
Information Processing Letters 101 (2007) 6–12

www.elsevier.com/locate/ipl

Execution time analysis of a top-down R-tree
construction algorithm ✩

Houman Alborzi, Hanan Samet ∗

Department of Computer Science and Center for Automation Research, Institute for Advanced Computer Studies, University of Maryland,
College Park, MD 20742, USA

Received 9 May 2006; received in revised form 27 July 2006; accepted 27 July 2006

Available online 8 September 2006

Communicated by J. Chomicki

Abstract

A detailed CPU execution-time analysis and implementation are given for a bulk loading algorithm to construct R-trees due to
García et al. [Y.J. García, M.A. López, S.T. Leutenegger, A greedy algorithm for bulk loading R-trees, in: GIS’98: Proc. of the 6th
ACM Intl. Symp. on Advances in Geographic Information Systems, Washington, DC, 1998, pp. 163–164] which is known as the
top-down greedy split (TGS) bulk loading algorithm. The TGS algorithm makes use of a classical bottom-up packing approach. In
addition, an alternative packing approach termed top-down packing is introduced which may lead to improved query performance,
and it is shown how to incorporate it into the TGS algorithm. A discussion is also presented of the tradeoffs of using the bottom-up
and top-down packing approaches.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Spatial databases; R-trees; Bulk loading; Packing; Data structures
1. Introduction

The R-tree [7,10] was developed as an index struc-
ture for the efficient management of multi-dimensional
and spatial data such as points and regions. Common
operations performed on an R-tree include point loca-
tion queries, range queries and nearest neighbor queries.
Given a set of input data objects, an R-tree could be

✩ The support of the National Science Foundation under Grants
EIA-00-91474 and CCF-0515241, Microsoft Research, and the Uni-
versity of Maryland General Research Board is gratefully acknowl-
edged.

* Corresponding author.
E-mail addresses: houman@umiacs.umd.edu (H. Alborzi),

hjs@umiacs.umd.edu (H. Samet).
0020-0190/$ – see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2006.07.010
constructed by the repeated insertion of each data item.
This approach does not take advantage of the fact that
all the data items are known beforehand, as in this case
it is preferable to insert all of the data items using a sin-
gle operation. Such an operation is called bulk loading.
An additional motivation for bulk loading is to enable
the construction of an R-tree which can perform queries
faster.

There have been a number of bulk loading tech-
niques developed for R-trees (e.g., [1,3,8,9,11]). In this
paper we present a formal analysis of the cost of build-
ing an R-tree using the Top-down Greedy Split (TGS)
bulk loading technique that was originally proposed by
García et al. [6]. Our approach differs from theirs by
providing a detailed implementation which enables a
more precise analysis of the algorithm. In particular, the

H. Alborzi, H. Samet / Information Processing Letters 101 (2007) 6–12 7
analysis given in [6] only considers the number of disk
pages accessed for bulk loading of the data, while a for-
mal analysis of the needed CPU time is missing. Given
that memory is getting cheaper, many spatial databases
fit into memory (e.g., in-car applications) and thus an
analysis of the number of disk page accesses is not suffi-
cient. This is especially true in the case of a bulk loading
algorithm such as TGS which performs many sorting
operations in order to obtain an R-tree that minimizes a
particular cost function. The algorithm of García et al.
in [6] uses a classical bottom-up packing approach. We
also introduce a top-down packing approach, show how
to incorporate it into the TGS algorithm, and discuss the
tradeoffs in choosing one versus the other.

Our motivation for presenting the analysis and im-
plementation of the TGS algorithm is to try to provide
analytical support to the experimental results reported
in [5] which showed that the R-tree built using the TGS
bulk loading technique performs much better compared
to those built using other bulk loading techniques, even
though the bulk loading process is slightly slower for
TGS. It is important to note that in this paper we do
not analyze the performance of queries executed on an
R-tree constructed by the TGS bulk loading operation;
instead, we repeat, our contribution is to formally ana-
lyze the time required for performing the bulk loading
operation.

