
Preface

The representation of multidimensional data is an important issue in diverse fields in-

cluding database management systems (e.g., spatial databases, multimedia databases),

computer graphics, game programming, computer vision, geographic information sys-

tems (GIS), pattern recognition, similarity searching (also known as similarity retrieval),

solid modeling, computer-aided design (CAD), robotics, image processing, computa-

tional geometry, finite-element analysis, and numerous others. The key idea in choosing

an appropriate representation is to facilitate operations such as search. This means that

the representation involves sorting the data in some manner to make it more accessible.

In fact, the term access structure or index is often used as an alternative to the term data

structure in order to emphasize the importance of the connection to sorting.

The most common definition of “multidimensional data” is a collection of points in

a higher dimensional space (i.e., greater than 1). These points can represent locations

and objects in space as well as more general records where each attribute (i.e., field) cor-

responds to a dimension and only some, or even none, of the attributes are locational. As

an example of nonlocational point data, consider an employee record that has attributes

corresponding to the employee’s name, address, sex, age, height, weight, and social se-

curity number. Such records arise in database management systems and can be treated

as points in, for this example, a seven-dimensional space (i.e., there is one dimension for

each attribute), although the different dimensions have different type units (i.e., name

and address are strings of characters; sex is binary; while age, height, weight, and social

security number are numbers). Note that the address attribute could also be interpreted in

a locational sense using positioning coordinates such as latitude and longitude readings

although the stringlike symbolic representation is far more common.

When multidimensional data corresponds to locational data, we have the additional

property that all of the attributes usually have the same unit (possibly with the aid of

scaling transformations), which is distance in space. In this case, we can combine the

distance-denominated attributes and pose queries that involve proximity. For example,

we may wish to find the closest city to Chicago within the two-dimensional space from

which the locations of the cities are drawn. Another query seeks to find all cities within 50

miles of Chicago. In contrast, such queries are not very meaningful when the attributes

do not have the same type. Nevertheless, other queries such as range queries that seek,

for example, all individuals born between 1940 and 1960 whose weight ranges between

150 and 200 pounds are quite common and can be posed regardless of the nature of the

attributes.

When multidimensional data spans a continuous physical space (i.e., an infinite

collection of locations), the issues become more interesting. In particular, we are no

longer just interested in the locations of objects, but, in addition, we are also interested

in the space that they occupy (i.e., their extent). Some example objects with extent

include lines (e.g., roads, rivers), intervals (which can correspond to time as well as

xvii



Preface space), regions of varying shape and dimensionality (e.g., lakes, counties, buildings,

crop maps, polygons, polyhedra), and surfaces. The objects (when they are not points)

may be disjoint or could even overlap.

Spatial multidimensional data is generally of relatively low dimension. However,

there are many application domains where the data is of considerably higher dimension-

ality and is not necessarily spatial. This is especially true in databases for application

domains such as multimedia and bioinformatics data, to name just two, where the data

is a set of objects, and the high dimensionality is a direct result of attempts to describe

the objects via a collection of features that characterize them (also known as a feature

vector). For example, in the case of image data, some commonly used features include

color, color moments, textures, shape descriptions, and so on, expressed using scalar

values. Although such data falls into the class of point data, it often requires using very

different representations than those that are traditionally used for point data. The prob-

lem is often attributed to the curse of dimensionality [159], which simply means that the

indexing methods do not do as good a job of facilitating the retrieval of the objects that

satisfy the query as is the case when the data has lower dimensionality.

The above discussion of nonspatial data of high dimensionality has been based on the

premise that we know the features that describe the objects (and hence the dimensionality

of the underlying feature space). In fact, it is usually quite difficult to identify the

features, and thus we frequently turn to experts in the application domain from which

the objects are drawn for assistance in this process. Nevertheless, often the features

cannot be easily identified even by the domain experts. In particular, sometimes the

only information available is a distance function that indicates the degree of similarity

(or dissimilarity) between all pairs of objects in the database as well as how to compute

the similarity between objects in the domain. Usually the distance function d is required

to obey the triangle inequality, be nonnegative, and be symmetric, in which case it is

known as a metric (also referred to as a distance metric). In this case, we resort to

what are termed metric or distance-based representations, which differ from the more

conventional representations in that the objects are now sorted with respect to their

distance from a few key objects, known as pivots, rather than with respect to some

commonly known reference point (e.g., the origin in the spatial domain), which may

not necessarily be associated with any of the objects.

