Implicit Self-Adjusting Computation for Purely Functional Programs

Joshua Dunfield

Yan Chen Matthew A. Hammer Umut A. Acar

MPI-SWS

September 19, 2011

Input: 3, 5, 8, 2, 10, 4, 9, 1 Output: Max = 10

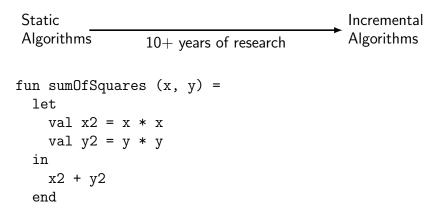
• Linear scan: O(n)

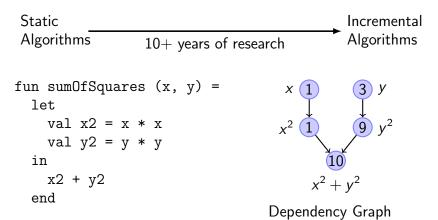
Input: 3, 5, 8, 2, $\frac{10}{10}$, 4, 9, 1 Output: Max = $\frac{10}{9}$

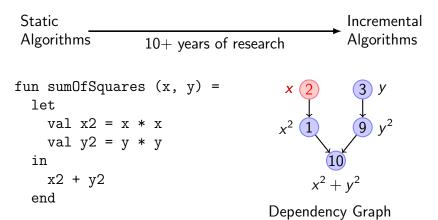
- Linear scan: O(n)
- Priority queue: O(log n)

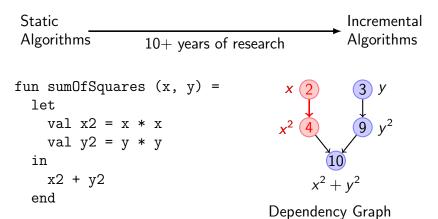
Incremental changes are ubiquitous and hard.

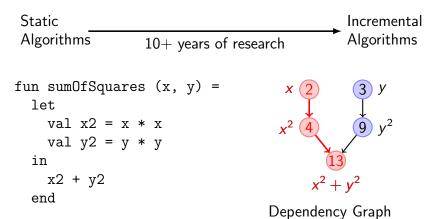
Problem	Static	Incremental/Dynamic
Max	[folklore 1950s] <i>O</i> (<i>n</i>)	[Williams 1964] <i>O</i> (log <i>n</i>)
Graph Connectivity	[Strassen 1969] <i>O</i> (<i>n</i> ^{2.8})	[Thorup 2000] $O(\log n(\log \log n)^3)$ for edge updates
Planar Convex Hull	[Graham 1972] <i>O</i> (<i>n</i> log <i>n</i>)	[Brodal et al. 2002] <i>O</i> (log <i>n</i>)
÷		
Compilation	Whole-program	Separate



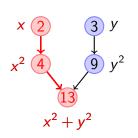




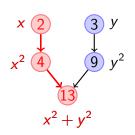




Rewrite program to construct dependency graph



Rewrite program to construct dependency graph



The explicit library is not a natural way of programming.

- The explicit library is not a natural way of programming.
- Efficiency is highly sensitive to program details.

- The explicit library is not a natural way of programming.
- Efficiency is highly sensitive to program details.

```
fun sumOfSquares (x:int mod, y:int) =
   let
   val x2 = mod (read x as x' in
        write (x' * x' + y * y))
```

in

x2 end

- The explicit library is not a natural way of programming.
- Efficiency is highly sensitive to program details.
- Different requirements lead to different functions.