The rest of this paper is organized as follows. Sec-
tion 2 reviews R-trees and the bulk-loading process.
Section 3 provides a description of the TGS bulk load-
ing algorithm as well as a sample implementation. Sec-
tion 4 describes the two approaches to packing that are
used in bulk loading algorithms. Section 5 contains the
formal analysis of the TGS algorithm, while Section 6
contains some concluding remarks.

2. Background

The most basic object that is stored in an R-tree is
an axis-aligned rectangle, also called a bounding box.
An R-tree data structure is a height balanced data struc-
ture similar to a B-tree [4] which facilitates storage of
spatial data in secondary storage. Each leaf node of an
R-tree holds two items for each data record. One is the
bounding box of the record, and one is a pointer (or an
identifier) to the data record itself. Similarly, each non-
leaf node of an R-tree holds two items for each of its
children: a bounding box of the child, and a pointer to
the child. Furthermore, to ensure that an R-tree is height
balanced, each node has between b and M � 2b chil-
dren, where M is called the page capacity of an R-tree
node. In general, the page capacity of a leaf node is dif-
ferent from the page capacity of a nonleaf node. A node
that has less than b children is termed underpacked. The
root node of an R-tree is allowed to be underpacked.

A common query on an R-tree is a window query
which reports all the data records in the R-tree whose
boxes intersect a query rectangle w. When w is a point,
the query is called a point query. A window query is
performed by examining the root of an R-tree and re-
cursively searching all its children that intersect w.

The efficiency of operations on an R-tree depends
on the geometric relation of the nodes with respect to
each other as well as on the height of the R-tree. For ex-
ample, during a point query, all the nodes of the R-tree
that cover the query point are visited. The query’s per-
formance is thus proportional to the number of nodes
visited. If the query point is inside the bounding box of
two or more sibling R-tree nodes, then all such nodes
must be visited. Queries can be performed faster if the
sibling nodes of an R-tree have little or no overlap. Intu-
itively, reducing the overlap of sibling R-tree nodes also
results in better performance. A cost function quantifies
this notion by assigning a cost to the geometric rela-
tion of the sibling nodes of an R-tree, which is usually
[2,7,8] a function of their areas, perimeters, and their
overlap area.

Roussopoulos and Leifker [9] introduced the concept
of a packed R-tree, where all nodes of the R-tree are as
full as possible. This results in an R-tree with the lowest
possible height, thereby possibly improving the perfor-
mance of search queries. However, search performance
is still dependent on the amount of overlap between
nodes. Their approach for building a packed R-tree is
a bottom-up approach.

In general, a bottom-up approach for building packed
R-trees is a two step process. It the first step, the n data
rectangles are sorted according to a predetermined sort
order. In the second step, groups of M data rectangles
are placed into �n/M� leaf nodes. After building the
leaf nodes, the same process is applied to the bound-
ing boxes of the leaf nodes to build another level of the
R-tree. This process is applied iteratively until the root
node of the R-tree is obtained.

On the other hand, a top-down approach, builds the
higher levels of the R-tree first. The data rectangles are
sorted according to a predetermined sort order and then
the groups of n/M data rectangles are associated with
the M children of the root. The process will be repeated
for each of the M children of the root. In such an ap-
proach only one sort is needed for the first iteration, as
the order of the boxes does not change during the sub-
sequent iterations. The time complexity of a top-down
approach is also O(n logn). Kamel and Faloutsos [8]

8 H. Alborzi, H. Samet / Information Processing Letters 101 (2007) 6–12
use a Hilbert curve sort order to build packed R-trees
by sorting the collection of data rectangles only once.
Hence, their method while described as bottom-up ap-
proach is essentially a top-down approach.

