
4
High-Dimensional Data

Chapters 1 and 2 dealt with the representation of multidimensional points and objects,

respectively, and the development of appropriate indexing methods that enable them

to be retrieved efficiently. Most of these methods were designed for use in application

domains where the data usually has a spatial component that has a relatively low dimen-

sion. Examples of such application domains include geographic information systems

(GIS), spatial databases, solid modeling, computer vision, computational geometry, and

robotics. However, there are many application domains where the data is of consider-

ably higher dimensionality and is not necessarily spatial. This is especially true in pattern

recognition and image databases where the data is made up of a set of objects, and the

high dimensionality is a direct result of trying to describe the objects via a collection

of features (also known as a feature vector). Examples of features include color, color

moments, textures, shape descriptions, and so on, expressed using scalar values. The

goal in these applications is often one of the following:

1. Finding objects having particular feature values (point queries).

2. Finding objects whose feature values fall within a given range or where the distance

from some query object falls into a certain range (range queries).1

3. Finding objects whose features have values similar to those of a given query object or

set of query objects (nearest neighbor queries). In order to reduce the complexity of

the search process, the precision of the required similarity can be an approximation

(approximate nearest neighbor queries).

4. Finding pairs of objects from the same set or different sets that are sufficiently similar

to each other (all-closest-pairs queries). This is also a variant of a more general query

commonly known as a spatial join query.

These queries are collectively referred to as similarity searching (also known as

similarity retrieval), and supporting them is the subject of this chapter. The objective

of the search can either be to find a few similar objects from a larger set or to match

corresponding objects in two or more large sets of objects so that the result is a pairing

of all of the objects from one set with objects in the other set. When the pairing is one-to-

one (i.e., where for each distinct object in set A, we seek one nearest neighboring object

in set B, which need not always be distinct), then the latter query is known as the all

nearest neighbors problem. There is also the general problem (e.g., [226, 2030, 2066]),

where B need not be the same as A, while in [297, 396, 1908], B is constrained to be

1 When we are only interested in the number of objects that fall within the range, instead of the

identity of the objects, then the query is known as a range aggregation query (e.g., [1853, 1203]).

485

Chapter 4

High-Dimensional Data

the same as A),2 and the distance semijoin for k = 1 [847]. An example of the utility of

the latter is the conflation problem, which arises often in applications involving spatial

data in GIS. In its simplest formulation, conflation is graph or network matching and is

usually applied in a geographic setting to maps that are slightly out of alignment in a

spatial sense (e.g., [155, 248, 344, 1598, 1599, 1601, 1958, 2033]). We do not deal with

such searches in this book and, instead, focus on the former. Moreover, of the queries

enumerated above, the nearest neighbor query also known as the post office problem

(e.g., [1046, p, 563]), is particularly important and hence it is emphasized here. This

problem arises in many different fields including computer graphics, where it is known as

a pick query (e.g., [622]); in coding, where it is known as the vector quantization problem

(e.g., [747]); and in pattern recognition, as well as machine learning, where it is known as

the fast nearest-neighbor classifier (e.g., [514]). An apparently straightforward solution

to finding the nearest neighbor is to compute a Voronoi diagram for the data points (i.e., a

partition of the space into regions where all points in the region are closer to the region’s

associated data point than to any other data point) and then locate the Voronoi region

corresponding to the query point. As we will see in Section 4.4.4, the problem with this

solution is that the combinatorial complexity of the Voronoi diagram in high dimensions,

expressed in terms of the number of objects, is prohibitive, thereby making it virtually

impossible to store the structure, which renders its applicability moot. However, see

the approximate Voronoi diagram (AVD) in Section 4.4.5, where the dimension of the

underlying space is captured by expressing the complexity bounds in terms of the error

threshold ε rather than the number of objects N in the underlying space.

The above is typical of the problems that we must face when dealing with high-

dimensional data. Generally speaking, multidimensional problems such as these queries

become increasingly more difficult to solve as the dimensionality increases. One reason

is that most of us are not particularly adept at visualizing high-dimensional data (e.g., in

three and higher dimensions, we no longer have the aid of paper and pencil). However,

more importantly, we eventually run into the curse of dimensionality. This term was

coined by Bellman [159] to indicate that the number of samples needed to estimate an

arbitrary function with a given level of accuracy grows exponentially with the number

of variables (i.e., dimensions) that it comprises. For similarity searching (i.e., finding

nearest neighbors), this means that the number of objects (i.e., points) in the dataset that

need to be examined in deriving the estimate grows exponentially with the underlying

dimension.

