Technion - Israel Institute of Technology
Computer Science Department

Dilation and Quadtrees - Theoretical and Practical Results
by
Arnon Amir, Alon Efrat and Hanan Samet

CIS Report #9626 December 1996

For the elimination of any doubt, it is hereby stressed that the staff
member and/or the Technion and/or the Technion Research and Develop-
ment Foundation Ltd. will not be liable for any property damage and/or
corporeal damage and/or expense and/or loss of any kind or sort that will
be caused or may be caused to vou or to anyone acting on your behalf, in
consequence of this statement of opinion or this report, or in any connection

to it.

Dilation and Quadtrees —
Theoretical and Practical Results

Arnon Amir* Alon Efrat® Hanan Samet?

Abstract

Let S be a given shape in the plane, and let B be a ball of a fixed radius. The dilation of S, denoted
by D(5), is the shape resulting from taking the Minkowsky sum of S and B. D(S) is the region consisting
of all points in the plane whose distance from some point of S is at most r. Computing the dilation of a
shape is a common and important problem in the fields of robotics. image processing, computer graphics
and in spatial databases where it corresponds to the spatial analog of a range query.

Letting T'(S) be the quadtree representation of S, an algorithm (termed Algorithm A) is presented
for calculating D(T(5)) in an optimal O(n) time where n is the number of blocks in T(S)). Algorithm
A provides an analytic description of D(T(S)). However, in some applications, a result in the form of
a quadtree is preferred. A second algorithm (termed Algorithm) is presented that takes advantage
of this output format requirement. It simplifies and applies some additional heuristics to Algorithm A
resulting in a more practical algorithm, although ome that is not asymptotically optimal which is the
case for Algorithm A. This algorithm is currently implemented, and empirical results will be presented
in the full paper.

1 Introduction
Given shapes S and @, their Minkowsky sum. also known as their dilation, denoted by &, is:
SeQ=1{s+¢|seS.qeqQ}

Computing the dilation of a shape is a common and important problem in fields such as robotics. assembly,
geographic information systems (GIS), computer vision, computer graphics, as well as in spatial databases
where it corresponds to the spatial analog of a range query. For example, in robotics, dilation is used
in motion planning where the Minkowsky sum can be interpreted as a parametric description of the free
space in which a robot can lie without intersecting any of the obstacles in its vicinity. See for example 3]
for a (partial) list of applications. It is also used as a basic morphological operation in image processing
and computer vision (e.g., document understanding). Among the algorithms for performing the dilation
operation. we mention [5, 8] as well as others.

In this paper we address perhaps the simplest (but by no means the least important) variant of the
dilation problem where both S and @Q are planar shapes, S is given in the form of a region quadtree 7'(5),
and @ is a ball B, of a fixed radius r. This problem also arises in many other fields. For example, suppose
that we have a map and we want to find all the areas that are within 5 miles of a lake. In [1] a similar
problem is addressed with the difference that that the dilation is done with a square rather than a circle.
Note that dilation with a square is the spatial analog to a range query using the Manhattan metric instead

"Computer Science Department, Technion Haifa 32000, Israel arnon@cs.technion.ac.il

'Schaol of Mathematical Sciences. Tel Aviv University. Tel-Aviv 69982, Isracl. alone@cs.tau.ac.il

{Computer Science Department, University of Maryland, College Park, Maryland 20742, hjs@umiacs.umd.edu, whose work
is supported in part by the National Science Foundation under grant TRI-92-16970 and the Department of Energy under Contract
DEFG0295ER25237.

PRELIMINARIES 2

of the Euclidean metric. However, dilating a quadtree with a circle is less natural, and cannet be achieved
as a direct extension of this result.

Let us define D(S) = S & B,. It is easy to show that the complexity' of D(S). denoted comp(D(S)).
is linear in comp(S), which is always small or equal to n, the number of blocks in T(S). To see the first
assertion, note that S can be partitioned into at most comp(S) convex regions (e.g., using triangulation)
and D(S) is the union of the dilation of each of these regions. It was shown in [6] that the union of such
regions has linear complexity. However, we are not aware of any linear time algorithm for this problem.