The bulk loading approaches described so far do not
take into account any notion of a cost function. Depend-
ing on the sort order chosen, these approaches may or
may not produce a desirable R-tree. The TGS (Top-
down Greedy Split) algorithm of García et al. [6] pro-
poses to overcome this issue by taking into account a
cost function and tries to find a partition with a low cost.
The n data rectangles are first sorted using an appro-
priate sort key, and then inserted in order into M bins
each holding n/M rectangles. Moreover, the minimum
bounding box of the rectangles in a bin is computed and
kept as the bounding box of the bin. The bins are also
numbered from 1 to M using each of the possible sort
orders. At this point, we try to find an optimal parti-
tion of the M bins into two sets containing the first i

bins and the next M − i bins so that the value of the
cost function on the minimum bounding rectangles of
the bins that make up each of the two sets is minimized
(e.g., their overlap). The key to this step is that we try to
find the optimal partition using all of the possible sort
orders. It should be clear that in this initial step there
are M − 1 possible partitions and the TGS algorithm
takes all of them and all of the possible sort orders into
account when determining the optimal one at this step.
This is a greedy binary split of the bins and the rectan-
gles that they contain into two partitions. Each partition
of the data rectangles is split again until all of the data
rectangles are partitioned into M partitions of sizes less
than or equal to n/M , at which time we have obtained
the first level of the R-tree. The same algorithm is then
applied recursively to the individual nodes of the R-tree
until all nodes at a given level contain at most M data
rectangles. Given S different sort orders, the TGS algo-
rithm sorts the n rectangles in S different orders. While
the S sort orders used in [6] are based on the 2d coor-
dinates of the d-dimensional rectangles, any sort order
defined using a sort key, such as the Hilbert order, could
be used in the TGS algorithm. Section 3 contains a more
detailed description of the algorithm.

3. TGS bulk loading algorithm

In this section, we present a detailed implementation-
level description of the TGS algorithm given in [5,6].
The input to the TGS bulk loading algorithm is a list D

of d-dimensional data rectangles. The algorithm builds
an R-tree for these data rectangles. Each d-dimensional
rectangle r is defined by d pairs of scalars, where each
pair ri = (r−

i , r+
i) denotes the range that r spans in

the ith dimension. We use the notation p � q to de-
note the minimum bounding box of two rectangles p

and q . For r = p � q , we have r−
i = min(p−

i , q−
i) and

r+
i = max(p+

i , q+
i) for i = 1 . . . d .

We assume that there are S different sort keys associ-
ated with each rectangle r in D, where SORTKEY(r, s)

denotes the sth sort key on r . For example, the sort keys
of a two-dimensional rectangle r could be chosen as its
extents: SORTKEY(r,1) = r−

1 , SORTKEY(r,2) = r+
1 ,

SORTKEY(r,3) = r−
2 , and SORTKEY(r,4) = r+

2 . We
assume further that each sort key associated with a rec-
tangle is uniquely defined, and a mechanism for break-
ing the ties is in place. That is, for the sth sort key and
the distinct data rectangles r and p, SORTKEY(r, s) �=
SORTKEY(p, s).

The algorithm is invoked by BULKLOAD(D) (Algo-
rithm 1), where D is the list of input rectangles. BULK-
LOAD proceeds by sorting the data in ascending order
using S different sort keys, and storing the results in lists
D(1), . . . ,D(S). It then determines the height of the R-
tree and invokes BULKLOADCHUNK, which generates
an R-tree with the specified height using the sorted data.
Note that the boldface symbol D denotes the sorted lists
D(1), . . . ,D(S).

BULKLOADCHUNK (Algorithm 2) simply returns an
R-tree leaf if the desired height of the R-tree is zero.
Otherwise, it determines m, the desired number of data
items that need to be placed under each node (line 6).
m is chosen so that all the nodes will have the max-
Input: D = {r1, . . . , rn} is a list of n rectangles.
(* S is the number of sort keys defined on each rectangle. *)
(* N is the capacity of leaf nodes, and M is the capacity of nonleaf nodes. *)
(* Top-Down-Greedy-Split bulk loading algorithm *)
for i = 1 to S do

D(i) ← SORT(D, i) (* Sort D on the ith sort key *)
h ← max(0, �logM

|D|
N

�) (* Desired height of the R-tree. *)
return BULKLOADCHUNK(D, h)

Algorithm 1. BULKLOAD(D).