This book is about the representation of data such as that described above. It is

organized into four chapters. Each chapter is like a part, sometimes as big as a book.

Chapter 1 deals with the representation of point data, usually of low dimensionality. One

of the keys to the presentation in this chapter is making a distinction between whether

the representation organizes the data (e.g., a binary search tree) or the embedding space

from which the data is drawn (e.g., a trie). Considerable attention is also devoted to issues

that arise when the volume of the data is so high that it cannot fit in memory, and hence

the data is disk resident. Such methods are characterized as bucket methods and have

been the subject of extensive research in the database community.

Chapter 2 deals with the representation of objects. It focuses on object-based and

image-based representations. These distinctions are analogous to those made in computer

graphics where algorithms and decompositions of objects are characterized as being

object-based or image-based corresponding to whether the representations result from

the decomposition of the objects or the environment in which the objects are embedded,

respectively. The central theme in this chapter is how the representations deal with the

key queries of where and what—that is, given an object, we want to know its location,

and, given a location, we want to know the identity of the object (or objects) of which it

is a member. Efficiently responding to these queries, preferably with one representation,

has motivated many researchers in computer graphics and related fields such as computer

vision, solid modeling, and spatial databases, to name a few. This leads, in part, to

a distinction between representations on the basis of being either object hierarchies,

of which the R-tree [791] and its variants (commonly used in database applications)

are examples, or space hierarchies, of which the pyramid and its variants (commonly

xviii



Prefaceused in computer vision applications) are examples. The representations that have been

developed can also be differentiated on the basis of whether the objects are represented

by their interiors or by their boundaries.

Chapter 3 deals with the representation of intervals and small rectangles. These

representations are applicable in a number of important areas. For example, they are

used in very large-scale integration (VLSI) design applications (also known as CAD),

where the objects are modeled as rectangles for the sake of simplicity. The number of

objects in these applications is quite large, and the size of the objects is several orders of

magnitude smaller than that of the space from which they are drawn. This is in contrast to

cartographic applications, where the sizes of the objects are larger. These representations

are also used in game programming applications (e.g., [475, 476, 1025, 1456, 1890]),

where their deployment is motivated by the fact that the objects are in spatial registration,

thereby enabling efficient calculation of set-theoretic operations while not being as

sensitive to changes in position as is the case for some other hierarchical representations

that are based on a regular decomposition of the underlying space (e.g., the region

quadtree). The representation of intervals is also of interest for applications that involve

temporal data where intervals play a role (e.g., [951]). They can also be used for the

representation of moving objects, which finds use in spatiotemporal databases (e.g., [21,

950, 1057, 1092, 1305, 2013] and the text of Güting and Schneider [790]).

Chapter 4 deals with the representation of high-dimensional data where the data is

not spatial and the actual dimensionality of the data is also an issue. The key is that the

data usually consists of features where the number and identity of the features that should

be represented is not always clear. In particular, this data arises in applications such as

multimedia, where the use of a large number of features to describe the objects is based

on the premise that by increasing the number of features we are increasing our ability to

differentiate between the objects for retrieval. An alternative is to make use of a distance

function that measures the similarity (or dissimilarity) between the objects. A discussion

of a number of distance-based indexes is included here.

