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Intervals and Small Rectangles

The problem of how to represent the space spanned by collections of small rectangles

arises in many applications. The space spanned by the rectangles can also be viewed as

the d-dimensional Cartesian product of d one-dimensional intervals (i.e., spheres), and

thus the problem is often cast as one of representing one-dimensional intervals. The most

common application is one where rectangles are used to approximate other shapes for

which they serve as the minimum enclosing objects (recall our discussion of the R-tree

and other object-based hierarchical interior-based representations in Section 2.1.5.2 of

Chapter 2). For example, rectangles can be used in cartographic applications to approx-

imate objects such as lakes, forests, and hills [1258]. Of course, the exact boundaries

of the object are also stored, but usually they are only accessed if a need for greater

precision exists. Rectangles are also used for design rule checking in very large-scale in-

tegration (VLSI) design applications as a model of chip components for the analysis of

their proper placement. Again, the rectangles serve as minimum enclosing objects. This

process includes such tasks as determining whether components intersect and insuring

the satisfaction of constraints involving factors such as minimum separation and width.

These tasks have a practical significance in that they can be used to avoid design flaws.

The size of the collection depends on the application; it can vary tremendously. For

example, in cartographic applications, the number of elements in the collection is usually

small, and frequently the sizes of the rectangles are of the same order of magnitude as

the space from which they are drawn. On the other hand, in VLSI design applications,

the size of the collection is quite large (e.g., millions of components), and the sizes of

the rectangles are several orders of magnitude smaller than the space from which they

are drawn.

In this chapter, we focus primarily on how to represent a large collection of rectangles

common in VLSI design applications. However, our techniques are equally applicable

to other domains. We assume that all rectangles are positioned so that their sides are par-

allel to the x and y coordinate axes. Our presentation makes use of representations for

one-dimensional intervals rooted in computational geometry as well as combines repre-

sentations for multidimensional point data (see Chapter 1) and objects (see Chapter 2).

The principal tasks to be performed are similar to those described in Chapter 1. They

range from basic operations, such as insertion and deletion, to more complex queries

that include exact match, partial match, range, partial range, finding all objects (e.g.,

rectangles) in a given region, finding nearest neighbors with respect to a given metric

for the data domain, and even join queries [1899]. The most common of these queries

involves proximity relations and is classified into two classes by Hinrichs [839]. The

first is an intersection query that seeks to determine if two sets intersect. The second is

a subset relation and can be formulated in terms of enclosure (i.e., is A a subset of B?)

or of containment (i.e., does A contain B?).
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In describing queries involving these relations, we must be careful to distinguish

between a point and an object. A point is an element in the d-dimensional space from

which the objects are drawn. It is not an element of the space into which the objects

may be mapped by a particular representation. For example, in the case of a collection

of rectangles in two dimensions, a point is an element of the Euclidean plane and not a

rectangle, even though we may choose to represent each rectangle by a point in some

multidimensional space.

In this chapter, we focus on three types of proximity queries. The first, and most

common, is the point query, which finds all the objects that contain a given point. It is

important to distinguish this query from the point query discussed in Chapter 1 that seeks

to determine if a given point p is actually in the dataset (more accurately described as an

exact match query). The second type is a point set query, which, given a relation ⊕ and

a set of points Q (typically a region), finds the set of objects S such that S ⊕ Q holds.

An example is a query, more commonly known as a window operation, that finds all

the rectangles that intersect a given region. In this example, the relation ⊕ is defined by

S ⊕ Q if S ∩ Q �= ∅, and Q is the query window. The third type of query is a geometric

join query (also known as a spatial join query [1415]), which, for a relation ⊕ and

two classes of objects O1 and O2 with corresponding subsets S1 and S2, finds all pairs

(P1,P2) with P1 ∈ S1, P2 ∈ S2, and P1 ⊕ P2. An example is a query that determines all

pairs of overlapping rectangles. In such a case, both O1 and O2 correspond to the set of

rectangles, and ⊕ is the intersection relation. In our examples, S1 and S2 are usually the

same subsets, although the more general problem can also be handled.