- The explicit library is not a natural way of programming.
- Efficiency is highly sensitive to program details.
- Different requirements lead to different functions.
- Function rewriting can spread to large amounts of code.

res end

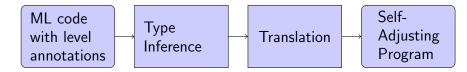
ML Code

Explicit Self-Adjusting Code

```
fun sumOfSquares (x:int mod, y:int) =
fun sumOfSquares (x, y)
                                         let
                                           val x^2 = mod (read x as x' in
  let.
                                                          write (x' * x')
   val x^2 = x * x
                                           val v^2 = v * v
   val v^2 = v * v
                              ?
                                         in
  in
                                           mod (read x2 as x2' in
   x2 + y2
                                                write (x2' + y2))
  end
                                         end
```

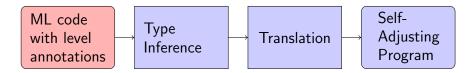

У Stable

New! Implicit Self-Adjusting Computation



- Annotate input types no code modification required.
- Automatically infer dependencies from type annotations.
- Polymorphism enables different versions of code.
- Type-directed translation produces an efficient self-adjusting program.

New! Implicit Self-Adjusting Computation



- Annotate input types no code modification required.
- Automatically infer dependencies from type annotations.
- ► Polymorphism enables different versions of code.
- Type-directed translation produces an efficient self-adjusting program.

Source Language

- Pure λ -calculus with level annotations.
- Use level C to mark changeable data.

Levels $\delta ::= \mathcal{S} \mid \mathcal{C} \mid \alpha$ Types $\tau ::= \operatorname{int}^{\delta} \mid (\tau_1 \times \tau_2)^{\delta} \mid (\tau_1 + \tau_2)^{\delta} \mid (\tau_1 \to \tau_2)^{\delta}$

val sumOfSquares: $int^{\alpha_1} * int^{\alpha_2} \rightarrow int^{\alpha_3}$

Source Language

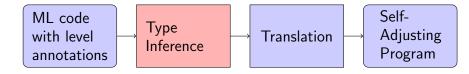
- Pure λ -calculus with level annotations.
- Use level C to mark changeable data.

Levels $\delta ::= \mathcal{S} \mid \mathcal{C} \mid \alpha$ Types $\tau ::= \operatorname{int}^{\delta} \mid (\tau_1 \times \tau_2)^{\delta} \mid (\tau_1 + \tau_2)^{\delta} \mid (\tau_1 \to \tau_2)^{\delta}$

val sumOfSquares: $int^{\alpha_1} * int^{\alpha_2} \rightarrow int^{\alpha_3}$

Represents:

val sumOfSquaresSS: $int^{S} * int^{S} \rightarrow int^{S}$ val sumOfSquaresSC: $int^{S} * int^{C} \rightarrow int^{C}$ val sumOfSquaresCS: $int^{C} * int^{S} \rightarrow int^{C}$ val sumOfSquaresCC: $int^{C} * int^{C} \rightarrow int^{C}$



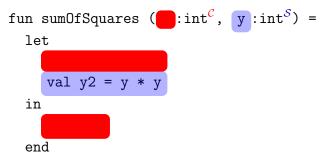
Identify affected computation

- Identify affected computation
 - Any data that depends on changeable data must be changeable.

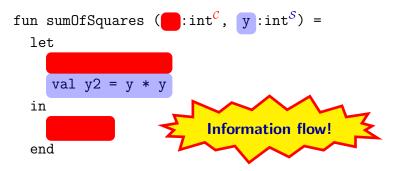
- Identify affected computation
 - Any data that depends on changeable data must be changeable.
- Identify reusable computation:

fun sumOfSquares (x:int^C, y:int^S) =
let
val x2 = x * x
val y2 = y * y
in
x2 + y2
end

- Identify affected computation
 - Any data that depends on changeable data must be changeable.
- Identify reusable computation:
 - Non-interference property