The curse of dimensionality has a direct bearing on similarity searching in high

dimensions in the sense that it raises the issue of whether or not nearest neighbor

searching is even meaningful in such a domain. In particular, letting d denote a distance

function that need not necessarily be a metric, Beyer, Goldstein, Ramakrishnan, and

Shaft [212] point out that nearest neighbor searching is not meaningful when the ratio

of the variance of the distance between two random points p and q, drawn from the data

and query distributions, and the expected distance between them converges to zero as

the dimension k goes to infinity—that is,

lim
k→∞

Variance[d(p,q)]

Expected[d(p,q)]
= 0.

In other words, the distance to the nearest neighbor and the distance to the farthest

neighbor tend to converge as the dimension increases. Formally, they prove that when

the data and query distributions satisfy this ratio, then the probability that the farthest

neighbor distance is smaller than 1+ ε of the nearest neighbor distance is 1 in the limit as

the dimension goes to infinity and ε is a positive value. For example, they show that this

ratio holds whenever the coordinate values of the data and the query point are independent

2 Some of the solutions (e.g., [226, 1908, 2030]) try to take advantage of the fact that the nearest

neighbor search needs to be performed on all points in the dataset and thus try to reuse the results of

efforts expended in prior searches. They arise primarily in the context of database applications, where

they are known as an all nearest neighbor join (ANN join).

486

Chapter 4

High-Dimensional Data

d(p,q) d(p,x)

P
ro

b
a
b
ili

ty
 d

e
n
s
it
y

(a)

d(p,q) d(p,x)

P
ro

b
a
b
ili

ty
 d

e
n
s
it
y

(b)

Figure 4.1

A probability density function (analo-

gous to a histogram) of the distances

d (p,x) with the shaded area corre-

sponding to |d (p,q)−d (p,x)|≤ ε: (a)

a density function where the distance

values have a small variation; (b) a

more uniform distribution of distance

values, thereby resulting in a more

effective use of the triangle inequality

to prune objects from consideration

as satisfying the range search query.

and identically distributed, as is the case when they are both drawn from a uniform

distribution. This is easy to see in the unit hypercube as the variance is smaller than the

expected distance.

Assuming that d is a distance metric and hence that the triangle inequality holds, an

alternative way of looking at the curse of dimensionality is to observe that, when dealing

with high-dimensional data, the probability density function (analogous to a histogram)

of the distances of the various elements is more concentrated and has a larger mean

value. This means that similarity searching algorithms will have to perform more work.

In the worst case, we have the situation where d(x,x)= 0 and d(y,x)= 1 for all y �= x,

which means that a similarity query must compare the query object with every object

of the set. One way to see why more concentrated probability densities lead to more

complex similarity searching is to observe that this means that the triangle inequality

cannot be used so often to eliminate objects from consideration. In particular, the triangle

inequality implies that every element x such that |d(p,q) − d(p,x)| > ε cannot be at a

distance of ε or less from q (i.e., from d(p,q)≤ d(p,x)+ d(q,x)). Thus, if we examine

the probability density function of d(p,x) (i.e., on the horizontal axis), we find that when

ε is small while the probability density function is large at d(p,q), then the probability

of eliminating an element from consideration via the use of the triangle inequality is the

remaining area under the curve, which is quite small (see Figure 4.1(a) in contrast to

Figure 4.1(b) where the density function of the distances is more uniform). This is not

surprising because the sum of the area under the curve corresponding to the probability

density function is 1. Note that use of the triangle inequality to eliminate objects from

consideration is analogous to the application of the method of Friedman, Baskett, and

Shustek [649] as well as Nene and Nayar [1364] for vector spaces, which eliminates

a k-dimensional object x = (x0,x1,...,xk−1) from consideration as being within ε of

q = (q0,q1,...,qk−1) if |xi − qi|>ε for one of xi where 0 ≤ i ≤ k − 1 (see Section 1.1 in

Chapter 1).

These observations mean that nearest neighbor searching may be quite inefficient as

it is very difficult to differentiate between the nearest neighbor and the other elements.