Chapter 4 is motivated by the important problem of similarity searching—the process

of finding and retrieving objects that are similar to a given object or set of objects. This

process invariably reduces to finding the nearest or k nearest neighbors, and hence a

considerable amount of attention is paid to this query by showing how to perform it

efficiently for both distance-based and multidimensional indexing methods. The obser-

vation that, for high-dimensional data, the use of multidimensional indexing methods

often fails to yield any improvement in performance over a simple sequential scan of

the data is also addressed. This is in part due to the cost of computing distance in high

dimensions, the nature of the data distribution, and the relatively low volume of available

data vis-à-vis its dimensionality (i.e., the curse of dimensionality). One response is to

take note of the observation that the “inherent dimensionality” of a dataset is often much

lower than that of the underlying space. In particular, this has led to the development

of techniques to reduce the dimensionality of the data using methods such as Singular

Value Decomposition (SVD). An alternative solution that is discussed is how to make

use of contractive embedding methods that embed the data in a lower-dimensional space,

and then make use of a filter-and-refine algorithm in conjunction with multidimensional

indexing methods to prune irrelevant candidates from consideration.

Many of the data structures that are presented in the four chapters are hierarchical.

They are based either on the principle of recursive decomposition (similar to divide-and-

conquer methods [27]) or on the aggregation of objects into hierarchies. Hierarchical

data structures are useful because of their ability to focus on the interesting subsets of

the data. This focusing results in an efficient representation and in improved execution

times.

Hierarchical representations of spatial data were the subject of one of my earlier

books [1637]. It dealt with the four basic spatial data types: points, rectangles, lines,

and volumes. Many of these representations were based on variants of the quadtree and

xix



Preface octree data structure that have been applied to many problems in a variety of domains.

In this case, the term quadtree was used in a general sense to describe a class of

representations whose common property was that they were based on the principle of

recursive decomposition of space. They were differentiated on the following bases:

1. The type of data they are used to represent

2. The principle guiding the decomposition process

3. The resolution (variable or not)

This book is a considerable expansion of [1637] with approximately 10% overlap.

Nevertheless there still remains a considerable amount of material from [1637] that has

not been included in this book (e.g., from Chapters 4 and 5). One of the features of [1637]

was the inclusion of detailed code for building and updating a number of data structures

(at least one for each of the spatial data types point, lines, and rectangles). This code is

also present in this book but is now part of the exercises and their solutions. In addition,

the VASCO (Visualization and Animation of Spatial Constructs and Operations) [243,

244, 245, 246]) set of JAVA applets is available for use to illustrate many operations for a

large number of the data structures presented in the current book (see http://www.cs.umd

.edu/~hjs/quadtree/index.html). Readers interested in seeing how these methods are used

in the context of an application should try the SAND Internet Browser [1644] at the same

URL, which provides an entry point to explore their use in a geographic information

system (GIS). The SAND Internet Browser is part of a considerably more complex

system rooted in the QUILT quadtree GIS [1732], the SAND spatial database engine [71,

73], and the SANDTcl scripting tool for building spatial database applications [568, 570].

One substantial difference in the current book from [1637] is the inclusion of a part

on high-dimensional data, representing approximately one third of the text (Chapter 4).

In addition, almost all of the material on object-based and image-based representations

in Chapter 2 is new. It is interesting to note that this material and the observation that

most object representations are motivated by the desire to respond to the what and where

queries served as the motivation for this book. Similarly, much of the material on point-

based representations in Chapter 1 is also new with a particular emphasis on bucketing

methods. In the case of linear hashing and spiral hashing, the explanations of the methods

have been moved to Appendix B and C, respectively, while Chapter 1 focuses on how to

adapt them to multidimensional data. Since the B-tree is really a fundamental foundation

of the various bucket methods in Chapter 1 and of hierarchical object-based interior

representations such as the R-tree in Chapter 2, an overview of B-trees has been included

as Appendix A. This was motivated by our past experience with [1637], which revealed

that often the extent to which readers were familiar with the B-tree did not match our

expectations. Only Chapter 3, which deals with intervals and collections of rectangles,

can be considered as both an update and an expansion of material in [1637] as it also

contains a substantial number of new representations.