- Identify affected computation
 - Any data that depends on changeable data must be changeable.
- Identify reusable computation:
 - Non-interference property



fun sumOfSquares (x:int^C, y:int^S) : int =
 let
 val x2:int = x * x
 val y2:int = y * y
 val res:int = x2 + y2
 in
 res

end

fun sumOfSquares (x:int^C, y:int^S) : int =
let
val x2:int^C = x * x
val y2:int = y * y
val res:int = x2 + y2
in
res

end

fun sumOfSquares (x:int^C, y:int^S) : int =
let
val x2:int^C = x * x
val y2:int^S = y * y
val res:int = x2 + y2
in
res

end

fun sumOfSquares (x:int^C, y:int^S) : int =
let
val x2:int^C = x * x
val y2:int^S = y * y
val res:int^C = x2 + y2
in
res
end

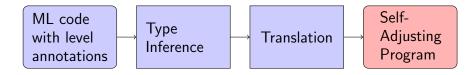
fun sumOfSquares (x:int^C, y:int^S) : int^C =
let
val x2:int^C = x * x
val y2:int^S = y * y
val res:int^C = x2 + y2
in
res
end

Type Inference for Level Polymorphism

$$C \land D; \Gamma \vdash_{\mathcal{S}} v_{1} : \tau' \qquad C; \Gamma, x : \forall \vec{\alpha}[D]. \tau'' \vdash_{\varepsilon} e_{2} : \tau$$
Generate fresh level variables

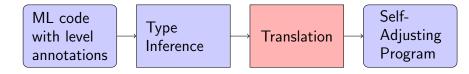
$$\overbrace{\vec{\alpha} \cap FV(C, \Gamma) = \emptyset} \qquad \overbrace{C \Vdash \tau' <: \tau''}_{C \land \exists \vec{\alpha}.D; \Gamma \vdash_{\varepsilon}} \underbrace{\text{let } x = v_{1} \text{ in } e_{2}}_{\text{Value Restriction}} : \tau$$
(SLetV)

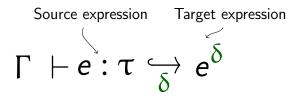
- $\begin{array}{ll} \texttt{val sumOfSquares:} & \texttt{int}^{\alpha_1} \, \ast \, \texttt{int}^{\alpha_2} \, \textbf{-} \succ \, \texttt{int}^{\alpha_3} \\ & [\alpha_3 \geq \alpha_1 \wedge \alpha_3 \geq \alpha_2] \end{array}$
- Our typing rules and constraints fall within the HM(X) framework [Odersky et al. 1999], permitting inference of principal types via constraint solving.

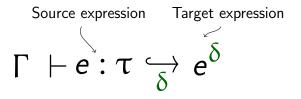


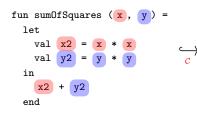
- Modal type system
- ► e^C has no return value, and can only end with write or changeable function application.

Types
$$\underline{\tau} ::= \underline{\tau} \mod | \cdots$$
Expressions $e ::= e^{S} | e^{C}$ Stable $e^{S} ::= \det x = e^{S} \text{ in } e^{S}$ expressions $| \mod e^{C}$ Changeable e^{C} e^{C} $::= \det x = e^{S} \text{ in } e^{C}$ expressions $| \operatorname{read} x \operatorname{as} y \operatorname{in} e^{C}$ dereference $| \operatorname{write}(x)$ store

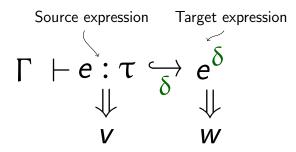


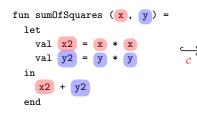


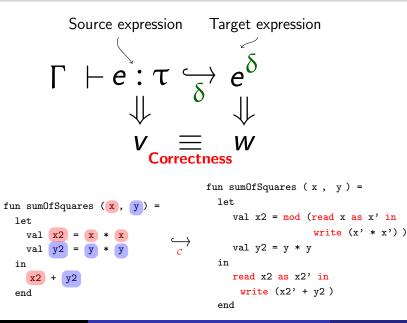




fun sumOfSquares (x , y) =
 let
 val x2 = mod (read x as x' in
 write (x' * x'))
 val y2 = y * y
 in
 read x2 as x2' in
 write (x2' + y2)
 end