Moreover, as we will see, seemingly appropriate indexing methods, analogous to those

described in Chapters 1 and 2, which are designed to make it easier to avoid examining

irrelevant elements, may not be of great help in this case. In fact, the experiments of Beyer

et al. [212] show that the curse of dimensionality becomes noticeable for dimensions as

low as 10–15 for the uniform distribution. The only saving grace is that real-world high-

dimensional data (say of dimension k) is not likely to be uniformly distributed as its

volume is much smaller than O(ck) for some small constant c > 2. Thus, we can go on

with our discussion despite the apparent pall of the curse of dimensionality, which tends

to cast a shadow on any arguments or analyses that are based on uniformly distributed

data or queries.

Assuming that the curse of dimensionality does not come into play, query responses

are facilitated by sorting the objects on the basis of some of their feature values and

building appropriate indexes. The high-dimensional feature space is indexed using some

multidimensional data structure (termed multidimensional indexing) such as those de-

scribed in Chapters 1 and 2 or modifications thereof to fit the high-dimensional problem

environment. Similarity search that finds objects similar to a target object can be done

with a range search or a nearest neighbor search in the multidimensional data structure.

However, unlike applications in spatial databases where the distance function between

two objects is usually Euclidean, this is not necessarily the case in the high-dimensional

feature space where the distance function may even vary from query to query on the

same feature (e.g., [1591]). Unless stated otherwise, we usually assume that the distance

is measured directly between points in the space (i.e., “as the crow flies” in a spatial con-

text) rather than possibly being constrained to be along a network on which the points lie,

as is useful in applications such as spatial databases. Nevertheless, we do cover the situ-

ation that distance is measured along a spatial network in Section 4.1.6. We also assume

that the data and query objects are static rather than in motion (e.g., [162, 296, 889, 930,

487

Chapter 4

High-Dimensional Data

931, 949, 1306, 1320, 1543, 1789, 1855, 1851, 2034, 2061], many of which make use

of the TPR-tree [1610] and the TPR∗-tree [1855], which are variants of an R-tree [791]

and an R∗-tree [152], respectively).

Searching in high-dimensional spaces is time-consuming. Performing point and

range queries in high dimensions is considerably easier, from the standpoint of compu-

tational complexity, than performing similarity queries because point and range queries

do not involve the computation of distance. In particular, searches through an indexed

space usually involve relatively simple comparison tests. However, if we have to examine

all of the index nodes, then the process is again time-consuming. In contrast, comput-

ing similarity makes use of distance, and the process of computing the distance can be

computationally complex. For example, computing the Euclidean distance between two

points in a high-dimensional space, say d , requires d multiplication operations and d − 1

addition operations, as well as a square root operation (which can be omitted). Note also

that computing similarity requires the definition of what it means for two objects to be

similar, which is not always so obvious.

The previous discussion has been based on the premise that we know the features that

describe the objects (and hence the dimensionality of the underlying feature space). In

fact, it is often quite difficult to identify the features, and thus we frequently turn to experts

in the application domain from which the objects are drawn for assistance in this process.

Nevertheless, it is often the case that the features cannot be easily identified even by the

domain experts. In this case, the only information that we have available is a distance

function that indicates the degree of similarity (or dissimilarity) between all pairs of

objects, given a set of N objects. Usually, it is required that the distance function d obey

the triangle inequality, be nonnegative, and be symmetric, in which case it is known as a

metric and also referred to as a distance metric (see Section 4.5.1). Sometimes, the degree

of similarity is expressed by use of a similarity matrix that contains interobject distance

values for all possible pairs of the N objects. Some examples of distance functions

that are distance metrics include edit distances, such as the Levenshtein [1156] and

Hamming [796] distances for strings3 and the Hausdorff distance for images (e.g., [911]

and footnote 45 in Section 2.2.3.4 of Chapter 2).

Given a distance function, we usually index the data (i.e., objects) with respect to

their distance from a few selected objects. We use the term distance-based indexing

to describe such methods. The advantage of distance-based indexing methods is that

distance computations are used to build the index, but once the index has been built,

similarity queries can often be performed with a significantly lower number of distance

computations than a sequential scan of the entire dataset. Of course, in situations where

we may want to apply several different distance metrics, then the drawback of the

distance-based indexing techniques is that they require that the index be rebuilt for

each different distance metric, which may be nontrivial. This is not the case for the

multidimensional indexing methods that have the advantage of supporting arbitrary

distance metrics (however, this comparison is not entirely fair since the assumption,

when using distance-based indexing, is that often we do not have any feature values, as

for example in DNA sequences).