The region quadtree (e.g., [9, 10]) is a hierarchical representation of region data that is based on the
recursive decomposition of a bounded image array into four equal-sized quadrants. In order to define a
region quadtree. without loss of generality, assume a binary image that contains just one region where the
pixels in the region are black (i.e., 1) and the pixels in the background are white (i.e., 0). If the array does not
consist entirely of 1s or entirely of 0s (i.e., the region does not cover the entire array), then 1t 1s subdivided
into quadrants, sub-quadrants, etc. until blocks are obtained that consist entirely of 1s or entirely of 0s (i.e.,
each block is entirely contained in the region or entirely disjoint from it). If the image exhibits homogeneity
(i.e., it is not a checkerboard), then the quadtree can result in storage savings. Regardless of how much
storage is saved, region gquadtrees are also attractive because many of the algorithms for operations on images
represented by region quadtrees execute in time proportional to the number of blocks in the gquadtree rather
than the number of pixels in the image array. This leads to considerable improvements in the execution time
of algorithms such as connected component labeling (e.g., [2]).

In this paper we attempt to take advantage of the fact that the input shape is given as a region quadtree.
We are interested in finding an algorithm that computes the dilation of any shape represented by a region
quadtree in time proportional to the number of blocks in the quadtree. Moreover, we wish to know what
kind of information, in addition to the description of shape S, is needed to obtain the dilation of S (denoted
by D(S)) in a linear time.

There are two reasons to address this question. Quadtrees are often used for representing shapes in
existing data-bases. Therefore, taking advantage of this information seems economical. The other reason
is purely theoretical: we want to answer the question of what kind of information 1s needed, except the
descriplion of S itself, in order to oblain a linear tzme algorithm for computing D(S)? For instance, it could
be shown that if the Voronoi diagram of S is given, then a linear time algorithm is also easily obtained®.
Hence the question “what kind of additional information do we need, in order to compute the dilation in
a linear time” appears to be interesting. In this paper we show that the order posed by the quadtree is
sufficient.

In this paper we present two variants of the dilation algorithm. Let S be a shape in the Euclidean
plane IR®, whose quadtree representation is denoted as T(S). In T'(S) each leaf is either white or black,
where S is the union of the black leafs of T(S). Section 2 contains some definitions. Section 3 describes an
optimal algorithm, named Algorithm A, whose asymptotic running time is optimal in the size of the input.
Algorithm A uses a general quadtree projection technique, described in Section 4. It produces an analytic
description of D(T(S)). Section 5 presents a second version of the algorithm that produces the output in a
quadtree form. It uses the same quadtree projection technique together with a simplified merging stage, that
is based on some heuristics, to save time in the digitization and the quadtree building processes. Algorithm
C is currently implemented, and the results of our experience will be given in the full paper. An up-to-date
version of this paper can be found at http://www.cs.technion.ac.il/"arnon/papers/qt_dilation.ps.gz.

2 Preliminaries

Let R denote a rectangle®, let T = T(S) be a quadtree of the shape S, and let R(T) denote the bounding
square of the region occupied by 7. For a rectangle R we refer to its four edges as the up-edge, down-edge,

'n this setting. the complexity of a shape S means the number of vertices and edges of 5.
2We thank Joseph S. B. Mitchell for this remark.
? All rectangles and squares in this paper are axis-parallel, and are lying on the discrete grid

PRELIMINARIES 3

left-edge and right-edge. Let d € {up.down, left,right}, say d = down, and let e be the edge of R which
faces the d direction. Let ¢ be a point on e, and let N(g) be the closest among all points of S which are
vertically above g, at a distance smaller than r from ¢ (recall that r is the radius of dilation). We define
N(g) = r (alternatively oo) if no such point exists. When considering N(q) as a function of ¢, its graph is
piecewise constant. For a shape S enclosed in a rectangle R, this graph is termed the d-relevance of S in
R, and is denoted by rel(S, R, d) (see Fig. 1). We also define rel(R, d) = rel(S;, M R, R.d), where S;, is the
original input shape, given by the quadtree T;,. By abusing notation, we sometimes refer to rel(B, d) as a
polygonal path description of the piecewise-constant function N(g) stored as a doubly-connected list of its
vertices. Naturally, rel(R, d) is defined analogously for d = up, left, right.

R(v)

~ rel(S,R(v),down)

__——OP(S,R(v),down)

Figure 1: The relevance rel(S, R, down) of the shape S is marked by the dashed line, and its dilation under
this border (hence its outer-path, OP(S. K. down)) is filled in black.