The main focus of this book is on representations and indexing methods rather than

the execution of operations using them, which is the primary focus of another one of

my books [1636]. Nevertheless, a few operations are discussed in greater detail. In

particular, substantial coverage is given to the k-nearest neighbor finding operation in

Sections 4.1 and 4.2 in Chapter 4. Its use in similarity searching is the main reason for

the development of most of the representations discussed in this chapter. The related

point location problem is also discussed in great detail in Sections 2.1.3.2 and 2.1.3.3

of Chapter 2. Another operation that is discussed in some detail (in Section 2.2.3.4 of

Chapter 2) is simplification of surface data for applications in computer graphics and

visualization. We assume that the representations and operations that we discuss are

implemented in a serial environment although there has been a considerable interest in

implementations in a parallel environment (e.g., [210, 213, 373, 470, 524, 532, 862, 898,

916, 997, 1182, 1719, 2006] and related references cited therein), as well as in making

use of graphics processing units (GPU) (e.g., [739, 1146, 1815]).

xx



PrefaceNevertheless there remain many topics for which justice requires a considerably

more thorough treatment. However, due to space limitations, detailed discussion of

them has been omitted, and, instead, the interested reader is referred to the appropriate

literature. For example, surface representations are discussed in the context of boundary-

based representations in Section 2.2 of Chapter 2. These are known as topological data

structures. However, the area is much richer than what is covered here as can be seen by

referring to the collection of papers edited by Rana [1536]. The presentation in Chapter 2

mentions simplification methods and data structures (Section 2.2.3.4) and hierarchical

surface-based boundary representations (Sections 2.2.2–2.2.4). Simplification methods

are also known as Level of Detail (LOD) methods and are reviewed comprehensively in

the text by Luebke, Reddy, Cohen, Varshney, Watson, and Huebner [1212]. Additional

work from the perspective of geometric modeling can be found in the texts by Bartels,

Beatty, and Barsky [131], Mortenson [1316], Goldman [716], Farin [596], and Warren

and Weimer [1962]. Many of the topics discussed here can also be classified under the

category of visual computing (e.g., see Nielsen [1372]). Another related area in which

our coverage is intentionally limited is real-time collision detection where speed is of the

essence, especially in applications such as game programming. For a thorough treatment

of this topic, see the recent texts by van den Bergen [198] and Ericson [564]. Similarly,

representations for spatiotemporal data and moving objects are not discussed in great

detail, and interested readers are referred to some of the references mentioned earlier.

Solid modeling is another rich area where the presentation has been limited to the

boundary model (BRep), found in Section 2.2.1 of Chapter 2, which also includes a

detailed discussion of variants of the winged-edge representation. For more detailed

expositions on this and related topics, see the books by Mäntylä [1232], Hoffmann [870],

and Paoluzzi [1457]. See also some early influential survey articles by Requicha [1555],

Srihari [1798], and Chen and Huang [345]. Of course, there is also a much greater

connection to computer graphics than that which is made in the text. This connection

is explored further in another of my books [1636] and is also discussed in some early

surveys by Overmars [1442] and Samet and Webber [1666, 1667].

Results from computational geometry, although related to many of the topics cov-

ered in this book, are only presented in the context of representations for intervals and

collections of small rectangles (Sections 3.1 and 3.2 of Chapter 3) and the point lo-

cation problem (Sections 2.1.3.2 and 2.1.3.3 of Chapter 2). For more details on early

work involving some of these and related topics, the interested reader is encouraged to

consult the texts by Preparata and Shamos [1511], Edelsbrunner [540], Boissonnat and

Yvince [230], and de Berg, van Kreveld, Overmars, and Schwarzkopf [196], as well as

the early collections of papers edited by Preparata [1509] and Toussaint [1884]. See also

the surveys and problem collections by Edelsbrunner [539]. O’Rourke [1423], and Tou-

ssaint [1885]. This work is closely related to earlier research on searching as surveyed

by Bentley and Friedman [173], the text of Overmars [1440], and Mehlhorn’s [1282]

text, which contains a unified treatment of multidimensional searching. For a detailed

examination of similar and related topics in the context of external memory and massive

amounts of data, see the survey of Vitter [1933].