There are many problems with indexing high-dimensional data. In fact, due to the

complexity of handling high-dimensional data using a multidimensional index, we fre-

quently find that the cost of performing queries using the index is higher than a sequential

scan of the entire data (e.g., [212]). This is a result of the curse of dimensionality, which

was discussed earlier. However, the “inherent dimensionality” of a dataset is often much

lower than the dimensionality of the underlying space. For example, the values of some

of the features may be correlated in some way. Alternatively, some of the features may

3 The Levenshtein edit distance between two strings s and t is the number of deletions, insertions,

or substitutions required to transform s into t . The Hamming edit distance between s and t , defined only

when s and t are of the same length, is the number of positions in which s and t differ (i.e., have different

characters).

488

Chapter 4

High-Dimensional Data

not be as important as others in discriminating between objects and thus may be ignored

or given less weight (e.g., [838]). Therefore, there has been a considerable amount of

interest in techniques to reduce the dimensionality of the data. Another motivation for

the development of many dimension reduction techniques has been a desire to make use

of disk-based spatial indexes that are based on object hierarchies, such as members of

the R-tree family [791]. The performance of these methods decreases with an increase

in dimensionality due to the decrease in the fanout of a node of a given capacity since

usually the amount of storage needed for the bounding boxes is directly proportional to

the dimensionality of the data, thereby resulting in longer search paths.

In situations where no features but only a distance function are defined for the objects,

there exists an alternative to using distance-based indexes. In particular, methods have

been devised for deriving “features” purely based on the interobject distances [587, 886,

1181, 1950]. Thus, given N objects, the goal is to choose a value of k and find a set

of N corresponding points in a k-dimensional space so that the distance between the

N corresponding points is as close as possible to that given by the distance function

for the N objects. The attractiveness of such methods is that we can now index the

points using multidimensional data structures. These methods are known as embedding

methods4 and can also be applied to objects represented by feature vectors as alternatives

to the traditional dimension reduction methods. In fact, one of these methods [587] is

inspired by dimension reduction methods based on linear transformations. Embedding

methods can also be applied when the features are known, in which case they can also

be characterized as dimension reduction techniques (e.g., [924]).

The rest of this chapter is organized as follows. Since our main motivation is simi-

larity searching, we start with a description of the process of finding nearest neighbors

in Section 4.1. Here the focus is on finding the nearest neighbor rather than the k nearest

neighbors. Once the nearest neighbor has been found, the process that we describe can be

used to find the second nearest neighbor, the third, and so on. This process is incremental,

in contrast to an alternative method that, given an integer k, finds the k nearest neighbors

regardless of the order of their distance from the query object q. The advantage of this

approach over the incremental method is that the amount of storage is bounded by k, in

contrast to having possibly to keep track of all of the objects if their distance from q is

approximately the same. On the other hand, the advantage of the incremental approach

is that once the k nearest neighbors have been obtained, the (k + 1)-th neighbor can be

obtained without having to start the process anew to obtain k + 1 nearest neighbors.

Note that the problem of finding neighbors is somewhat similar to the point location

query, which was discussed in Section 2.1.3. In particular, in many algorithms, the first

step is to locate the query object q. The second step consists of the actual search. Most of

the classical methods employ a “depth-first” branch and bound strategy (e.g., [836]). An

alternative, and the one we describe in Section 4.1, employs a “best-first” search strategy.

The difference between the two strategies is that, in the best-first strategy, the elements

of the structure in which the objects are stored are explored in increasing order of their

distance from q. In contrast, in the depth-first strategy, the order in which the elements

of the structure in which the objects are stored are explored is a result of performing a

depth-first traversal of the structure using the distance to the currently nearest object to

prune the search. The depth-first approach is exemplified by the algorithm of Fukunaga

and Narendra [666] and is discussed in Section 4.2, where it is also compared with the

general incremental algorithm described in Section 4.1. During this comparison, we also

show how to use the best-first strategy when only the k nearest neighbors are desired.

