
Chapter 2
Object-Based and Image-Based

Image Representations

ENCW(e)
CF(FCW(e))
CCV(VEND(e))

EPCW(e)
CCF(FCW(e))
CV(VSTART(e))FCW(e)

e

(a)

VEND(e) VSTART(e)

FCCW(e)
EPCCW(e)
CCF(FCCW(e))
CV(VEND(e))

ENCCW(e)
CF(FCCW(e))
CCV(VSTART(e))

EPCCW(e)
CV(VEND(e))

CCF(FCCW(e))

CF(FCCW(e))
CCV(VSTART(e))

ENCCW(e)

VSTART(e)

VEND(e)

CCF(FCW(e))

CV(VSTART(e))

EPCW(e)

ENCW(e)

CCV(VEND(e))

CF(FCW(e))

e
FCW(e)

FCCW(e)

(b)

Figure 2.89
(a) Example of an edge e and its four wings and (b) the physical interpretation of e and
its wings when e is an edge of a parallelepiped represented by the winged-edge data
structure.

E9

E5V6 V5

E10
V2E1

E6

V7

E2
E7

E8

V8

V3E3

E12
E4

V1

V4

E11

F1

F2

F3

F4

F5
F6

Figure 2.90
Sample parallelepiped with vertices
(V1–V8), edges (E1–E2), and faces
(F1–F6).

3. Edge-edge relation: the preceding edges (CCV(VSTART(e)) and CCV(VEND(e)))
and the next edges (CV(VSTART(e)) and CV(VEND(e))) incident at the two vertices,
thereby incorporating the vertex-edge relation, as well as the face-edge relation when
using an alternative interpretation of the wings of the edge.

As an example of the winged-edge data structure, consider the parallelepiped in Fig-
ure 2.89(b), whose individual vertices, edges, and faces are labeled and oriented accord-
ing to Figure 2.90. One possible implementation of a winged-edge representation for it is
given by tables VERTEXEDGETABLE and FACEEDGETABLE in Figures 2.91 and 2.92,
which correspond to the partial vertex-edge and face-edge relations, respectively, and the
collection of edge records that make up the edge-edge relation given by Figure 2.93. Ob-
serve that VERTEXEDGETABLE and FACEEDGETABLE are really indexes (i.e., access
structures) that enable an efficient response to queries on the basis of the value of a given
vertex v or face f , such as finding all of the edges incident at v or the edges that f com-
prises, respectively, in both the clockwise and counterclockwise orders. This information
is accessed by the field EDGE as the tables may contain additional information, such as
the actual x, y, and z coordinate values of the vertex in the case of VERTEXEDGETABLE.

VERTEX v X Y Z EDGE

V1 X1 Y1 Z1 E1
V2 X2 Y2 Z2 E2
V3 X3 Y3 Z3 E3
V4 X4 Y4 Z4 E4
V5 X5 Y5 Z5 E5
V6 X6 Y6 Z6 E6
V7 X7 Y7 Z7 E7
V8 X8 Y8 Z8 E8

Figure 2.91
VERTEXEDGETABLE[v ].

FACE f EDGE

F1 E1
F2 E5
F3 E11
F4 E9
F5 E4
F6 E8

Figure 2.92
FACEEDGETABLE[f ].

320



Section 2.2
Boundary-Based
Representations

In particular, EDGE(VERTEXEDGETABLE[v])= e contains a pointer to an edge record
e that is incident at vertex v, while EDGE(FACEEDGETABLE[f ])= e contains a pointer
to an edge record e that is part of face f .

It is also important to note that, given a pointer to an edge record e, the edge-edge
relation makes use of fields CCFFCW(e), CVVSTART(e), CFFCW(e), CCVVEND(e),
CCFFCCW(e), CVVEND(e), CFFCCW(e), and CCVVSTART(e), instead of
CCF(FCW(e)), CV(VSTART(e)), CF(FCW(e)), CCV(VEND(e)), CCF(FCCW(e)),
CV(VEND(e)), CF(FCCW(e)), and CCV(VSTART(e)), respectively. This is done in
order to indicate that the pointer to the appropriate edge record in the corresponding
field in the relation is obtained by storing it there explicitly instead of obtaining it by dy-
namically computing the relevant functions each time the field is accessed (e.g., the field
CCFFCW(e) stores the value CCF(FCW(e)) directly rather than obtaining it by applying
the function CCF to the result of applying FCW to e each time this field is accessed).

A crucial observation is that the orientations of the edges are not given either in
VERTEXEDGETABLE or FACEEDGETABLE or in the edge-edge relation. The absence
of the orientation is compensated for by the presence of the VSTART, VEND, FCW, and
FCCW fields in the edge-edge relation. This means that, given a face f (vertex v), the
edge e stored in the corresponding FACEEDGETABLE (VERTEXEDGETABLE) entry is
not sufficient by itself to indicate the next or previous edges in f (incident at v) without
checking whether f is the value of the clockwise FCW(e) or the counterclockwise
FCCW(e) face field (v is the value of the start VSTART(e) or end VEND(e) vertex field)
of record e in the edge-edge relation. Thus, the algorithms that use this orientationless
representation must always check the contents of FCW(e) and FCCW(e) (VSTART(e)

and VEND(e)) for the use of face f (vertex v). The same is also true upon making a
transition from one edge to another edge when the edge has not been obtained from
VERTEXEDGETABLE or FACEEDGETABLE.

