

ONLINE DEGREE-BOUNDED STEINER NETWORK DESIGN

Sina Dehghani Saeed Seddighin Ali Shafahi Fall 2015

ONLINE STEINER FOREST PROBLEM

 \geq An initially given graph G.

 \geq A sequence of demands (s_i, t_i) arriving one-by-one.

>Buy new edges to connect demands.

DEGREE-BOUNDED STEINER FOREST

 \geq There is a given bound b_v for every vertex v.

$$\succ$$
 degree violation $\coloneqq \frac{deg_H(v)}{b_v}$.

 \geq Find a Steiner forest H minimizing the degree violations.

PREVIOUS OFFLINE WORK

> Degree-bounded network design:

Problem	Paper	Result
Degree-bounded Spanning tree	FR '90	$O(\log n)$ -approximation
Degree-bounded Steiner tree	AKR '91	$O(\log n)$ -approximation
Degree-bounded Steiner forest	FR '94	maximum degree $\leq b^* + 1$

PREVIOUS OFFLINE WORK

> Edge-weighted degree-bounded variant:

Problem	Paper	Result
EW DB Steiner forest	MRSRRH. '98	$\langle O(\log n), O(\log n) \rangle$ -approx.
EW DB Spanning tree	G '06	min weight, max deg $\leq b^*+2$
EW DB Spanning tree	LS '07	min weight, max deg $\leq b^* + 1$

PREVIOUS ONLINE WORK

> Online weighted Steiner network (no degree bound)

Problem	Paper	Result
Online edge-weighted Steiner tree	IW '91	$O(\log n)$ -competitive
Online edge-weighted Steiner forest	AAB '96	$O(\log n)$ -competitive

OUR CONTRIBUTION

> Online degree-bounded Steiner network:

Problem	Result
Online degree-bounded Steiner forest	$O(\log n)$ -competitive greedy algorithm
Online degree-bounded Steiner tree	$\Omega(\log n)$ lower bound
Online edge-weighted degree-bounded Steiner tree	$\Omega(n)$ lower bound
Online degree-bounded group Steiner tree	$\Omega(n)$ lower bound for det. algorithms.

LINEAR PROGRAM

 $\forall e \in E: x(e) = 1$ if and only if e is selected.

 ${\it S}$ be the collection of separating sets of demands.

OMPC has an $O(\log^2 n)$ -competitive fractional solution, but rounding that is hard!

$$\begin{aligned} \min \alpha \\ \forall v \in V \sum_{e \in \delta(v)} x(e) &\leq \alpha . b_v \\ \forall S \in \mathbf{S} \sum_{e \in \delta(S)} x(e) &\geq 1 \\ \mathbf{x}(e), \alpha \in \mathbb{R}^+ \end{aligned}$$
 limits degree violations.

REDUCTION TO UNIFORM DEGREE BOUNDS

> Replace v with $v_1 \dots v_{b_v}$.

>Connect each v_i to all neighbors of v.

 \geq Set all degree bounds to 1.

> Uniformly distribute edges of $\delta_H(v)$ among v_i 's.

 \geq The degree violation remains almost the same.

GREEDY ALGORITHM

GREEDY ALGORITHM

Definitions:

Let H denote the online output of the previous step.

For an (s, t)-path P the extension part is $P^* = \{e | e \in P, e \notin H\}$.

• The load of P^* is $l_H(P^*) = \max_{v \in P^*} \deg_H(v)$.

>Algorithm:

- 1. Initiate $H = \phi$.
- 2. For every new demand (s_i, t_i) :
 - 1. Find the path P_i with the minimum $l_H(P_i^*)$.
 - $2. \quad H = H \cup P_i^*.$

Can be done polynomially.

S

t

P*

Example Let $\Gamma(r)$ be the set of vertices with $\deg_H(v) \ge r$.

>Let D(r) be demands for which $l_H(P_i^*)$ is at least r.

Remark: $\Gamma(r)$ is a cut-set for s_i and t_i for every $i \in D(r)$.

Let CC(r) denote the number of connected components of $G \setminus \Gamma(r)$ that have at least one endpoint of demand $i \in D(r)$.

Lemma: $\forall r: CC(r) \ge |D(r)| + 1.$

Remark: $\forall r: OPT \ge \frac{CC(r)}{|\Gamma(r)|}$.

 $\succ \Gamma(r)$'s have a hierarchical order, i.e. $\Gamma(r+1) \subseteq \Gamma(r)$.

Every demand $i \in D(r)$ copies some vertices to upper level.

 \geq Out of all copies, at most $2(\Gamma(r) - 1)$ are for internal edges.

Lemma: $\forall r: |D(r)| \ge \sum_{t=r+1}^{\Delta} |\Gamma(t)| - 2(\Gamma(r) - 1).$

Putting all together:

$$\begin{aligned} \forall r: OPT \geq \frac{CC(r)}{|\Gamma(r)|} &\Rightarrow OPT \geq \max_{r} \frac{CC(r)}{|\Gamma(r)|}.\\ CC(r) \geq |D(r)| + 1.\\ D(r) \geq \sum_{t=r+1}^{\Delta} |\Gamma(t)| - 2(\Gamma(r) - 1).\\ \hline \text{Setting } a_{i} &= |\Gamma(i)| \text{ and using the lemma:}\\ OPT \geq \max_{r} \frac{\sum_{t=r}^{\Delta} |\Gamma(r)| - O(|\Gamma(r)|) + 1}{|\Gamma(r)|} \geq \frac{\Delta}{2 \log |\Gamma(1)|} - O(1) \in \Omega(\frac{\Delta}{\log n}) \end{aligned}$$

LOWER BOUND

Theorem: Every (randomized) algorithm for online degree-bounded Steiner tree is $\Omega(\log n)$ -competitive.

LOWER BOUND

Theorem: Let OPT_b denote the minimum weight of a Steiner tree with maximum degree b. Then for every (randomized) algorithm A for online edge-weighted degree-bounded Steiner tree either $E[\max \deg_A(v)] \ge \Omega(n)$. b

or

• $E[weight(A)] \ge \Omega(n). OPT_b.$

n = 2k + 1b = 3

 $weight(A) = n^{i+1}$ $\deg_A(root) = i$

$$OPT_3 = \sum_{j=1}^{i} n^j \in O(n^i)$$

LOWER BOUND

Theorem: Every deterministic algorithm A for online degree-bounded group Steiner tree is $\Omega(n)$ -competitive.

OPEN PROBLEMS

>The main open problem:

Online edge-weighted degree-bounded Steiner forest,

when the weights are polynomial to n.

>Other degree-bounded variants (with or without weights):

•Online group Steiner tree.

Online survivable network design.

Thank you