The best-first process of finding nearest neighbors incrementally yields a ranking of

the objects with respect to their distance from the query object. This query has taken

on an importance of its own. For example, it forms the basis of the distance join [847,

4 These methods are distinct and unrelated to embedding space organization methods discussed in

the opening text of Chapter 1 and throughout that chapter.

489

Chapter 4

High-Dimensional Data

1756] query, where each element of A is paired up with elements in B, and the results

are obtained in increasing order of distance. Another variant of this query is the distance

semijoin, which arises when each element a in A can be paired up with just one element

b in B, and we stipulate that b is the closest element in B to a, as well as report the

results in increasing order of distance. This query is executed in a coroutine manner,

obtaining as many results as necessary. When the query is executed by applying to A in

its entirety, thereby letting the number of neighbors k = |A|, the result is equivalent to a

discrete Voronoi diagram on B [847]. Moreover, by repeated application of the distance

semijoin or distance join to the elements of one set A with respect to a second set B, and

letting k = 1, the results of this query can be used as part of a process to find closest pairs

(i.e., the all nearest neighbor join discussed earlier). The incremental algorithm finds use

in many applications where the number of neighbors that are needed is not always known

before starting the query (e.g., in forming query execution plans for query optimization

in database applications).

In situations where complete accuracy is not critical, we can make use of the notion

of approximate nearest neighbors. We explore two possible approaches to the problem.

In the conventional approach, the approximation is the resulting quantitative error,

which can be measured (Section 4.3). On the other hand, in the second, more unusual,

approach, the approximation results from the assumption that “nearest neighbor” is an

“equivalence” relation (Section 4.5.8), which, of course, is not generally true. For the

first approach, we demonstrate how the performance of both the best-first and depth-first

algorithms can be improved at the risk of having the objects reported somewhat out of

order.

The presentation continues in Section 4.4, which presents some multidimensional in-

dexing methods. Many of these methods are high-dimensional adaptations of techniques

presented in Chapters 1 and 2. Section 4.5 outlines some distance-based indexing meth-

ods. Section 4.6 discusses a number of dimension reduction techniques and shows how

some of them are used in conjunction with some of the indexing techniques presented in

Chapters 1 and 2. Section 4.7 concludes by presenting a number of embedding methods.

Note that many of the embedding methods (e.g., locality sensitive hashing [924]) could

also have been discussed in the context of dimension reduction techniques. Our decision

on the placement of the discussion depended on whether the emphasis was on the extent

of the dimension reduction or on the satisfaction of other properties of the embedding.

4.1 Best-First Nearest Neighbor Finding

In this section, we present a general algorithm for finding nearest neighbors. Rather than

finding the k nearest neighbors and possibly having to restart the search process should

more neighbors be needed, our focus is on finding them in an incremental manner. The

nature of such search is to report the objects in a dataset S ⊂ U, one by one, in order

of distance from a query object q ∈ U based on a distance function d, where U is the

domain (usually infinite) from which the objects are drawn. The algorithm is a general

version of the incremental nearest neighbor algorithm of [846, 848] that is applicable to

virtually all hierarchical indexing methods for both spatial (point data and objects with

extent) and metric data, in which case the index is based only on the distance between

the objects (see Section 4.5). In order to make the discussion more concrete, we use the

R-tree (recall Section 2.1.5.2 of Chapter 2) as an example data structure.

The rest of this section is organized as follows: In Section 4.1.1, we motivate the

incremental nearest neighbor problem by examining some of the issues and proposed

solutions. In Section 4.1.2, we introduce the basic framework for performing search

in the form of a search hierarchy. In Section 4.1.3, we present a general incremental

nearest neighbor algorithm, based on the abstract concept of a search hierarchy, as well

as a discussion of its correctness. This algorithm can be adapted to virtually any data

490

Chapter 4

High-Dimensional Data

(a)

(b)

(c)

Figure 4.31

Partitions of the underlying space

induced by the ε-nearest neighbor

sets corresponding to the sites

of the Voronoi diagram given in

Figure 2.110(a) in Section 2.2.1.4 of

Chapter 2 for (a) ε=0.10, (b) ε=0.30,

and (c) ε=0.50. The darkness of the

shading indicates the cardinality of

the ε-nearest neighbor sets, with

white corresponding to 1.

Exercises

1. Given a probably correct os-tree where f holds for the leaf nodes, prove that if the cover of

each node contains the covers of its children, then f is the failure probability for search in the

tree.