Initially, we present representations that are designed for use with the plane-sweep

solution paradigm [119, 1511, 1740]. For many tasks, use of this paradigm yields worst-

case optimal solutions in time and space. We examine its use in solving two problems:

1. Reporting all intersections between rectangles (the rectangle intersection problem—

Section 3.1)

2. Computing the area of a collection of d-dimensional rectangles (the measure prob-

lem—Section 3.2)

We focus on the segment, interval, and priority search trees. They represent a

rectangle by the intervals that form its boundaries. However, these representations are

usually for formulations of the tasks in a static environment. This means that the identities

of all the rectangles must be known if the worst-case time and space bounds are to hold.

Furthermore, for some tasks, the addition of a single object to the database may force

the reexecution of the algorithm on the entire database.

The remaining representations are for a dynamic environment. They are differenti-

ated by the way in which each rectangle is represented. The first type of representation

reduces each rectangle to a point in a usually higher-dimensional space and then treats the

problem as if it involves a collection of points (Section 3.3). The second type is region-

based in the sense that the subdivision of the space from which the rectangles are drawn

depends on the physical extent of the rectangle—it does not just treat a rectangle as one

point (Section 3.4). Many of these representations are variants of the quadtree. We show

that these quadtree variants are very similar to the segment and interval trees that are

used with the plane-sweep paradigm. Moreover, we observe that the quadtree serves as a

multidimensional sort and that the process of traversing it is analogous to a plane sweep

in multiple dimensions.

3.1 Plane-Sweep Methods and the
Rectangle Intersection Problem

The term plane sweep is used to characterize a paradigm employed to solve geometric

problems by sweeping a line (plane in three dimensions) across the plane (space in three

dimensions) and halting at points where the line (plane) makes its first or last intersection
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Section 3.4

Area-Based Methods
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Figure 3.23

(a) A collection of rectangles and the block decomposition induced by its MX-CIF quadtree

and (b) the tree representation of (a).
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Binary trees for the (a) x axis and (b)

(b) y axis passing through node A in

Figure 3.23.
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Figure 3.25

Binary trees for the (a) x axis and

(b) y axis passing through node E in

Figure 3.23.

than a predetermined threshold size. This threshold is often chosen to be equal to the

expected size of the rectangle [1009]. In this section, we will assume that rectangles do

not overlap (but may touch), although our techniques can be modified to handle this sit-

uation. Figure 3.23 contains a set of rectangles and its corresponding MX-CIF quadtree.

Once a rectangle is associated with a quadtree node, say P , it is not considered to be a

member of any of the children of P . For example, in Figure 3.23, rectangle 11 overlaps

the space spanned by both nodes D and F but is associated only with node D.

It should be clear that more than one rectangle can be associated with a given

enclosing block (i.e., node). There are several ways of organizing these rectangles. Abel

and Smith [8] do not apply any ordering. This is equivalent to maintaining a linked list

of the rectangles. Another approach, devised by Kedem [1009], is described below.

Let P be a quadtree node, and let S be the set of rectangles that are associated

with P . Members of S are organized into two sets according to their intersection (or the

collinearity of their sides) with the lines passing through the centroid of P ’s block. We

shall use the terms axes or axis lines to refer to these lines. For example, consider node

P , whose block is of size 2 . Lx × 2 . Ly and centered at (Cx,Cy). All members of S that

intersect the line x =Cx form one set, and all members of S that intersect the line y =Cy

form the other set. Equivalently, these sets correspond to the rectangles intersecting the

y and x axes, respectively, passing through (Cx,Cy). If a rectangle intersects both axes

(i.e., it contains the centroid of P ’s block), then we adopt the convention that it is stored

with the set associated with the y axis.

These subsets are implemented as binary trees (really tries), which, in actuality, are

one-dimensional analogs of the MX-CIF quadtree. For example, Figure 3.24 illustrates

the binary tree associated with the x and y axes passing through A, the root of the MX-

CIF quadtree of Figure 3.23. The subdivision points of the axis lines are shown by the

tick marks in Figure 3.23.

Note that a rectangle is associated with the shallowest node in the binary tree that

contains it. For example, consider Figure 3.25, which contains the binary trees associated

with the x and y axes passing through E in the MX-CIF quadtree of Figure 3.23. In

particular, we see that no rectangle is stored in the left (right) subtree of node XN (XM)

in Figure 3.25(a) even though rectangle 4 contains it. In this example, rectangle 4 is

associated with the y axis that passes through node E (i.e., node YE in Figure 3.25(b)).
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