Many of the data structures described in this book find use in spatial databases,

geographic information systems (GIS), and multimedia databases. The close relationship

between spatial databases and geographic information systems is evidenced by recent

texts that combine results from the areas, such as those of Laurini and Thompson [1113],

Worboys [2023], Günther [773], Rigaux, Scholl, and Voisard [1562], and Shekhar and

Chawla [1746], as well as the surveys of Güting [784], Voisard and David [1938], and

Shekhar, Chawla, Ravada, Fetterer, Liu, and Lu [1747].

For a slightly different perspective, see the text of Subrahmanian [1807], which deals

with multimedia databases. Another related area where these data structures have been

used is constraint databases, which are discussed in great detail in the recent text by

Revesz [1559]. Note that, with the exception of the nearest neighbor finding operation,

which is common to many of the fields spanned by this book, we do not discuss the

xxi



Preface numerous spatial database operations whose execution is facilitated by the data structures

presented in this text, such as, for example, spatial join (e.g., [89, 262, 261, 772, 1072,

894, 934, 1195, 1207, 1223, 1415, 1474, 2076] as well as in a recent survey [935]),

which are covered in some of the previously cited references.

In a similar vein, a number of survey articles have been written that deal with the

representations that are described in this book from a database perspective, such as

the one by Gaede and Günther [670]. The survey article by Samet [1642], however,

combines a computer graphics/computer vision perspective with a database perspective.

See also the earlier surveys by Nagy and Wagle [1335], Samet and Rosenfeld [1647],

Peuquet [1490], and Samet [1628, 1632]. Others, such as Chávez, Navarro, Baeza-Yates,

and Marroquı́n [334], Böhm, Berchtold, and Keim [224], Hjaltason and Samet [854,

855], and Clarkson [401], are oriented towards similarity searching applications.

The material in this book also has a strong connection to work in image processing

and computer vision. In particular, the notion of a pyramid (discussed in Section 2.1.5.1

of Chapter 2) has a rich history, as can be seen in the collection of articles edited by Tan-

imoto and Klinger [1844] and Rosenfeld [1573]. The connection to pattern recognition

is also important and can be seen in the survey by Toussaint [1882]. The pioneering text

by Rosenfeld and Kak [1574] is a good early treatment of image processing and should

be consulted in conjunction with the more recent text by Klette and Rosenfeld [1034],

which makes the connection to digital geometry.

Nevertheless, given the broad and rapidly expanding nature of the field, I am bound

to have omitted significant concepts and references. In addition, at times I devote a

disproportionate amount of attention to some concepts at the expense of others. This

is principally for expository purposes; in particular, I feel that it is better for the reader to

understand some structures well rather than to receive a quick runthrough of buzzwords.

For these indiscretions, I beg your pardon and still hope that you bear with me.

Usually my approach is an algorithmic one. Whenever possible, I have tried to

motivate critical steps in the algorithms by a liberal use of examples. This is based

on my strong conviction that it is of paramount importance for the reader to see the

ease with which the representations can be implemented and used. At times, some

algorithms are presented using pseudo-code so that readers can see how the ideas can

be applied. I have deliberately not made use of any specific programming language

in order to avoid dating the material while also acknowledging the diverse range in

opinion at any given instance of time as to which language is appropriate. The main

purpose of the pseudo-code is to present the algorithm clearly. The pseudo-code is

algorithmic and is a variant of the ALGOL [1346] programming language, which has a

data structuring facility incorporating pointers and record structures. I do not make use of

object orientation although my use of record structures is similar in spirit to rudimentary

classes in SIMULA [437] and FLEX [1008], which are the precursors of modern object-

oriented methods. I make heavy use of recursion. This language has similarities to

C [1017], C++ [1805], Java (e.g., [93]), PASCAL [952], SAIL [1553], and ALGOL

W [137]. Its basic features are described in Appendix D. However, the actual code is not

crucial to understanding the techniques, and it may be skipped on a first reading. The

index indicates the page numbers where the code for each algorithm is found.