2. When constructing the probably correct os-tree, once the points in Sa have been partitioned

with the hyperplane Ha resulting from the use of the PCA method, it was proposed to find a

more appropriate separating hyperplane Ia that minimizes the number of training points on

the right side of Ia whose nearest neighbors are elements of Sal and the number of training

points on the left side of Ia whose nearest neighbors are elements of Sar. Would it not be

more appropriate to choose the separating hyperplane Ia that minimizes the d-dimensional

volume spanned by the training points on the right side of Ia whose nearest neighbors are

elements of Sal and the volume spanned by the training points on the left side of Ia whose

nearest neighbors are elements of Sar? If yes, what are the drawbacks of such a choice?

3. When constructing the probably correct os-tree, what is the rationale for choosing the hyper-

plane that is farthest from the closest points on its two sides rather than one that is closer to

the same two points?

4.4.5 Approximate Voronoi Diagram (AVD)

Har-Peled [799] addresses the �(Nd/2) space requirements of the d-dimensional

Voronoi diagram of a point set S by approximating it with an implicit representa-

tion that he terms an approximate Voronoi diagram (AVD). The idea is to partition

the underlying space using some arbitrary block decomposition rule so that, given a

ε ≥ 0, every block b is associated with some element rb in S such that rb is an ε-

nearest neighbor for all of the points in b. The motivation for the AVD is to reduce

the space requirements for a d-dimensional Voronoi diagram from �(Nd/2) for N

points to a quantity closer to linear, although not necessarily linear. In particular, Har-

Peled [799] shows that, for a given value of ε, it is possible to construct an AVD in

O((N/εd)(logN)(log(N/ε))) time, taking up the same amount of space (i.e., the number

of blocks is also O((N/εd)(logN)(log(N/ε)))) and to determine the ε-nearest neighbor

of a query point q in O(log(N/ε)) time.

Note that the Voronoi diagram is only implicitly represented in the AVD in the

sense that the boundaries of the Voronoi regions are not explicitly stored in the blocks.

This implicit representation is also a characteristic of using the mb-tree [1383] (see

Section 4.5.3.3) to represent data drawn from either a vector or a metric space where

the data are objects, termed pivots, with associated regions so that all objects that are

associated with a pivot p are closer to p than to any other pivot. In this case, the

boundaries of the regions are also represented implicitly (see Section 4.5.3.3 for more

details).

There are many possible block decomposition rules. Regardless of the rule that is

chosen for each block, the only requirement is that the intersection of the ε-nearest neigh-

bor sets of all of the points in each block be nonempty. For example, Figure 4.31(a–c),

corresponds to the partitions of the underlying space induced by the ε-nearest neighbor

sets corresponding to the sites of the Voronoi diagram given in Figure 2.110(a) in Sec-

tion 2.2.1.4 of Chapter 2 for ε = 0.10,0.30, and 0.50, respectively. The darkness of the

shading indicates the cardinality of the ε-nearest neighbor sets, with white correspond-

ing to 1. The space requirements and the time complexity of nearest neighbor queries are

reduced when the block decomposition rule yields blocks that are sufficiently “fat” (i.e.,

they have a good aspect ratio as discussed in Section 1.5.1.4 of Chapter 1). One possibil-

ity, for which the “fat” requirement holds, is to use a rule, such as the PR quadtree [1413,

1637] (see Section 1.4.2.2), that for multidimensional point data recursively decomposes

the underlying space into congruent blocks (i.e., squares in two dimensions) until each

block is either empty or contains at most one point.

580

Chapter 4

High-Dimensional Data

a
d

b
c

o

p r

q

g
h

i

f

e
m

n
j

l

k

(a)

a
d

b
c

k

l
j

n
m

e

f

i

h

g
q

rp

o

(b)

l

q

go

rp

j

n
m

k

e

f

h

i

c
b

d
a

(c)

f

e
l

m
n

j

k
rp

o

h

i
g

q

c
b

d
a

X

(d)

r

l

m
e

f

i

h

g

k

n

j

p

o

q

c

b

d
a

(e)

Figure 4.67

The kNN graphs for k = 1...5 corre-

sponding to the data in Figure 4.63

using the planar embedding depicted

in Figure 4.64(a): (a) k = 1, (b) k = 2,

(c) k = 3, (d) k = 4, and (e) k = 5.