H. Alborzi, H. Samet / Information Processing Letters 101 (2007) 6–12 9
(* Bulk load data in D into an R-tree of height h. *)
(* M is the capacity of nonleaf nodes. *)
if h = 0 then

return BUILDLEAFNODE(D(1))
(* Note that any of the sorted lists could have been used. *)

5: else
m = N · Mh−1

(* Desired number of data items under each child of this node. *)
{D1, . . . ,Dk} ← PARTITION(D,m)

(* Partition of D into k � M parts. *)
for i = 1 to k do
ni = BULKLOADCHUNK(Di , h − 1)

(* Recursively bulk load lower levels of the R-tree. *)
10: return BUILDNONLEAFNODE(n1, . . . , nk)

Algorithm 2. BULKLOADCHUNK(D, h).

(* Partition data into k = � |D(1)|
m � parts of size m �= 0. *)

if |D(1)| � m then
return D (* one partition *)

L,H ← BESTBINARYSPLIT(D,m)

5: return Concatenation of PARTITION(L,m) and PARTITION(H,m)

Algorithm 3. PARTITION(D,m).

(* Find the best binary split of D. *)
(* m �= 0 is the size of each partition. *)

M ← �|D(1)|
m � (* Number of partitions *)

c∗ ← ∞ (* Best cost found so far *)
5: for s = 1 to S do

F,B = COMPUTEBOUNDINGBOXES(D(s),m)

for i = 1 to M − 1 do
c ← cost(Fi,Bi)

if c < c∗ then
10: c∗ ← c (* Best cost *)

s∗ ← s (* Best sort order *)
key = SORTKEY(D

(s)
i·m, s) (* Sort key of split position *)

for s = 1 to S do
L(s),H(s) = SPLITONKEY(D(s), s∗,key)

15: return L,H

Algorithm 4. BESTBINARYSPLIT(D,m).
imum number of data rectangles under them. Next, it
uses the PARTITION algorithm (Algorithm 3) to parti-
tion the data into sets of size m, and recursively builds
an R-tree node for each partition, returning a nonleaf
R-tree node as their parent.

The PARTITION algorithm partitions the input set D
into partitions of size m using a greedy paradigm. It
uses the BESTBINARYSPLIT algorithm (Algorithm 4)
to find a desirable binary split of the input set D into
two partitions L and H. Note that the boldface sym-
bols L and H denote the sorted lists L(1), . . . ,L(S) and
H(1), . . . ,H (S). It then recursively partitions L and H
and builds a bigger partition by joining them.

The BESTBINARYSPLIT algorithm considers the S

different orderings of the input set D. It uses each order-
ing to group the data rectangles into groups of size m.
That is, if there are M · m rectangles, then the first m

rectangles are grouped together, then the second m rec-

10 H. Alborzi, H. Samet / Information Processing Letters 101 (2007) 6–12
Output: Li = D1 � · · · � Di·m for 1 � i < M .
Output: Hi = Di·m+1 � · · · � Dn for 1 � i < M,n = |D|.

(* Compute the lower and higher bounding boxes of possible binary
splits of D list of n rectangles into groups of size m *)
(* m �= 0 is the size of each group. *)
M ← �|D|

m � (* Number of groups *)
B is a list of M rectangles.

5: L,H are each a list of M − 1 rectangles.
for i = 1 to M do

Bi ← D(i−1)·m+1 � D(i−1)·m+2 � · · · � Dmin(|D|,i·m)

L1 ← B1
HM−1 ← BM

10: for i = 2 to M − 1 do
Li ← Li−1 � Bi

HM−i ← BM−i+1 � HM−i+1
return L,H

Algorithm 5. COMPUTEBOUNDINGBOXES(D,m).

