
Online Degree-Bounded Steiner Network Design∗

The problem of satisfying connectivity demands on a graph while respecting given constraints
has been a pillar of the area of network design since the early seventies [45, 14, 13, 12, 41]. The
problem of degree-bounded spanning tree, introduced in Garey and Johnson’s Black Book of
NP-Completeness [37], was first investigated in the pioneering work of Fürer and Raghavachari [17]
(Allerton’90). In the degree-bounded spanning tree problem, the goal is to construct a span-
ning tree for a graph G = (V,E) with n vertices whose maximal degree is the smallest among
all spanning trees. Let b∗ denote the maximal degree of an optimal spanning tree. Fürer and
Raghavachari [17] give a parallel approximation algorithm which produces a spanning tree of de-
gree at most O(log(n)b∗).

Agrawal, Klein, and Ravi ([1]) consider the following generalizations of the problem. In the
degree-bounded Steiner tree problem we are only required to connect a given subset T ⊆ V .
In the even more general degree-bounded Steiner forest problem the demands consist of
vertex pairs, and the goal is to output a subgraph in which for every demand there is a path
connecting the pair. They design an algorithm that obtains a multiplicative approximation factor
of O(log(n)). Their main technique is to reduce the problem to minimizing congestion under integral
concurrent flow restrictions and to then use the randomized rounding approach due to Raghavan
and Thompson ([43]).

Shortly after the work of Agrawal et al., Fürer and Raghavachari [18] significantly improved
the result for degree-bounded Steiner forest by presenting an algorithm which produces a
Steiner forest with maximum degree at most b∗ + 1. They show that the same guarantee carries
over to the directed variant of the problem as well. Their result is based on reducing the problem
to that of computing a sequence of maximal matchings on certain auxiliary graphs. This result
settles the approximability of the problem, as computing an optimal solution is NP-hard even in
the spanning tree case.

In this paper, we initiate the study of degree-bounded network design problems in an online
setting, where connectivity demands appear over time and must be immediately satisfied. We first
design a deterministic algorithm for online degree-bounded Steiner forest with a logarithmic
competitive ratio. Then we show that this competitive ratio is asymptotically best possible by
proving a matching lower bound for randomized algorithms that already holds for the Steiner tree
variant of the problem.

In the offline scenario, the results of Fürer, Raghavachari [17, 18] and Agrawal, Klein,
Ravi [1] were the starting point of a very popular line of work on various degree-bounded net-
work design problems [34, 20, 40, 31, 27, 15]. We refer the reader to the next sections for a
brief summary. One particular variant that has been extensively studied is the edge-weighted
degree-bounded spanning tree. Initiated by Marathe et al. ([34]), in this version, we are
given a weight function over the edges and a bound b on the maximum degree of a vertex. The goal
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is to find a minimum-weight spanning tree with maximum degree at most b. The groundbreak-
ing results obtained by Goemans ([20]) and Singh and Lau ([44]) settle the problem by giving an
algorithm that computes a minimum-weight spanning tree with degree at most b + 1. A slightly
worse result is obtained by Singh and Lau ([31]) for the Steiner tree variant. Unfortunately, in the
online setting it is not possible to obtain a comparable result. We show that for any (randomized)
algorithm A there exists a request sequence such that A outputs a sub-graph that either has weight
Ω(n) ·OPTb or maximum degree Ω(n) · b.

In the online variant of degree-bounded Steiner forest , we are given the graph G in
advance, however, demands arrive in an online fashion. At online step i, a new demand (si, ti)
arrives. Starting from an empty subgraph, at each step the online algorithm should augment its
solution so that the endpoints of the new demand si and ti are connected. The goal is to minimize
the maximum degree of the solution subgraph. In the non-uniform variant of the problem, a degree
bound bv ∈ R+ is given for every vertex v. For a subgraph H and a vertex v, let degH(v) denote
the degree of v in H. The load of a vertex is defined as the ratio degH(v)/bv. In the non-uniform
variant of online degree-bounded Steiner forest, the goal is to find a subgraph satisfying
the demands while minimizing the maximum load of a vertex.