Edges that are shown undirected

correspond to bidirectional edges,

which means that both vertices are

in the k -nearest neighbor sets of

each other.

vertex with corresponding object o has an edge to each of the vertices that correspond to

the k nearest neighbors of o. As an example, consider the distance matrix representing the

interobject distances for the 18 objects a–r in Figure 4.63 discussed in Section 4.5.5.1.

Recall that Figure 4.64(a) is the result of embedding these objects in the two-dimensional

plane, assuming that the distance is the Euclidean distance and assigning them a consis-

tent set of coordinate values so that these distance values hold. In addition, Figure 4.64(b)

is the corresponding Delaunay graph, which for this particular planar embedding is

a plane graph known as the Delaunay triangulation. Figure 4.67(a–e) shows the kNN

graphs for k = 1...5, respectively, corresponding to the data in Figure 4.63 using the pla-

nar embedding depicted in Figure 4.64. Edges in the graphs that are shown as undirected

correspond to bidirectional edges, which means that both vertices are in the k nearest

neighbor sets of each other.

Finding the nearest neighbor in S (S ⊂U) of query object q in U using the kNN graph

can be achieved by using the same algorithm used in the Delaunay graph. In particular,

start at an arbitrary object in S and proceed to a neighboring object in S that is closer

to q as long as this is possible. Upon reaching an object o in S where the objects in

its neighbor set N(o) in S (i.e., the objects connected to o by an edge) are all farther

away from q than o, we know that o is the nearest neighbor of q. Unfortunately, as can

be seen from the different kNN graphs in Figure 4.67, there are situations where this

algorithm will fail to yield the nearest neighbor. In particular, just because we found an

object p whose k nearest neighbors are farther from the query object q than p does not

necessarily mean that p is q’s nearest neighbor, whereas this is the case in the Delaunay

graph whenever we have found an object p, all of whose nearest neighbors (rather than

just k) are farther from q.

There are several reasons for this failure. The first can be seen by examining Fig-

ure 4.67(a–c) where for low values of k (i.e., k ≤ 3), the kNN graphs are not connected,

as is the case when the kNN graph consists of disconnected subgraphs corresponding to

clusters. These clusters have the same effect on the search process as local minima or

maxima in optimization problems. This shortcoming can be overcome by increasing k.

However, this action does have the effect of increasing the storage requirements of the

data structure by a factor of N for each unit increase in the value of k.

Nevertheless, even if we increase k so that the resulting kNN graph is connected, the

algorithm may still fail to find the nearest neighbor. In particular, this is the case when

the search halts at an object p, that is closer to q than any of p’s k nearest neighbors

but not necessarily closer to q than any of the objects that are in p’s neighbor set but are

farther from p than the k nearest neighbors of p. For example, consider the query object

X in the kNN graph for k = 4 in Figure 4.67(d) positioned two-thirds of the way between

k and r so that r is its nearest neighbor. Also consider a search that starts out at any one

of objects e, f, j, k, l, m, n. In this case, assuming the planar embedding of Figure 4.64,

the search will return k as the nearest neighbor instead of r. Again, this shortcoming can

be overcome by further increasing the value of k. However, we do not have a guarantee

that the true nearest neighbor will be found.

Sebastian and Kimia [1704] propose to overcome this drawback by extending the

search neighborhood around the arbitrary object that is used as the starting point (termed

a seed) of the search, as well as its closest neighbors obtained through use of the kNN

graph, by a factor of τ ≥ 1. In particular, an object pi is said to be τ -closer to q with

respect to p if d(pi,q)≤ τ . d(p,q). Armed with this definition, given an arbitrary object

p, an element pn belongs to the extended neighborhood EN(p,q) of p with respect to

query object q if there exists a path p0,p1,...,pn, where p = p0 and pi is τ -closer to

q with respect to p for all i = 1,...,n − 1. An object p is now reported as the nearest

neighbor of q if it is closer to q than any other object in EN(p,q). In essence, use of

the extended neighborhood enables us to be able still to get to the nearest neighbor of q

when the search is at an object p that is closer to q than any of p’s k nearest neighbors but

not necessarily closer to q than some of the objects that are reachable by transitioning

via one of the k nearest neighbors of p. Note that the quality and performance of the

638

