Connected Dominating Sets

Network Design Fall 2015 Saba Ahmadi Sheng Yang

- Dominating Sets and Connected Dominating Sets
- Simple Greedy Approach for Finding Minimum Connected Dominating Sets
- Modifying the Greedy Approach
- What is the approximation Ratio of Modified Greedy Approach?

Connected Dominating Set

- A Dominating Set (DS) is a subset of nodes such that each node is either in DS or has a neighbor in DS.
- In a Connected Dominating Set (CDS) the graph induced by vertices in the dominated set need to be connected as well.
- We focus on the question of Minimum CDS.

Simple Greedy Approach for Minimum CDS Problem

• Initially all vertices are white.

- Grow a tree starting from a vertex of maximum degree, color it black and all its neighbors grey.
- At each step pick a grey vertex that has the maximum number of white neighbors.

The Scanning Rule Fails

The Scanning Rule Fails

The greedy approach picked Δ +2 vertices but there is an optimal solution of size 4.

Modify The Greedy Approach

 At each step we could scan a single grey vertex or a pair of adjacent vertices u and v, such that at least one of them is grey.

Modified Greedy Approach

Modified Greedy Approach

+1/n

- This algorithm gives us a dominating set of size at most $2(1 + H(\Delta)) \cdot |OPT|_{H(n) = 1/1+1/2+...}$
- Let OPT be the set of vertices in an optimal CDS.
- We will prove it using a charging scheme.

What is the Approximation Ratio?

• The set of vertices dominated by vertex i in CDS is called S(i).

- If we mark x vertices in one step we will charge each of them 1/x (If a single vertex is scanned) or 2/x (If a pair is scanned).
- Sum of charges assigned to the vertices show the number of vertices in the CDS.

What is the Approximation Ratio?

 Let u(j) denote the number of unmarked vertices in S(i) after step j. Thus total charges assigned to vertices in S(i) is at most:

$$\frac{2}{u_0 - u_1}(u_0 - u_1) + \sum_{j=1}^{k-1} \frac{2}{u_j}(u_j - u_{j+1})$$

$$\leq 2 + 2\sum_{j=1}^{k-1} \frac{(u_j - u_{j+1})}{u_j}$$

Sum of Costs Assigned to Vertices of S(i)

- u(j) is at most Δ, the worst scenario happens when we mark one vertex of S(i) at each step.
- Thus:

$$\sum_{j=1}^{k-1} u l_j - u l_j + 1 / u l_j \le 1/\Delta + 1/\Delta - 1 + 1/\Delta - 2 + ... + 1 = H(\Delta)$$

 The total cost assigned to vertices of S(i) is at most 2(1+H(Δ)).

Sum of costs assigned to all vertices

- Each vertex of G appears in some S(i). Such that i is a vertex of optimum CDS (OPT).
- Thus total charges assigned to vertices of G is at most 2(1+H(Δ)). |OPT|.
- Therefore we have found a CDS of size at most 2(1+H(Δ)).|OPT|.

Thank you!