Our algorithm is a simple and intuitive greedy algorithm. Upon the arrival of a new demand
(si, ti), the greedy algorithm (GA) satisfies the demand by choosing an (si, ti)-path Pi such that
after augmenting the solution with Pi, the maximum load of a vertex in Pi is minimum. A main
result of our paper is to prove that the maximum load of a vertex in the output of GA is within
a logarithmic factor of OPT, the maximum load of a vertex in an optimal offline solution which
knows all the demands in advance.

Theorem 0.1 The algorithm GA produces an output with maximum load at most O(log n) ·OPT.

The crux of our analysis is establishing several structural properties of the solution subgraph.
First we group the demands according to the maximum load of the bottleneck vertex at the time
of arrival of the demand. We then show that for every threshold r > 0, vertices with load at least r
at the end of the run of GA, form a cut set that well separates the group of demands with load at
least r at their bottleneck vertex. Since the threshold value can be chosen arbitrarily, this leads to
a series of cuts that form a chain. The greedy nature of the algorithm indicates that each cut highly
disconnects the demands. Intuitively, a cut that highly disconnects the graph (or the demands)
implies a lower bound on the number of branches of every feasible solution.

We use a natural dual-fitting argument to show that for every cut set, the ratio between the
number of demands in the corresponding group, over the total degree bound of the cut, is a lower
bound for OPT. Hence, the problem comes down to showing that one of the cuts in the series has
ratio at least 1/O(log n) fraction of the maximum load h of the output of GA. To this end, we
first partition the range of r ∈ (0, h] into O(log n) layers based on the total degree bound of the
corresponding cut. We then show that the required cut can be found in an interval with maximum
range of r.

We complement our first theorem by giving an example for a special case of
online degree-bounded Steiner tree in which no online (randomized) algorithm can achieve
a (multiplicative) competitive ratio o(log n). This also implies that obtaining (non-trivial) additive
competitiveness is not possible in the online setting.

Theorem 0.2 Any (randomized) online algorithm for the degree bounded online Steiner tree prob-
lem has (multiplicative) competitive ratio Ω(log n). This already holds when bv = 1 for every node.
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The previously known techniques. As discussed before, the majority of techniques used for
solving the offline variants of degree-bounded problems involve rounding an optimal fractional
solution of a relaxed linear program. Since one may need to buy a long path to connect the endpoints
of a demand, independent rounding of a fractional solution is hardly efficient. Instead, dependent
and iterative rounding methods are usually used for attacking degree-bounded problems. In the
online paradigm, one can maintain a competitive fractional solution for these problems, however,
it is inherently difficult to apply the aforementioned rounding techniques in an online setting: the
underlying online fractional solution changes in between the rounding steps, thus breaking the chain
of dependencies.

In contrast to the works on the offline paradigm, in this paper we propose a simple combinatorial
algorithm with a dual-fitting analysis. We use the structural properties of the output of our
algorithm to show the existence of a chain of cuts that well separates the demand endpoints. When
restricted to the case of uniform bounds, these cuts imply an upper bound on the toughness of the
graph. The toughness of a graph is defined as minX⊆V

|X|
|CC(G\X)| ; where for a graph H, CC(H)

denotes the collection of connected components of H. It can be shown that the reciprocal of the
toughness gives a lower bound for OPT. Therefore we use a combinatorial argument to show that
the minimum of this ratio over the cuts in our chain of cuts is within O(log(n)) approximation of
the reciprocal of the maximum load of a vertex in our solution.

We would like to emphasize that although the concept of toughness is well-studied in the
literature, this line of research is mainly focused on relating toughness conditions to the existence
of cycle structures, see for example a comprehensive survey by Bauer et al. [9]. The relation
between the graph toughness and degree-bounded problems have been previously observed by
Win [45] and Agrawal et al. [1]. However as mentioned in the introduction, Agrawal et al. use a
completely different argument for analyzing the problem when reduced to a congestion minimization
problem. We hope that the structural properties introduced in this paper together with the dual
interpretation of our analysis, paves the way for solving the classical problems in the family of
degree-bounded problems.

Hardness under more general constraints. We further investigate the following extensions
of the online degree bounded Steiner tree problem. First, we consider the edge-weighted variant
of the degree-bounded Steiner tree problem. Second, we consider the group Steiner tree version
in which each demand consists of a subset of vertices, and the goal is to find a tree that covers
at least one vertex of each demand group. The following theorems show that one cannot obtain a
non-trivial competitive ratio for these versions in their general form.1

Theorem 0.3 Consider the edge weighted variant of online degree-bounded Steiner tree.
For any (randomized) online algorithm A, there exists an instance and a request sequence such
that either E [maxdegree(A)] ≥ Ω(n) · b or E [weight(A)] ≥ Ω(n) · OPTb, where OPTb denotes the
minimum weight of a Steiner tree with maximum degree b.