$$\Gamma \vdash \text{ val res} = x2 + y2 \text{ in res} : \text{int}^{\mathcal{C}}$$

$$\Gamma \vdash \text{ val res} = x2 + y2 \text{ in res} : \text{int}^{\mathcal{C}}$$

val res =

 $\stackrel{\smile}{\sim}$

y2

$$\Gamma \vdash \text{val res} = x2 + y2 \text{ in res} : \text{int}^{\mathcal{C}}$$

val res = read x2 as x2' in
$$x2' + y2$$

$$\Gamma \vdash \text{ val res} = x2 + y2 \text{ in res} : \text{int}^{\mathcal{C}}$$

val res =	read x2 as x2' in
	write (x2' + y2)
$\underset{\mathcal{S}}{\hookrightarrow}$	

 $\stackrel{\frown}{s}$

Typing Environment Γ : x2:int^C, y2:int^S, res:int^C

$$\Gamma \vdash \text{val res} = x2 + y2 \text{ in res} : \text{int}^{\mathcal{C}}$$

Typing Environment Γ : x2:int^C, y2:int^S, res:int^C

$$\Gamma \vdash \text{val res} = x2 + y2 \text{ in res} : \text{int}^{\mathcal{C}}$$

Translation — Monomorphization

Generate all satisfying instances

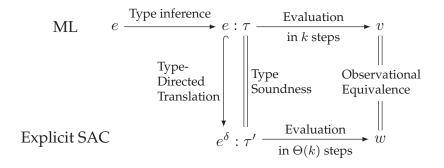
$$\frac{\Gamma, x : \forall \vec{\alpha}[D]. \tau' \vdash e : \tau \hookrightarrow_{\delta} e'}{\Gamma \vdash v : [\vec{\delta_i}/\vec{\alpha}]\tau' \hookrightarrow_{S} e'_i} \quad For all \vec{\delta_i} \text{ s.t. } \vec{\alpha} = \vec{\delta_i} \Vdash D, \\ \Gamma \vdash v : [\vec{\delta_i}/\vec{\alpha}]\tau' \hookrightarrow_{S} e'_i \\ \hline \Gamma \vdash \text{let } x = v \text{ in } e : \tau \hookrightarrow_{\delta} \text{ let } \{x_{\vec{\delta_i}} = e'_i\}_i \text{ in } e' \quad (\text{LetV})$$

 $\begin{array}{lll} \text{val sumOfSquares:} & \inf^{\alpha_1} \ \ast \ \inf^{\alpha_2} \ - > \ \inf^{\alpha_3} \\ & [\alpha_3 \geq \alpha_1 \wedge \alpha_3 \geq \alpha_2] \end{array}$

 $\begin{array}{c} \text{val sumOfSquaresSS: int}^{\mathcal{S}} * \text{int}^{\mathcal{S}} \rightarrow \text{int}^{\mathcal{S}}\\ \text{val sumOfSquaresSC: int}^{\mathcal{S}} * \text{int}^{\mathcal{C}} \rightarrow \text{int}^{\mathcal{C}}\\ \overset{\longrightarrow}{\delta} \text{ val sumOfSquaresCS: int}^{\mathcal{C}} * \text{int}^{\mathcal{S}} \rightarrow \text{int}^{\mathcal{C}}\\ \text{val sumOfSquaresCC: int}^{\mathcal{C}} * \text{int}^{\mathcal{C}} \rightarrow \text{int}^{\mathcal{C}} \end{array}$

- Dead-code elimination can remove unused functions.
- The functions that are used would have to be handwritten in an explicit setting.

Theoretical Results



Summary

- Implicit Self-Adjusting Computation
 - Automatic dependency tracking based on type annotation
 - Type-directed translation for self-adjusting computation
- Automatically make ML programs self-adjusting
- Formal proofs of translation soundness and asymptotic complexity
- Implementation and preliminary results presented at Workshop on ML