In many cases I also give an analysis of the space and time requirements of different

data structures and algorithms. The analysis is usually of an asymptotic nature and is

in terms of big O and � notation [1043]. The big O notation denotes an upper bound.

For example, if an algorithm takes O(log2N) time, then its worst-case behavior is never

any worse than log2N . The � notation denotes a lower bound. As an example of its use,

consider the problem of sorting N numbers. When we say that sorting is �(N . log2N)

we mean that given any algorithm for sorting, there is some set of N input values for

which the algorithm will require at least this much time.

At times, I also describe implementations of some of the data structures for the

purpose of comparison. In such cases, counts such as the number of fields in a record are

often given. However, these numbers are only meant to clarify the discussion. They are

xxii



Prefacenot to be taken literally, as improvements are always possible once a specific application

is analyzed more carefully.

Each section contains a substantial number of exercises. Many of the exercises

develop the material in the text further as a means of testing the reader’s understanding,

as well as suggesting future directions. When the exercise or its solution is not my own,

I have credited its originator by preceding it with their name. The exercises have not

been graded by difficulty. Usually, their solution does not require any mathematical

skills beyond the undergraduate level. However, while some of the exercises are quite

straightforward, the solutions to others require some ingenuity. Solutions, or references

to papers that contain the solutions, are provided for a substantial number of the exercises

that do not require programming. Of course, the reader is counseled to try to solve the

exercises before turning to the solutions. The solutions are presented here as it is my

belief that much can be learned by self-study (both for the student and, even more so, for

the author!). The motivation for pursuing this approach was my wonderful experience

on my first encounter with the rich work on data structures by Knuth [1044, 1045, 1046].

An extensive bibliography is provided. It contains entries for both this book and its

companion predecessors [1636, 1637]. Each reference is annotated with one or more

keywords and a list of the numbers of the book sections in which it is cited in the current

text (denoted by F ) or either of the other two texts (denoted by D for [1637] and A

for [1636]) as well as in the exercises and solutions. Not all of the references that appear

in the bibliography are cited in the text. They are included for the purpose of providing

readers the ability to access as completely as possible the body of literature relevant to

the topics discussed in the books. In order to increase the usefulness of these uncited

references (as well as all of the references), a separate keyword index is provided that

indicates some of the references in the bibliography that discuss them. Of course, this list

is not exhaustive. For the more general categories (e.g., “points”), a second level index

entry is often provided to narrow the search in locating relevant references. In addition, a

name and credit index is provided that indicates the page numbers in this book on which

each author’s work is cited or a credit (i.e., acknowledgement) is made (e.g., in the main

text, preface, appendices, exercises, or solutions).

My target audience is a varied one. The book is designed to be of use to professionals

who are interested in the representation of spatial and multidimensional data and have a

need for an understanding of the various issues that are involved so that they can make

a proper choice in their application. The presentation is an algorithmic one rather than a

mathematical one although the execution time and storage requirements are discussed.

Nevertheless, the reader need not be a programmer nor a mathematician to appreciate the

concepts described here. The material is useful not just to computer scientists. It is useful

for applications in a diverse range of fields including geography, high-energy physics,

engineering, mathematics, games, multimedia, bioinformatics, and other disciplines

where location or the concept of a metric are important. The book can also be used

in courses on a number of topics including databases, geographic information systems

(GIS), computer graphics, computational geometry, pattern recognition, and so on,

where the discussion of the data structures that it describes supplements existing material

or serves as the central topic of the course. The book can also be used in a second course

on data structures where the focus is on multidimensional and metric data structures.

The organization of the material to be covered in these courses is discussed in greater

detail below.

A Guide to the Instructor

This book can be used in a course on representations for multidimensional and metric data

in multimedia databases, most likely at the graduate level. Such a course would include

topics from the various parts as is appropriate to match the interests of the students.

