In this
note, we focus on the setting of local information, which is,

Definition 2 (r-hop of local information) If we know a subgraph S′ of S,
then with r-hop local information, we know the induced graph of S̄ = {v|d(v, S′) ≤
r}, and the degree of all nodes in S̄.

This note is organized as follows. We present two approximation algorithms
for this problem. In section 2, we talk about a naive greedy algorithm which
gives a ∆-approximation, where ∆ is the largest degree in a graph. Then with
some modification, we explain a 2(1 + H(∆))-approximation which needs 2-hop
of information in section 3. After that in section 4, the result was improved.
We still have 2(1 + H(∆))-approximation but needs only 1-hop of information.
Finally, in section 5, comes the original part, where we improved the approxi-
mation ratio to H(∆) + 2

√
H(∆) + 1.
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2 Algorithm 1
We introduce an algorithm with 1-hop local information (by [1]) that finds a
connected dominating set by growing a tree. This algorithm will not give a good
approximation ratio (it gives ∆ approximation ratio), but will shed some light
on how to construct one with good performance.

To help understand everything, we color all the vertices with black, gray
and white. Black vertices are those selected in our solution. Gray vertices are
not selected, but dominated by the black vertices. The rest are white. Initially,
all vertices are colored white (unmarked). When we scan a vertex, we color it
black and color all its white neighbors gray (mark these nodes as dominated).
We start from an arbitrary initial node. In the following steps, we find a gray
vertex which has the maximum number of white numbers.

The algorithm continues until all vertices are black or gray. The set of black
vertices forms a dominating set. With the nature of the algorithm, we know
this dominating set is connected, so we get a connected dominating set.

This algorithm is simple and intuitive, but cannot give good approximation.
The approximation ratio can be as bad as ∆. Consider the following example
(Fig 1).

Figure 1: The Scanning Rule Fails.

We start from u. Then all of its neighbors N(u) = {v|(u, v) ∈ E} will be
colored gray. In the next step we will select a vertex u′ from N(u) and color
its neighbor gray. Now that all gray vertices has exactly one white neighbor.
We could possibly pick a vertex from N(u) again. This might continues until
all the vertices from N(u) have been selected. After that, a vertex from N(v)
will be chosen and v will be colored. Thus our solution uses d + 2 vertices. But
optimal solution will pick a CDS of size 4, which is a path from u to v.
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3 Algorithm 2
We can modify the selecting method to achieve a better approximation ratio.
We define a new operation of selecting a pair of adjacent vertices u and v, such
that u is grey and v is white. The white neighbors of this pair, is the set of
white vertices that are adjacent to at least one of u and v.

Algorithm 1: CDS with 2-hop Information
Data: Graph G = (V, E)
Result: A connected dominating set S

1 S ← an initial point s;
2 while S is not a dominating set do
3 S̄ ← the node or the pair that maximize the number

of white neighbors;
4 S ← S ∪ S̄;

At each step, we will either select a single vertex, or a pair of vertices,
whichever has greater number of white neighbors. In another word, we require
2-hop of information. This improves the approximation ratio to 2(1 + H(∆)).
Let OPTDS be the set of vertices in an optimal dominating set, we have the
following theorem.

Theorem 1 We can find a connected dominating set of size at most 2(1 +
H(∆)) · |OPTDS | with 2-hop local information.

Proof: Suppose the optimal solution is OPT, we partition the set of all vertices
V into {S1, . . . , SOP T }, such that Si includes all the nodes covered by a certain
node vOP Ti (including itself). Ties are broken arbitrarily.

The proof will be based on a charging scheme. Each time we scan a vertex
and add it to the our solution, we will mark some vertices. If we select a single
vertex and color x vertices gray, we will charge each of them 1/x. If we select
a pair of adjacent vertices and color x vertices gray, we charge each of them
2/x. Note a vertex is charged only when it turns from white to gray, so we only
charge it once. Here the sum of charges is equal to number of vertices in our
solution.

We now give an upper bound on the total charges assigned to vertices in Si.
Let uj be the number of unmarked vertices in Si after step j. For simplicity,
let us assume that at each step some vertices of Si are marked, so the number
of unmarked vertices decreases at each step.