Figure 1. Result of applying a TGS bulk loading algorithm to an R-tree that minimizes (a) overlap area with bottom-up packing, (b) total area with
bottom-up packing, (c) overlap area with top-down packing, and (d) total area with top-down packing.
tangles are grouped together, and so forth. It then con-
siders all possible splits of the groups into two parts. In
particular, if there are M groups, it considers S · (M −1)

possible ways of splitting the groups into two parts. The
BESTBINARYSPLIT algorithm chooses the split with
the lowest cost, and accordingly splits the input set D
(i.e., the data and its S orderings) into two parts using
the SPLITONKEY algorithm.

The COMPUTEBOUNDINGBOXES algorithm (Algo-
rithm 5) determines the bounding boxes that are needed
for determining the cost of each binary split considered
in BESTBINARYSPLIT. It first computes B , the bound-
ing boxes for each group of m rectangles. It then com-
putes lower bounding boxes (L) and the higher bound-
ing boxes (H).

The SPLITONKEY algorithm (not given here) will
split a sorted list D, into two sorted lists L and H based
on a threshold t , and the sth sort key among the S sort
keys defined on rectangles. At the end of SPLITONKEY,
L will hold all elements of I such that their sth key is
less than t , and H will hold the rest.
4. Bottom-up packing versus top-down packing
algorithms

Fig. 1 shows a set of 30 randomly generated rectan-
gles that are bulk loaded using the TGS algorithm into
an R-tree with page capacity of 8 (i.e., N = M = 8).
Each R-tree in the figure consists of a root and four leaf
nodes under the root. The inner rectangles correspond to
the data rectangles, and the outer rectangles correspond
to the bounding boxes of each leaf node. Four sort keys
are used in the generation of the figure. In particular, the
four sort keys of a rectangle are its two extents in each
of the two dimensions. The cost functions used to gener-
ate Fig. 1 involved minimizing the overlap area of two
rectangles (Fig. 1(a)) and minimizing the total area of
two rectangles (Fig. 1(b)).

Traditionally, packing methods work by filling the
leaf nodes as much as possible and then proceed to ap-
ply the same filling criteria to the nonleaf nodes. We
characterize such an approach as bottom-up packing and
is the one used in the implementation of the TGS algo-

H. Alborzi, H. Samet / Information Processing Letters 101 (2007) 6–12 11
rithm described in Section 3 and illustrated in Fig. 1. We
could also proceed by starting at the root and packing
the nonleaf nodes as much as possible. Such an ap-
proach can be characterized as top-down packing. The
TGS algorithm whose implementation we described
could also be converted to use top-down packing by
modifying line 6 of BULKLOADCHUNK (Algorithm 2)
to be:

m =
⌈ |D(1)|

M

⌉
(* Desired number of data items under
each child of this node. *)

Figs. 1 (c) and (d) were obtained using this modifi-
cation, with the same dataset as in Figs. 1 (a) and (b).
Given N and M as the capacities of the leaf and non-
leaf nodes, respectively, the bottom-up packing and top-
down packing yield identical results when n, the total
number of data objects, equals N · Mh for some in-
teger value h > 0. However, when n is not equal to
N · Mh, the top-down packing yields a different re-
sult as can be seen by comparing Figs. 1 (a) and (b)
with Figs. 1 (c) and (d). We note that top-down pack-
ing can potentially allow the queries to be performed
faster as there are more children under each nonleaf
node thereby permitting more effective pruning when
answering queries. However, an R-tree constructed with
the bottom-up packing TGS algorithm has fewer nodes
than an R-tree constructed with the top-down TGS al-
gorithm. Therefore, we can identify a tradeoff between
the two packing approaches. In particular, the top-down
packing TGS algorithm builds R-trees that can poten-
tially be used to answer queries faster than R-trees built
by the bottom-up packing TGS algorithm at the expense
of requiring more storage space. We point out that the
relative merit of the two packing strategies depends on
the query model. For example, to answer the window
query Q shown in Fig. 1(a), one leaf node needs to
be read from disk. However, to answer the same query
shown in Fig. 1(c), only the root node needs to be exam-
ined. On the other hand, answering a window query that
intersects all the leaf nodes with the bottom-down pack-
ing is obviously faster than with the top-down packing.
Finally, we observe that one of the consequences of us-
ing top-down packing is that some of the leaf nodes
of the R-tree may be underpacked (e.g., recall that one
leaf node in Fig. 1(c) has just two data rectangles). Of
course, when using bottom-up packing at most one node
at each level is underpacked. However, this does not af-
fect the correctness of results.