It would most likely be taught within a database framework, in which case the focus

xxiii



Preface would be on the representation of points as in Chapter 1 and high-dimensional data

in Chapter 4. In particular, the emphasis would be on bucket methods (Sections 1.1,

1.7, and 1.8 of Chapter 1), multidimensional indexing methods for high-dimensional

data (Section 4.4 of Chapter 4), and distance-based indexing methods (Section 4.5 of

Chapter 4). In addition, quite a bit of attention should be focused on representations

based on object hierarchies such as the R-tree (Section 2.1.5.2 of Chapter 2).

The book can also be used in a computer graphics/computer vision/solid modeling

framework, as well as part of a game programming course, in which case the emphasis

would be on Chapters 2 and 3. In addition, it should include the discussion of some of the

more basic representations of point data from Sections 1.1 and 1.4–1.6 of Chapter 1. Such

a course could serve as a prerequisite to courses in computer graphics and solid modeling,

computational geometry, database management systems (DBMS), multidimensional

searching, image processing, and VLSI design applications. More specifically, such a

course would include the discussions of interior-based representations of image data in

Sections 2.1.1–2.1.3 of Chapter 2 and representations of image data by their boundaries

in Sections 2.2.2 and 2.2.3 of Chapter 2. The representation of two-dimensional regions

such as chain codes in Section 2.3.2 of Chapter 2 and polygonal representations in

Section 2.2.2 of Chapter 2 and the use of point methods for focusing the Hough Transform

in Section 1.5.1.4 of Chapter 1 should also be included as they are relevant to image

processing.

The discussions of plane-sweep methods and their associated data structures such

as the segment tree, interval tree, and priority search tree in Sections 3.1 and 3.2 of

Chapter 3, and of point location and associated data structures such as the K-structure

and the layered dag in Sections 2.1.3.2 and 2.1.3.3, respectively, of Chapter 2, are all

relevant to computational geometry. Other relevant topics in this context are the Voronoi

Diagram and the Delaunay triangulation and tetrahedralization in Sections 2.2.1.4–

2.2.1.7 of Chapter 2 as well as the approximate Voronoi diagram (AVD) in Section 4.4.5

of Chapter 4. The discussion of boundary-based representations such as the winged-edge

data structure in Sections 2.2.1.1–2.2.1.3 of Chapter 2 is also relevant to computational

geometry as well as to solid modeling. In addition, observe that the discussions of

rectangle-representation methods and plane-sweep methods in Chapter 3 are of use for

VLSI design applications.

Moreover, it is worth repeating the earlier comment that the discussion of bucket

methods such as linear hashing, spiral hashing, grid file, and EXCELL, discussed in

Sections 1.7 and 1.8 of Chapter 1, as well as the various variants of object hierarchies

as typified by the R-tree in Section 2.1.5.2 of Chapter 2, are important in the study of

database management systems. The discussion of topics such as k-d trees in Section 1.5

of Chapter 1, range trees in Section 1.2 of Chapter 1, priority search trees priority search

tree in Section 1.3 of Chapter 1, and point-based rectangle representations in Section 3.3

of Chapter 3 are all relevant to multidimensional searching.

Another potential venue for using the book is a course on representations for spatial

data either in a geography department where it would be part of a curriculum on geo-

graphic information systems (GIS) or within the context of course on spatial databases

in a computer science department. Again, the material that would be covered would be

a combination of that which is covered in a multimedia database course and the com-

puter graphics/computer vision/solid modeling or game programming course. In this

case, much of the material on the representation of high-dimensional data in Chapter 4

would be omitted although the material on nearest neighbor finding and approximate

nearest neighbor finding (Sections 4.1–4.3 of Chapter 4) would be included. In addition,

a greater emphasis would be placed on the representation of objects by their interiors

(Section 2.1 of Chapter 2) and by their boundaries (Section 2.2 of Chapter 2).

This book could also be used in a second data structures course. The emphasis

would be on the representation of spatial data. In particular, the focus would be on

the use of the principle of “divide-and-conquer.” Hierarchical data structures provide

a good demonstration of this principle. In this case, the choice of topics is left to the

xxiv



Prefaceinstructor although one possible organization of topics would choose some of the simpler

representations from the various chapters as follows.