The next lemma shows the importance of the relevance of a shape term.

Lemma 2.1 Let S be a shape, enclosed in a rectangle R, and let R' be another rectangle, disjoint to R, and
lying completely in the d-direction of R, for d € {up, down, le ft,right}, then

D(SYN R = D(rel(S§, R.d))N R’
That is. only rel(S, R, d) counts in terms of mfluencing R' by the dilatzon of S.

Let ry be chosen so that
V2irg=v2:2¢ <r < V229 =22 0

for an integer d (see Fig. 2). We say that a block v € T is an atom block if the edge-length of R(v) is
exactly rg. By this choice of rg it is guaranteed that an atom block v that contains a black block will become
completely black after the dilation with B,. Therefore, the result of D(z) is a simple shape. that has no
holes (note that an atom block may be black, white or gray). A large block is a block larger than an atom
block.

We use the term effect of S in a region R to mean to I{S) M R — the part of the dilation of S found in
R. Let the effective nerghborhood of a block v € T be the union of all the atom blocks that can effect any
point in #. A crucial observation is that if ¢ is some point in the plane, then the dilation of only a constant
number of atom blocks surrounding ¢ might effect ¢ (no more than three atom blocks to each side). This
abservation is the basis of the efficiency of our algorithm.

For a set S, enclosed in a rectangle R, let the outer-path of R in the d-direction, denoted OP(S, R, d),
describe the boundary of D(S M R) found in the half-plane at the d side of R (see Fig. 1). The outer-path

ArcoriTHM A: LINEAR TIME DILATION. 4

Figure 2: The selection of ry. given the dilation radius r.

is a polyarc that consists of a list of straight segments and arcs of radius r. By Lemma 2.1, the outer-path
depends only on the relevance, and can be computed by OP(S, R.d) = d(rel(S, R.d) & B;). As before, we
sometimes use shorthand notation and define OP(R.d) = OP(S;,, R.d).

For a node v of T(S), let T(v) denote the subtree rooted at v. We say that v is a grey block if it contains
both white and black regions.

3 Algorithm A: Linear Time Dilation.

In this section, we describe an algorithm whose input is a shape S;,, represented as a quadtree T;,, and
computes D(S) = S& B, in time O(n), where n is the number of blocks in Ti,. The output of this algorithm
is an analytic description of D(S), that is, each black shape is described by a list of arcs and line segments
along its boundary.

3.1 Basic Steps of the Algorithm

We first partition the region R(root(T)) into vertical slabs, denoted s;, 1 =1,2,3,.. ., each of width ry. The
slabs are ordered from left to right, such that each atom block of T fits into exactly one slab. An interesting
slab is a slab which might contain a vertex of D(S) in its vicinity (in a distance less than 3rg). We avoid
processing the non interesting slabs. Let L[i]. 1 = 1,2,..., k} denote the list of all & interesting slabs, and
let ¥; be the vertical right border of slab s;.

The algorithm consist of the following steps

1. Projecting: Project T into a binary tree 7". Each slab is stored in a node of 7" as a linked list of
its atom blocks, b; ;, ordered from bottom to top. In addition, each atom block b; ; stores two pointers
to the closest large blocks which are above and below b; ; (if any).

2. Computing £: Compute the list of interesting slabs, £ (Fig. 3(left)), For each interesting slab,
compute the intersection region, s; N R, of any large black block R that intersects with s; and has a
corner in s;, or has an atom block b; ; (in s;) within a distance less than 6rq above or below K.

3. Computing the dilation in s; By the effective neighborhood observation, the dilation result inside
slab s; only depends on the content of s, and (at most) three slabs to its left and three slabs to its
right (Fig. 3(right)). The effects of the left side and of the right side on s, are separately evaluated
using their relevances.

4. Slab sweeping: The effects of atom blocks b; ; and of large black blocks inside s, are evaluated while
merging their results with the effects of its left and right sides. After this stage, each slab s; contains
all vertices of dD(S) N s;.

-
|

ALGORITHM A: LINEAR TIME DILATION. 53

5. Slabs tailoring: Every slab s; is tailored to s;1; by connecting adjacent black (white) regions along
the vertical border ;. The resulting tailored boundaries of D(s) are reported to the output. Small
white regions of IR?\ D(8) (white holes), which are fully contained in (the interior of) s;, are also
reported. The tailoring process also takes care of these parts of large black blocks that have not been
processed in the above stages (to be explained later).

