Market Allocations in Big Data

Melika Abolhassani Hossein Esfandiari Hadi Yami

Market Allocations

Market Allocations

- Envy free:
 - No one wants to change.

Market Allocation in Big Data

Sketching

Streaming Setting

- Edges arrive in adversarial order.
 - *e*1 , *e*2 , ..., *e↓m*
- Few passes over the input
 - Usually just one
- Small space
- Fast per element processing time

6

Matching in Streaming

- Parameterized Streaming: Maximal Matching and Vertex Cover.
 - CCHM SODA 2015.
- New Streaming Algorithms for Parameterized Maximal Matching & Beyond.
 - CCEHM SPAA 2015.
- *Kernelization via Sampling with Applications to Dynamic Graph Streams.*
 - CCHMMV SODA 2016.

1- There is nothing better than k12. **2-** k12 is possible.

Our goals in this project

- Provide a sketch
 - Lighter, better!
 - Preferably, a function of # of items.
- For two version of the problem
 - Social welfare
 - The total weight of edges that we match.
 - Revenue
 - The total price of the items that we match.

k12 is possible for both versions

Formal definition

- A weighted bipartite graph with n unit demand buyers and k distinct items
- Utility of buyer b_i for item v_i is u_{ii} (Weight of edges)
- Goal : Assign non-negative price to items and items to buyers such that
 - Market clears
 - Assignment is envy free
 - Social welfare (revenue) is maximized

Envy-freeness

An envy-free division is one in which **no one wants someone else's share more than his own.**

Envy-freeness In our setting: Profit of each buyer over the item he gets should be more than any other item.

For each buyer b_j if item v_i is assigned to him
u_{i,j}-p(i) >= u_{l,j}-p(l) for any other item v_l

Main results

- Our result : Having O(k²) available memory we can solve the problem as efficient as the offline case.
 - K is the number of items.
- We show this for both objective functions :
 - Social welfare
 - Revenue