As an example of the use of these tables, consider procedure EXTRACTEDGESOF-
FACE given below, which extracts the edges of face f in either clockwise or coun-
terclockwise order. Let e denote an edge in f , obtained from FACEEDGETABLE, and
use the interpretation of e’s wings as adjacent edges along adjacent faces of e (i.e., the
winged-edge-face variant). For a clockwise ordering, if f = FCW(e), then the next edge
is CFFCW(e); otherwise, f = FCCW(e), and the next edge is CFFCCW(e). For a coun-
terclockwise ordering, if f = FCW(e), then the next edge is CCFFCW(e); otherwise,

CCFFCW CFFCW CCFFCCW CFFCCW

EDGE e VSTART VEND FCW FCCW EPCW ENCW EPCCW ENCCW

CVVSTART CCVVEND CVVEND CCVVSTART

E1 V1 V2 F1 F4 E4 E2 E10 E9
E2 V2 V3 F1 F6 E1 E3 E11 E10
E3 V3 V4 F1 F3 E2 E4 E12 E11
E4 V4 V1 F1 F5 E3 E1 E9 E12
E5 V5 V6 F2 F4 E8 E6 E9 E10
E6 V6 V7 F2 F5 E5 E7 E12 E9
E7 V7 V8 F2 F3 E6 E8 E11 E12
E8 V8 V5 F2 F6 E7 E5 E10 E11
E9 V1 V6 F4 F5 E1 E5 E6 E4

E10 V5 V2 F4 F6 E5 E1 E2 E8
E11 V3 V8 F3 F6 E3 E7 E8 E2
E12 V7 V4 F3 F5 E7 E3 E4 E6

Figure 2.93
Edge-edge relation.

321



Chapter 2
Object-Based and Image-Based

Image Representations

F

E

G

D

(a)

F

E

G

D

(b)

F

E

G

D

(c)

Figure 2.94
The physical interpretation of the
(a) winged-edge-face, (b) winged-
edge-vertex, and (c) quad-edge
data structures for a pair of adjacent
faces of a simple object. Assume an
implementation that links the next
and preceding edges in clockwise
order for faces in (a), for vertices
in (b), and next edges in clockwise
order for both faces and vertices
in (c).

f = FCCW(e), and the next edge is CCFFCCW(e). This process terminates when we
encounter the initial value of e again. For example, extracting the edges of face F1
in Figure 2.90 in clockwise order yields E1, E2, E3, and E4. The execution time of
EXTRACTEDGESOFFACE is proportional to the number of edges in f as each edge is
obtained in O(1) time. This is a direct consequence of the use of FACEEDGETABLE,
without which we would have had to find the first edge by a brute-force (i.e., a sequen-
tial) search of the edge-edge relation. Similarly, by making use of VERTEXEDGETABLE

to obtain an edge incident at vertex v, we can extract the edges incident at v in time pro-
portional to the total number of edges that are incident at v as each edge can be obtained
in O(1) time (see Exercise 2).

1 procedure EXTRACTEDGESOFFACE(f,CWFlag)

2 /* Extract the edges making up face f in clockwise (counterclockwise) order
if flag CWFlag is true (false). */

3 value face f

4 value Boolean CWFlag
5 pointer edge e,FirstEdge
6 e ← FirstEdge ← EDGE(FACEEDGETABLE[f ])
7 do
8 output e

9 if CWFlag then
10 e ←if FCW(e) = f then CFFCW(e)

11 else CFFCCW(e)

12 endif
13 else e ← if FCW(e) = f then CCFFCW(e)

14 else CCFFCCW(e)

15 endif
16 endif
17 until e = FirstEdge
18 enddo

The above interpretations are not the only ones that are possible. Another interpre-
tation, among many others, which finds much use, interprets the four wings in terms of
the next edges at each of the faces that are adjacent to e and the next edges incident at
each of the two vertices that make up e. In this case, we have combined the interpreta-
tions of the wings CF(FCW(e)) and CF(FCCW(e)) as used in the winged-edge-face data
structure with the interpretations of the wings CV(VSTART(e)) and CV(VEND(e)) as
used in the winged-edge-vertex data structure. The result is known as the quad-edge data
structure [767]. It keeps track of both the edges that make up the faces in the clockwise
direction and the edges that are incident at the vertices in the clockwise direction.

The quad-edge data structure is of particular interest because it automatically encodes
the dual graph, which is formed by assigning a vertex to each face in the original graph
and an arc to each edge between two faces of the original graph. In other words, we just
need to interpret the cycles through the edges around the vertices in the original graph
as faces in the dual graph and the cycles through the edges that the faces comprise in the
original graph as vertices in the dual graph. In addition, the exterior face, if one exists,
in the original graph is also assigned a vertex in the dual graph, which is connected to
every face in the original graph that has a boundary edge. This makes the quad-edge data
structure particularly attractive in applications where finding and working with the dual
mesh is necessary or useful. For example, this is the case when the mesh corresponds
to a Voronoi diagram whose dual is the Delaunay triangulation (DT). We discuss this
further in Section 2.2.1.4. Another advantage of the quad-edge data structure over the
winged-edge-face and winged-edge-vertex data structures is that, in its most general
formulation, the quad-edge data structure permits making a distinction between the two
sides of a surface, thereby allowing the same vertex to serve as the two endpoints of an
edge, as well as allowing dangling edges, and so on.

From the above, we see that the winged-edge-face, winged-edge-vertex, and quad-
edge data structures are identical in terms of the information that they store for each

322