LR[i] LOP[i] Ty ROP[i] RR[i]
| : !
! |
O | — ‘,‘——
I__.._~ bixf“'-}/’
& / F
r \.\-.r..
]
\I\ SO [S—
..... a— e
|] -y
..... pret - bl s
AN
iy !
R '
e
..... ------.-.,Xié-—-_‘,._‘.-----.--
1 L]
6|
o b e oo
' i
bij}‘.jj\-] !
5, 5 Ss S 53 S Si3 Siz Sir Si Siy Sz Sia

Figure 3: Algorithm A: The image region is divided into slabs of width ro. Only the interesting slabs (here
all 16 slabs, except syg) are processed (left). The dilation is first computed inside every interesting slab, s;,
from bottom to top. in atom blocks b; ; (right). The slab s; merges the effect of the three slabs on its left and
on its right. The relevance on each side, LR[i], RR[i] and the outer-paths, LOP[i]. ROP[i] (the relevance
dilated with B,) are shown in thick and in thin dashed lines, respectively.

Special care should be taken at every stage of the algorithm in order to accomplish the task in a linear
time. A new data structure, denoted a projected quadtree, is therefore introduced. Two instances of the
projection procedure are used in stages 1 and 3.

The reader should be aware of the complexity of processing the large black leafs. Although dilating them
is as easy as dilating smaller blocks, the boundary of their dilated area might intersect with a large number
of smaller regions, and might have a relatively high complexity, while their input complexity i1s always 1.
Therefore, special care is taken in the description of how the algorithm processes large black blocks.

We now give more details about the algorithm. Some of the finer details of a few of the procedures are
not given here. Instead. they are given in Section 4.

3.2 Projecting T and Computing L[z

We split the tree 7' into atom blocks. which are white. black or gray nodes of size ro in T, and into large
blocks, namely those leafs whose width is larger than ro. We use the projection tree T!' = proj(T) which is
described in Section 4.1, to scan T. Each atom block that we encounter is projected onto the z-axis. As a
result. we receive for each interesting slab s; (containing any black block), a corresponding linked list L[i] of
all the atom blocks (and some parts of large black blocks, as defined above) that it contains. The elements

ALGORITHM A: LINEAR TIME DILATION. 6

in every linked list £[i] point to the gray atom blocks found in s;. The atom blocks are denoted b; ; and are
ordered from bottom to top. To avoid confusion. observe that not all the slabs are interesting, and that L[i]
includes only the interesting ones.

After finishing the projection stage, we scan £, and insert few more interesting (empty) lists, so that
at the end of this process, the list £ includes for every non-empty slab s; all of its six neighboring slabs,
8i_3. 8i_2.8i—1.8i+1,5i+2 and s;13. It is easy to observe that the number of slabs inserted is at most n.

3.3 Computing the Outer-Paths in a Slab s;

This procedure is applied separately to each one of the slabs, s;, i = 1,2,..., k. First, we compute the left
relevance. LR[i], defined as rel(L[i — 3] U L[t — 2| U L[i — 1],d). Similarly, we compute the right relevance
RR[i], defined as rel(£[i+1]UL[i+2]UL[i+ 3], d). Both are shown in Fig. 3(right). The detailed description
of this procedure, which uses the quadtree projection technique, is given in Section 4.3.

Next we compute the lefi-outer-path LOP[i] of LR[:] (which is s; N (LR[{] & B;)), consisting of arcs and
straight segments (Fig. 3(right)). Similarly, we define (and compute) ROP(i] from RR[i]. They are stored as
a y-monotone polyarc which is a pseudo-polygonal path. The exact procedure by which we evaluate LOP[i]
from LR[z] is deseribed in Section 4.4.

Next, we compute for each atom grey block b; ;. its relevances in the downward and upward directions
and for each relevance we compute the corresponding outer path (using the same procedures). In addition,
we also compute for each of these outer-paths its horizontal decomposition. Assume C is a {downward or
upward) outer path, The horizontal decomposition of C is defined as follows (see Figure 4). From each vertex
or an extreme point of (', we construct two horizontal rays, one to the left and one to the right, until each
ray hits an edge of C, or one of two auxiliary vertical lines that we add at z = —oc and # = oc. This yields
a trapezoidation Z of C.