5. Analysis

In this section we analyze the running time of the
TGS bulk loading algorithm. As we pointed out in Sec-
tion 1, the analysis provided in [6] was only in terms
of the number of disk page accesses, whereas here we
focus on the CPU time in light of the repeated invoca-
tion of the sorting steps by the algorithm in the process
of minimizing the particular cost function. To simplify
the analysis, we assume that the number of input data
rectangles results in a fully packed R-tree, i.e., there are
n = NMh data rectangles, where h denotes the height
of the resulting R-tree.

Let T (n) denote the time complexity of the BULK-
LOAD algorithm. The BULKLOAD algorithm performs
S sorts. We have,

T (n) = O(Sn logn) + B(n,h), (1)

where B(n,h) denotes the time complexity of the
BULKLOADCHUNK algorithm.

Notice that as the initial number of the data rectan-
gles results in a fully packed R-tree, it suffices to derive
B(N · Mh,h). Letting C(h) denote B(N · Mh,h). We
have,

C(h) =
{O(N), h = 0,

P (N · Mh,N · Mh−1) + M · C(h − 1)

+ O(M), h > 0,

(2)

where P(n,m) denotes the time complexity of the PAR-
TITION algorithm, and O(M) corresponds to the cost of
invoking BUILDNONLEAFNODE.

We now proceed to derive P(n,m). We first no-
tice that the PARTITION algorithm consists of a call
to the BESTBINARYSPLIT algorithm and two recursive
calls to itself. The worst-case scenario arises when each
call to BESTBINARYSPLIT results in a minimum par-
tition. That is, BESTBINARYSPLIT(D,m) yields two
sets, such that one of them is of size m. We have the
following recurrence relation:

P(n,m) =
⎧⎨
⎩

O(1), n � m,

E(n,m) + P(m,m)

+ P(n − m,m), n > m,

(3)

where E(n,m) denotes the time complexity of the
BESTBINARYSPLIT algorithm.

Observe that the execution times of the COMPUTE-
BOUNDINGBOXES algorithm and the SPLITONKEY

algorithm are linear in their input size. Moreover, as
the BESTBINARYSPLIT algorithm invokes the COM-
PUTEBOUNDINGBOXES algorithm S times, its execu-
tion time, E(n,m), is O(S · n), where n is the number
of input rectangles.

Therefore, we can rewrite Eq. (3) as:

P(n,m) =
⎧⎨
⎩

O(1), n � m,

O(S · n) + P(m,m)

+ P(n − m,m), n > m.

(4)

12 H. Alborzi, H. Samet / Information Processing Letters 101 (2007) 6–12
To further simplify the analysis, we assume that
n = L · m, where L is the number of groups that the
PARTITION algorithm considers. Notice that for each
initial call of PARTITION from BULKLOADCHUNK, we
have L = M . Therefore, we can rewrite Eq. (4) in closed
form:

P(L · m,m) =
L∑

i=2

O(S · i · m) = O(S · L2 · m). (5)

By substituting N · Mh−1 for m and M for L

in Eq. (5) we get P(N · Mh,N · Mh−1) = O(S ·
(M2)Mh−1) = O(S ·Mh+1), and we can rewrite Eq. (2)
as:

C(h) =
⎧⎨
⎩

O(N), h = 0,

O(S · Mh+1) + M · C(h − 1)

+ O(M), h > 0.