The number of unmarked vertices after the first step is u0 − u1 and each of
them will be charged at most 2

u0−u1
. Once a vertex from Si is marked, vertex i

becomes an eligible vertex to be scanned since it’s neighbour of a marked vertex.
In the jth step, the number of vertices of set Si that get marked is uj − uj+1
and the cost to assigned to each vertex is at most 2

j as vertex i was an eligible
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vertex to be scanned. Let uk = 0. Adding up all the charges we get:

2
u0 − u1

(u0 − u1) +
k−1∑
j=1

2
uj

(uj − uj+1)

≤ 2 + 2
k−1∑
j=1

uj − uj+1

uj

One can show that this is at most 2(1 + H(∆)).
Every vertex is dominated by some vertex in OPT . So every node exists in

some Si, such that 1 ≤ i ≤ |OPT |. Sum of charges assigned to vertices in Si is
at most 2(1 + H(∆)). Putting it together, total charge assigned to all vertices
is at most 2(1 + H(∆))|OPT |. Thus our algorithm produces a 2(1 + H(∆))
approximation.

4 Local 1-hop algorithm for CDS
4.1 1-hop information algorithm
Every time, we choose one node that maximize the number of newly covered
nodes, and then choose one of the newly covered nodes uniformly randomly.

Algorithm 2: CDS with 1-hop Information
Data: Graph G = (V, E)
Result: A connected dominating set S

1 S ← an initial point s;
2 while S is not a dominating set do
3 v ← the node that maximize the number of newly

covered nodes;
4 u← an uniformly randomly chosen node from the

newly covered nodes;
5 S ← S ∪ {u, v};

4.2 Analysis
We stick to the charging scheme. Whenever we select a node in line 3 in the
previous algorithm, we put a charge. The charge is spread uniformly among all
the newly covered nodes. For a node select in line 4, we do not charge it. Thus,
the number of nodes chosen is twice the total charge.

Suppose the optimal solution is OPT, we partition the set of all vertices V
into {S1, . . . , SOP T }, such that Si includes all the nodes covered by a certain
node vOP Ti (including itself). Ties are broken arbitrarily. Then what we need
to do is to bound the total charge in each Si.

To help explain the problem, we color all the nodes. At first, all nodes are
colored white. Then, the starting point is colored black, and all its neighbors
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Figure 2: An example of coloring
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Figure 3: An example of Si partition
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are colored gray. After that, whenever we pick a node, we color it black, and
all the nodes dominated by it is colored gray.

We split the charging process into two phases. The first phase ends when a
node in Si is chosen, or marked black. In the second phase, the vertex vOP Ti is
available, but we choose some other nodes.

We first bound the charge in the second phase. It looks like the analysis for
set cover, and gets similar answer: H(∆), where ∆ is the largest degree in the
graph. Suppose the number of non-dominated nodes in Si after each round is
k0, k1, . . . , kt, kt+1 = 0, then if we choose node u at step j instead of vOP Ti , we
can guarantee that the number of newly covered nodes is lower bounded by kj ,
so the charge on each newly covered node is upper bounded by 1

kj
. This means

the total charge in Si in phase 2 during step j is upper bounded by

kj − kj+1

kj
≤

kj∑
s=kj+1−1

1
s

Thus the total charge in Si in phase 2 is bounded by

t∑
r=0

kr − kr+1

kr
≤

t∑
r=0

kj∑
s=kj+1−1

1
s

≤
k0∑

s=1

1
s
≤

|Si|−1∑
s=1

1
s

= H(|Si| − 1) ≤ H(∆)

Where H is harmonic function.
As for the first part, we notice the following fact: whenever a charge p comes

into Si, there is probability p that phase 1 will end instantly. This comes from
the algorithm directly, where both charge and choice are uniformly random.

Think of the following problem: for 1 ≤ i ≤ n, let Xi be a Bernoulli random
variable with expected value pi ∈ [0, 1]. Let T be the random variable denoting
the smallest i such that Xi = 1(or n if Xi = 0 for all I). Then ET [

∑T
i=1 pi] ≤ 1.

This is done by induction. It is trivial if n = 1. For n > 1,

ET

[
T∑

i=1
pi

]
= p1 + (1− p1)ET

[
T∑

i=2
pi|X1 = 0

]
≤ p1 + (1− p1) · 1 = 1

where the inequality come from inductive hypothesis[2]. Putting everything
together, we have an algorithm that use 1-hop information, and achieves ap-
proximation ratio 2(H(∆) + 1).

5 We can even do better
It is easy to see that there is a gap of 2 between global and local algorithm.
This existence makes sense, but can we do better?
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We can get better, and our improved approximation ratio is

H(∆) + 2
√

H(∆) + 1
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