Figure 4: The horizontal decomposition of a curve is a trapezoidation of the plane.

Let DHDJi;] denote the horizontal decomposition of the outer-path in the downward direction of b; ;.
Similarly, we define UHD[ij]. Before we proceed further. let us describe how we compute in linear time the
horizontal decomposition of C. We first find for each vertex of C the edge (or vertex) horizontally to its left.
We use a stack S which is initially empty. We scan C from its leftmost point to the right. When the scan
meets a vertex of C, we push it into S. When we reach an edge (an arc of a circle) f containing a point ¢
whose y coordinate value is equal to that of the point ¢ on top of §, we add the segment gt as a part of the
trapezoidation, and pop ¢ from S. We repeat this operation in the left direction. All trapezoids are stored
in a DCEL data structure (see [7] for a description of this data structure). It is easy to see that the total
time needed for this process is O(n'), where n' is the complexity of C.

3.4 Slab Sweeping

Given the outer-paths found in s;. we can compute D(S) N s;. This is a merging-like process that should
evaluate the boundary of the union of all black regions inside s;. For each slab s;. we perform a variant of an

ALGORITHM A: LINEAR TIME DILATION.

upward ‘segment-sweep’ inside s;, where e is the horizontal sweep-segment. During this sweep, we record the
location at which e intersects LOP[i] and ROP[i]. We also know at each instance of time the corresponding
place in the list £[i] — that is, in which block b; ; the segment ¢ is found. Hence we know which three blocks
are immediately below and which three blocks are immediately above the block b; ; (Fig. 3(right)). It is easy
to verify that no other block in s; is found in the effective neighborhood of b; ;. However, we do want to know
at each instance of time which edges of rel(b; j 11, down) and rel(b; j4+.,up) are intersected by the segment e.
Not having this information would require sorting them in order to find the next intersection point. which we
cannot afford. However, using the their horizontal decompositions, UHD[i, j — 1] and DHD[i, j + 1], sorting
is not needed.

Typically, we need to find the vertices of the boundary of the union of the regions which is bounded by
at most four outer-paths. Assume e is currently in b; ;. Surely, if b; ; is a grey or a black (atom) block of T,
then no houndary point of D(S) appears in this block. Hence assume that b; ; is white, and is intersected by
(some of) the paths Ci. Cr, Cy, Ca, where C; = LOPJi].C. = ROP[i], C, is the outer-path of the relevance
of the (at most) three blocks currently above b; ;, and Cy is the outer-path of the relevance of the (at most)
three blocks currently below b ;.

Actually, it is enough to find all intersection points between each pair €y, C; for 7,7 € {l,7,u,d}, 7 7.
Observe that C; is given in a sorted order of its vertices. Therefore, the intersection points of C; with C;
and of C,, with C, are obtained by a simple merging procedure. However, calculating the intersections of C)
(say) with Cy4 or with Cj is a bit tricky (Figure 5). This is where we use the horizontal decompositions of Cy
(C.). We obtain these points by traversing C) (C\) while maintaining at each instance of time the identity
of the trapezoid in which we are at each step of passing through the horizontal decomposition.

Figure 5; The merging of two orthogonal outer-paths is done using the horizontal decomposition of C'y (see
text).

First we locate the trapezoid containing the leftmost point of Ci, and than walk along C while locating
at every instance the trapezoid in which we are in. This enables us to find all intersection points of C; and
G

Observe that while rolling a point along C, we might enter the same trapezoid of Cy an arbitrary number
of times. However, since C;, is y-monotone, all but (perhaps) one of these entrances must be made through
the part of the boundary which is a part of OP [i,4] — that is, not through one of the edges that we added

QUADTREE PROJECTION AND ITS APPLICATIONS 8

in the horizontal decomposition process. Each such entrance must therefore be a vertex of the region D(P),
where
P = 5in ﬂ (5im3 U sica U sim1) U (bij—aUbsj-2Ubij_1).

Appealing again to the same theorem of [6] used above, the complexity of D(P) is proportional to the
complexity of P, which is O(n) when summed over the course of the algorithm.