From Chapter 1, some interesting topics include the fixed-grid method and some of

its variants (Section 1.1); numerous variants of quadtrees such as the point quadtree

(Section 1.4.1), PR quadtree (Section 1.4.2.2), k-d tree (Section 1.5), and variants

thereof (Sections 1.5.1.4, 1.5.2.1, and 1.5.2.3); bucket methods such as the grid file

(Section 1.7.2.1), EXCELL (Section 1.7.2.2), linear hashing (Section 1.7.2.3.1 and

Appendix B); range trees (Section 1.2); priority search trees for points (Section 1.3);

and the comparison of some of the structures (Section 1.9).

From Chapter 2, some interesting topics include the opening matter (preambles of

both the chapter and of Section 2.1); unit-size cells (Section 2.1.1 with the exception of

the discussion of cell shapes and tilings in Section 2.1.1.1); blocks (Sections 2.1.2.1–

2.1.2.9); BSP tree (Section 2.1.3.1); winged-edge data structure (Sections 2.2.1.1

and 2.2.1.2); image-based boundary representations such as the MX quadtree and

MX octree (Section 2.2.2.2), PM quadtree (Section 2.2.2.6), and PM octree (Sec-

tion 2.2.2.7); and hierarchical object-based interior representations such as the R-tree

(Section 2.1.5.2.1).

From Chapter 3, some interesting topics include the discussion of plane-sweep

methods and data structures such as the segment tree (Section 3.1.1), interval tree

(Section 3.1.2), and the priority search tree for rectangles and intervals (Section 3.1.3)

and the MX-CIF quadtree (Section 3.4.1).

From Chapter 4, the most interesting topic is the incremental nearest neighbor algo-

rithm (Sections 4.1.1–4.1.3). A brief introduction to distance-based indexing methods is

also appropriate. In this case the most appropriate representations for inclusion are the

vp-tree (Sections 4.5.2.1.1 and 4.5.2.1.1), the gh-tree (Section 4.5.3.1), and the mb-tree

(Section 4.5.3.3).

Throughout the book, both worst-case optimal methods and methods that work well

in practice are emphasized. This is in accordance with my view that the well-rounded

computer scientist should be conversant with both types of algorithms. It is clear that the

material in this book is more than can be covered in one semester. Thus the instructor

will invariably need to reduce it as necessary. For example, in many cases, the detailed

examples can be skipped or used as a basis of a term project or programming assignments.

Note that regardless of the course in which this book is used, as pointed out earlier,

the VASCO [243, 244, 245, 246]) set of JAVA applets can be used to illustrate many

operations for a large number of the data structures presented in the current book

(see http://www.cs.umd.edu/~hjs/quadtree/index.html). In particular, for point data, it

includes the point quadtree, k-d tree (also known as a point k-d tree), MX quadtree, PR

quadtree, bucket PR quadtree, PR k-d tree, bucket PR k-d tree, PMR quadtree, PMR

k-d tree, 2-d range tree (also known as a two-dimensional range tree), priority search

tree, R-tree, and the PK-tree. For line data, it includes the PM1 quadtree, PM2 quadtree,

PM3 quadtree, PMR quadtree, bucket PM quadtree, and the R-tree. For collections

of rectangles, it includes the MX-CIF quadtree, rectangle quadtree, bucket rectangle

quadtree (also known as a bucket rectangle PM quadtree), PMR rectangle quadtree

(also known as a PMR rectangle quadtree), PMR rectangle k-d tree, and R-tree. For all

of these data structures, students can see how they are built step by step, and also how

queries such as deletion, finding nearest neighbors, and overlap queries (which include

the more general range query and corridor or buffer queries) are supported. In each case,

the operation proceeds incrementally. Finally, an applet is also provided for the region

quadtree that shows how it can be constructed from other region representations such as

rasters and chain codes as well as how to obtain them from the region quadtree.

Instructors who adopt this book in a course are also welcome to use a comprehensive

set of lecture notes in the form of Powerpoint/PDF presentations that help clarify many

of the concepts presented in the book.

xxv


