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1 Introduction

Movement Problems were introduced by [DHM+09], as a general framework
that deals with the movement of “pebbles” along a graph in order to achieve
some property. Formally, given a graph G = (V,E) and initial pebble positions
P ⊆ V , a movement problem moves the pebbles to a final position, such that
a particular property is fulfilled. Three natural objective functions are drawn
from this framework: minimizing the total movement (Sum), the maximum
movement (Max), or the number of pebbles moved (Num).

Based on different properties to fulfill, several problems where considered in
[DHM+09] (for all three objective functions):

• Con: The graph induced by the pebbles must be connected.

• DirCon: Given G a directed graph, in the graph induced by the pebbles,
there is a path between each pebble and some root node.

• Path: For a given pair of nodes s and t, there most be a path of pebbles
between s and t in G.

• Ind: No two pebbles are adjacent (or in the same node).

• Match: There is a perfect matching for graph H, in which two pebbles
are connected iff their final distance in G is at most 1.

Some of these problems (and others) where further explored by [BDZ11,
DHM14]. Additionally, [FS11] proposed the Mobile Facility Location prob-
lem, in which both clients and facilities move in the graph s.t. each client moves
to a node where a facility has also moved. The framework of movement prob-
lems was also extended into the geometrical setting by [AFGS15], where pebbles
are points in the euclidean plane, and move to achieve some property.

2 The PathMax Problem

In this section we consider the PathMax problem. We make special emphasis in
the algorithm proposed by [DHM+09], showing how to approximate the problem
within a factor of O(1 +

√
m/OPT).
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Definition 2.1. Given a graph G with some initial configuration of pebbles,
and a pair of nodes s and t, the problem is to move the pebbles s.t. s and t
are connected (i.e., there is a path of pebbles from s to t), while minimizing the
maximum movement of each pebble.

Theorem 2.1. PathMax can be be approximated to O(1 +
√
m/OPT).

Proof. The algorithm proceeds as follows. First, we identify some nodes in the
graph that can’t be part of the optimum solution OPT. Every other node is
considered marked. Then, we move each pebble to its nearest marked node.
Now, we generate a shortest path from s to t only considering marked nodes,
and distribute the pebbles so as to fill the path selected. A careful analysis shows
that each step can be performed while bounding the maximum movement of the
pebbles.

Below is a detailed description of the algorithm.

1. Mark vertices that can be in OPT

A vertex v cannot be in OPT if the following holds: ∃ i ≤ min(dsv, dtv)
s.t. there are less than 2i + 1 pebbles within a radius of OPT + i of v.

Intuitively, if a node v is a part of a path from s to t, then for any circle
of allowed radius i, there must be sufficient pebbles to connect v to two
ends of the circle i.e there must be 2i + 1 pebbles. Since each pebble can
move at most OPT by definition, it must be at most i + OPT away (so
that it can move OPT and reach the boundary of the circle in the worst
case).

Mark all the nodes that can be part of OPT based on the above rule.

Figure 1: Step 1 - The green nodes represent pebbles and v is the node being
considered
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2. Move pebbles to nearest marked vertex

Delete all pebbles that are at distance more than OPT from the nearest
marked vertex, since these can never be part of the optimum solution. In
this step, each pebble moves at most OPT.

Figure 2: Step 2 - Move the pebbles to the nearest marked vertex

3. Find a shortest path and select centers

Find a shortest path P from s to t, P = {s = v0, v1, v2, . . . , v|P | = t}.
Define the center vertices as {vk, v3k+1, v5k+2, ...}. For each center, move
all pebbles within radius k to that center. Since the distance between two
centers is 2k + 1, each pebble is assigned to at most one center. Then,
spread the pebbles out to the M empty vertices. The maximum movement
for this step is OPT + 2k.

Figure 3: Step 3 - Move the pebbles to the centers

4. “Good” and “Bad” pebbles

We define two types of pebbles: Good pebbles are those that are on P and
form part of OPT. Bad pebbles are those that form part of OPT but are
not on P (because they were more than k distance away from a center).
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An example is shown in Figure 4. Because there are M empty vertices on
P , we must have at least M bad pebbles.

Figure 4: Step 4 - Good pebbles are shown in green, bad ones in red.

Let Pb be a bad pebble and Pg be a good one. Suppose the distance
between their target positions in OPT is denoted by H(Pb, Pg). Using
bounds on the distances the pebbles have moved so far, we can obtain a
2k + 4OPT +H(Pb, Pg) bound on the maximum distance between a good
and bad pebble as shown in Figure 5.

Figure 5: Step 4 - Given a good pebble (green) and bad pebble (red), we can
obtain a bound on the distance between them.

Finally, we move bad pebbles to their nearest good pebble in the final con-
figuration on P . On doing so, the pebble that was already at that position gets
pushed one forward and each of the successive pebbles move one forward until
an empty vertex gets filled. This process is repeated until the entire path is
filled.

The analysis of this algorithm yields that the maximum movement of a
pebble is 6k + (5 + 4m/k)OPT. Then, by setting k =

√
mOPT, we obtain the

desired bound for PathMax.
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