3.5 Tailoring the Slabs Results

The last stage of the algorithm combines all the parts of the results found in the slabs. The output is a list
of closed paths around black and white regions, each given as list of vertices, arcs, and line segments. Each
slab s; computed in the previous stage a list of all the vertices in it, 8D(S5) N s;, sorted from bottom to top.
However, we must provide for three different types of possible vertices.

1. Vertices of a small white region which is entirely included inside the slab s; (obviously there are no
such small black regions after the dilation).

2. Vertices which lie on a short boundary segment so that its next vertex is in the immediately left (right)
neighboring slabs, s;—1 and sif1.

9. Vertices which lie on a long boundary segment so that its next vertex is in a far slab. This can only
occur as a result of dilating a large black block.

We tailor two slabs at a time, along the vertical line 4; which separates them, starting from <. While
visiting s;, the vertices of type 1 are immediately reported as close path(s) to the output. The vertices of
type 2 are "merged” with those of s;_1. along 7. in upward order. However, vertices of type 3 have no
cortesponding vertex in s;j—1; instead, it is in an older slab, say s;, where j < 1. These two vertices, one from
s; and one from s;, use the node v € T — the large black leaf that corresponds with this long border segment
to communicate. While visiting s;, the vertex stores its identity in v, and while visiting s; the second vertex
uses it to report the long line segment.

The total number of vertices in all slabs is linear in n. By performing this merging step we visit each
vertex only twice, and therefore the time needed for tailoring is linear with n.

4 Quadtree Projection and its Applications

4.1 Projecting a Quadtree into a Binary Tree

First, we describe the procedure for the case where R = R(vr) is a square region occupied by a sub-quadtree
T = T(v,) under node v, (the root of T). Next. we add a few words on the more general case, where R
may be any given rectangle. Recall that in a quadtree T, each node v is associated with the square block
R(v) = I, x J, that is occupied by it, where I, and J, are intervals in IR, on the z and y axes, respectively.
For d = down (or d = up) the binary tree represents the projection of T(v,) on the z axis. Let T’ denote
a binary tree. Each node in T" is associated with an interval I, in IR, on the z axis. Any quadtree node
v € T is projected onto one node o' in the binary tree T", the one which is associated with the same interval
Lo =1y.

For a node v € T, let ul(v), ur(v),ll{v),Ir(v) denote the upper-left, upper-right, lower-left and lower-
right, children of v, respectively. The projection path, ppath(v), from v to v in T is defined as a series of
steps t; made along the path, where 1; € {ul, ur 1l lr}. Let v, denote the root of T, which is the projection
of v,. The path from ¢/ to v’ in T" is a series of steps t! € {l.r}, and is defined by translating the projection
path, step by step. Every ul or Il step is translated to an [step, and every ur or Ir step is translated to an
r step. We call T’ the projected tree of T in a region R to direction d, and denote it by 7" = proj(T, R. d).

| |

QUADTREE PROJECTION AND ITS APPLICATIONS 9

Since the translation of the projection path is careless about the up and down parts of the steps, all the
nodes in T which are associated with the same interval J, over the z axis are projected to the same node
o' € T'. Let l,» denote the list of all black leafs in T that are projected to node v’ € T'. For reasons to
be explained later, we associate with every black leaf v € T a value ymin(v), defined as the endpoint of
J, — that is, the y coordinate value of the lowest point in R(v). For each v' € T" we associate the value
Ymin (V') = Min{ymin(u) : color(u) = black, u € I/}, which is the minimal ymin(u) value among all black
leafs u € T which are projected to @'

Now, let us explain how we construct 77. We visit T in the order (for each v € T') ul(v), Ul(v), ur(v),Ir(v).
We also maintain a pointer v’ inside 7". Initially, both v points to root(7') and ¢’ points to root(T"). Assume
recursively that we are at a node v € T', and at its projected node v’ € T'. While moving from v € T' to one
of its children u € T, we do the following: If u is a left (right) child of v, we move from v’ to u' which is the
left (right) child of v’. If v’ is null, then we create this node, and set its two children and [, as nulls. We
insert u as the last element of the list l,+. Once our traversal returns from u to its parent v, we also move
from u' to v'. Clearly, 77 is the projected tree of T, and its construction is performed in time O(n), where
n is the number of nodes in 7.