Theorem 0.4 There is no deterministic algorithm with competitive ratio o(n) for the degree-
bounded group Steiner tree problem.

1Our lower bound results imply that one needs to restrict the input in order to achieve competitiveness. In
particular for the edge-weighted variant, our proof does not rule out the existence of a competitive algorithm when
the edge weights are polynomially bounded.
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The classical family of degree-bounded network design problems have various applications in
broadcasting information, package distribution, decentralized communication networks, etc. (see
e.g. [19, 23]). Marathe et al. ([34]), first considered the general edge-weighted variant of the problem.
They give a bi-criteria (O(log n), O(log n)·b)-approximation algorithm, i.e., the degree of every node
in the output tree is O(log n) · b while its total weight is O(log n) times the optimal weight. A long
line of work (see e.g. [28] and [29]) was focused on this problem until a groundbreaking breakthrough
was obtained by Goemans ([20]); his algorithm computes a minimum-weight spanning tree with
degree at most b+ 2. Later on, Singh and Lau ([44]) improved the degree approximation factor by
designing an algorithm that outputs a tree with optimal cost while the maximum degree is at most
b + 1.

In the degree-bounded survivable network design problem, a number di is associated with each
demand (si, ti). The solution subgraph should contain at least di edge-disjoint paths between si
and ti. Indeed this problem has been shown to admit bi-criteria approximation algorithms with
constant approximation factors (e.g. [31]). We refer the reader to a recent survey in [30]. This
problem has been recently considered in the node-weighted variant too (see e.g. [40, 15]). The
degree-bounded variant of several other problems such as k-MST and k-arborescence has also been
considered in the offline setting for which we refer the reader to [27, 8] and references therein.

Online network design problems have attracted substantial attention in the last decades. The
online edge-weighted Steiner tree problem, in which the goal is to find a minimum-weight sub-
graph connecting the demand nodes, was first considered by Imase and Waxman ([24]). They
showed that a natural greedy algorithm has a competitive ratio of O(log n), which is optimal up to
constants. This result was generalized to the online edge-weighted Steiner forest problem by Awer-
buch et al. ([6]) and Berman and Coulston ([10]). Later on, Naor, Panigrahi, and Singh ([39]))
and Hajiaghayi, Liaghat, and Panigrahi ([22]), designed poly-logarithmic competitive algorithms
for the more general node-weighted variant of Steiner connectivity problems. This line of work
has been further investigated in the prize-collecting version of the problem, in which one can ig-
nore a demand by paying its given penalty. Qian and Williamson ([42]) and Hajiaghayi, Liaghat,
and Panigrahi ([21]) develop algorithms with a poly-logarithmic competitive algorithms for these
variants.

The online b-matching problem is another related problem in which vertices have degree bounds
but the objective is to maximize the size of the solution subgraph. In the worst case model, the
celebrated result of Karp et al. ([26]) gives a (1− 1/e)-competitive algorithm. Different variants of
this problem have been extensively studied in the past decade, e.g., for the random arrival model
see [16, 25, 32, 36], for the full information model see [33, 38], and for the prophet-inequality model
see [4, 2, 3]. We also refer the reader to the comprehensive survey by Mehta [35].

Many of the aforementioned problems can be characterized as an online packing or covering
linear program. Initiated by work of Alon et al. [5] on online set cover, Buchbinder and Naor devel-
oped a strong framework for solving packing/covering LPs fractionally online. For the applications
of their general framework in solving numerous online problems, we refer the reader to the survey
in [11]. Azar et al. [7] generalize this method for the fractional mixed packing and covering LPs. In
particular, they show an application of their method for integrally solving a generalization of capac-
itated set cover. Their result is a bi-criteria competitive algorithm that violates the capacities by
at most an O(log2 n) factor while the cost of the ouput is within O(log2 n) factor of optimum. We
note that although the fractional variant of our problem is a special case of mixed packing/covering
LPs, we do not know of any online rounding method for Steiner connectivity problems.
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