The recurrence relation for C(h) can be solved to yield

C(h) = O
(
Mh · (S · h · M + N)

)
= O

(
n ·

(
S · h · M

N
+ 1

))
,

where we have used n = N · Mh.
Recalling that C(h) = B(NMh,h) and that h =

logM
n
N

, we obtain from Eq. (1) that

T (n) = O

(
Sn logn + n ·

(
S

M

N
logM

n

N

))
.

In particular, for M = N = O(1), we have T (n) =
O(Sn logn), which demonstrates that the observed im-
proved performance of the TGS algorithm by Gar-
cía et al. [6] comes at a cost of a factor of S over
that resulting from the use of a bottom up bulk load-
ing approach. Given that S is relatively low for low
dimensional data, the improvement seems worth the ex-
tra effort. However, in the case of high dimensional data,
this may not be the case.

6. Concluding remarks

A formal analysis of the TGS R-tree bulk loading al-
gorithm was provided. Our approach differs from theirs
by providing a detailed implementation which enabled a
more precise analysis of the algorithm. In particular, we
focused on the CPU time requirements rather than the
number of disk page accesses, which is what was done
in [6]. We also discussed the tradeoffs of using classical
bottom-up packing and top-down packing, and showed
how to incorporate top-down packing in the TGS algo-
rithm.

References

[1] L. Arge, K.H. Hinrichs, J. Vahrenhold, J.S. Vitter, Efficient bulk
operations on dynamic R-trees, in: ALENEX’99: Proc. of the 1st
Workshop on Algorithm Engineering and Experimentation Bal-
timore, MD, Jan. 1999, in: Lecture Notes in Computer Science,
vol. 1619, Springer, Berlin, 1999, pp. 328–348.

[2] N. Beckmann, H.-P. Kriegel, R. Schneider, B. Seeger, The R∗-
tree: An efficient and robust access method for points and rec-
tangles, in: SIGMOD’90: Proc. of the Internat. Conf. on Man-
agement of Data, Atlantic City, NJ, May 1990, pp. 322–331.

[3] L. Chen, R. Choubey, E.A. Rundensteiner, Bulk-insertions into
R-trees using the Small-Tree-Large-Tree approach, in: GIS’98:
Proc. of the 6th ACM Intl. Symp. on Advances in Geographic
Information Systems, Washington, DC, 1998, pp. 161–162.

[4] D. Comer, The ubiquitous B-tree, ACM Comput. Surv. 11 (2)
(1979) 121–137.

[5] Y.J. García, M.A. López, S.T. Leutenegger, A greedy algorithm
for bulk loading R-trees, Computer Science Technical Report 97-
02, University of Denver, Denver, CO, 1997.

[6] Y.J. García, M.A. López, S.T. Leutenegger, A greedy algorithm
for bulk loading R-trees, in: GIS’98: Proc. of the 6th ACM Intl.
Symp. on Advances in Geographic Information Systems, Wash-
ington, DC, 1998, pp. 163–164.

[7] A. Guttman, R-trees: A dynamic index structure for spatial
searching, in: SIGMOD’84: Proc. of the Intl. Conf. on Manage-
ment of Data, Boston, MA, June 1984, pp. 47–57.

[8] I. Kamel, C. Faloutsos, On packing R-trees, in: CIKM’93: Proc.
of the 2nd Intl. Conf. on Information and Knowledge Manage-
ment, Washington, DC, Nov. 1993, pp. 490–499.

[9] N. Roussopoulos, D. Leifker, Direct spatial search on pictor-
ial databases using packed R-trees, in: SIGMOD’85: Proc. of
the Intl. Conf. on Management of Data, Austin, TX, May 1985,
pp. 17–31.

[10] H. Samet, Foundations of Multidimensional and Metric Data
Structures, Morgan Kaufmann, San Francisco, CA, 2006.

[11] J. van den Bercken, B. Seeger, P. Widmayer, A generic approach
to bulk loading multidimensional index structures, in: VLDB’97:
Proc. of the 23rd Intl. Conf. on Very Large Databases, Athens,
Greece, Aug. 1997, pp. 406–415.