We use T" for two purposes: to compute £ (given in Section 4.2 and used in Algorithm A) and to
compute the relevances (given in Section 4.3 and used in Algorithms A and C). The projection algorithm is
summarized in Fig. 6, including the additional computation of ymin(v'). Its running time is linear in the
size of the input quadtree. In the more general case, that is used only in Algorithm C, the region R may be
any rectangle. In such a case, the procedure starts at a node v such that R C R(v), and recursively visits
only the sons which are associated with a region that intersects with R. In this case. the running time is
linear with the number of visited nodes.

1. Initialize an empty binary tree 7' =10.

2. Traverse T, starting from the root v., and keep
following the projected path in the binary tree.
For each node v € T {

if (VET) {
insert (v, T")
Ymin(?') = 00

!U’ Zw

}
if (eolor(v) = BLACK) {
by = {lyr 8}
} Yrin (V') = miﬂ{ymm(v}-ymin(v’]}
}

Figure 6: Projecting a quadtree T to a binary tree T".

4.2 Computing the Slabs List £

. In Section 3.1, we needed a procedure to generate L, the list of projected atom blocks of T;;,. For this, we
generate the projected tree 7', and then use the lists [+ of the atom nodes (that is |/, = [, | = rg). We use
the projection algorithm described above. with the two following modifications:

{

|
|

QUADTREE PROJECTION AND ITS APPLICATIONS 10

e For each atom node v € T, listed in I,/ in the projected tree T”, we also store a pointer from I, back
tovin T.

e For each atom mode in l,s we store a pointer to the lowest large black leaf above it.

The projection tree has the property that for each v* € T", the y-intervals J, of the blocks that are listed in
I, appear in an increasing y order. By traversing T" in in-order and scanning only those members of lists
I, that contain atom nodes, we have that each [, is exactly one list L[i] corresponding to a slab s;. Notice
that the in-order nature of our projecting traversal ensures that if vy is visited before v, where both v, and
v are nodes of the samie level of 7', then I, precedes [,, along the z axis.

The first modification is easy to handle, while inserting v to the list [,s. The second modification is
maintained in a similar way to the calculation of ymin(path(2')) in the projection process.

4.3 Computing the Relevance rel(R(T).T.d)

The binary tree 7’ implies a recursive binary partition of the z axis into intervals I,.. Here we are interested
in the partition defined by the leafs of the tree. The depth of a leaf determines the length of its interval, and
the path from root(T") defines its location (analogous to a one-dimensional “quadtree”). Let path(T'.v') =
{v1 = root(T"), va, ..., vy = v'} denote the path in T" from the root to a node v € T". Let ymin (path(v')) =
mindymin(vi) 1= 1. k} denote the minimal value of ymin(v:) that is encountered along path(v). For
a point o € IR, let rel(R, down)(xzy) denote the y-value at the intersection of rel(R, down) with the vertical
line # = x5. The next lemma is easily established.

Lemma 4.1 Let z € IR, and assume z € I, _, where vy s a leaf of T'. Then
rel(r, down)(x) = Ymin(path(vz))

Proof: Let v € T be the lowest black leaf (if any) in 7 which intersects the vertical line at z. Let ¥y = ymin(v)
be the lowest y coordinate value of J, . Its projected node v' € T" is found on the path path(zv'). Furthermore,
Ymin(t') = y, and it is easy to show that Ymin (PatA((1)) = Ymin(v'). If there is no such a black leaf v € T,
then Ymin(v!) = oo Vvl € path(v).v') o

This lemma suggests the following simple procedure for calculating rel(R, down), which uses a depth-first
traversal (DFS) on T'. Maintain the connected list rel(R,down) which is initially empty. Traverse the
projected binary tree T'. At each node v’ calculate y = ymin(path(v')) = min{Ypath, Ymin(v')}, where ypain
is received from v'’s father. If v/ is a leaf, then connect the interval I,/ to the list rel(T, R,down), and assign
to it the y-value. Otherwise, transmit y as the new ypaes value to its two sons. The pseudo-code for this
procedure is given in Fig. 7.

Observe that in the application denoted above, we need to compute the relevance for several neighboring
regions (sub-quadtrees), instead of a single one, whose blocks lie one above the other. However, for d = left
or d = right this only calls for the concatenation of the relevances of each of the distinct blocks, and for
d = up or d = down all blocks should use the same projected tree.

It should be clear that the execution time of the algorithm is linear in the size of T". For computing
the slabs list, £, this procedure is applied once over Ti,. For computing rel(s;,d), the sub-quadtrees under
each atom block in each slab are being used, 7 times each (each slab pays once as any one of 5,3, ... Sita).
Therefore, the execution time of the procedure is linear.

44 Computing the Outer-Path OP(R.d)

Let R be a rectangle, containing a shape S. and let d be a direction. Let £ be the horizontal line containing
the lower edge of R. We need to compute the outer-path OP(R,d), which is the part of 4D(S M R) above
{ (see Fig. 1). For simplicity, we assume that d = down. By lemma Lemma 2.1, this outer-path can bhe
evaluated from rel(S, R,d) — the relevance of S in region R to direction d. found by the algorithm from

AvGorITEM C: APPLYING PrACTICAL HEURISTICS. 11

find rel(v,ypatn) {

y= m'in{ypath- YUmin (t")}

if v' is not a leaf {
find rel(v’.l_son,y)
find_rel(v'.r_son,y)

}

else /*v' isaleaf */
output (L,)

Figure 7: Evaluating rel(T, R, d). the relevance of quadtree T, in a region R at direction d = down.

Section 4.3. The complexity of the relevance is linear in the complexity of S in R. To perform this task in
time proportional to the complexity of rel(R.d), we need the following lemma, taken from [4];

Lemma 4.2 Assume the rectangle R is the disjoint union of R and R.. where Ry, R, are rectangles, and
R, lies to the left of R.. Then OP(R), down) and OP(R,, down) intersect at most once.

Recall that rel(R, down) is a piecewise constant function of 2. We scan rel(R, down) from left to right,
and process one segment (constant-y piece) at a time. Let a, a' denote the left and right points of the
current segment, e, respectively. Let R, denote the part of R which is to the left of a vertical line passing
through a. Let UE(a) denote OP(rel(Ra. down)). Assume that we have already computed UE(w), and let
/3 be the rightmost point of UE(a). We seek U/E(a'). For this, we only need to find the intersection point g
(if it exists) of UE(a) and OP(e, R, down). Next, we remove the part of UE(«) lying between ¢ and . and
concatenate the “new” region of UE(a’) which lies between g and the rightmost point of OP(e, R, down).

Finding and deleting the part g@ from UE(a) is achieved as follows: Let ¢’ = 3. We roll the point ¢’ on
UB(a) in the left direction as long as ¢’ Is in OP(e. R, up). q is the point at which ¢’ leaves OP(e, R, up).
Lemma 4.2 ensures that no other intersection point exists. The time needed for computing UE(a’) (after
UE(a) has been determined) is proportional to the complexity of g3. Since each part in the region was
created only once, and was removed only once, and since the number of elements in UE(«) is proportional
to the complexity of rel(Ry, d), the execution time over the course of the procedure is proportional to the
complexity of rel(S, R, down).

5 Algorithm C: Applying Practical Heuristics.

Like Algorithm A, Algorithm C also takes as its input a shape S as a quadtree T},,, and evaluates its dilation
with a circle of radius r. However, while Algorithm A produces an analytic description of D(S), Algorithm
C produces a quadtree Toyu; of D(S). The conversion from an analytic description into a quadtree requires a
digitization and quadtree building process. It can be done using the chain-code to quadtree algorithm, found
in [9, 11], in linear time with respect to the total perimeter of all shapes in D(S). However, in practice,
there are other considerations besides asymptotic complexity such as time constants and code simplicity, as
well as some heuristics that may also reduce the overall computational time. In particular, we would like to
avoid the two non-simple (yet linear time) merging processes of polyarcs described in Section 3: the segment
sweeping inside every slab and the slabs tailoring. Algorithm C addresses these points on the basis of the
following observations:

(a) Every atom block becomes black in the output tree.

|

Discussion 12

(b) There could be a large overlap between expanded neighboring regions.

(c) All the effective dilation events occur along the borders between gray atom blocks (or large black
blocks) and white blocks (see Fig. 8).

(d) There is no need to digitize the parts of the analytic description which are covered by an existing or a
new black block.

An extreme example of the effect of (a) is an input image which contains a large number of isolated black
pixels. Most of the image space will become black by applying this criterion. From (b) we conclude that
in order to save on merging operations, it is better to expand few large areas than the many atom blocks
that were defined earlier. The problem with large areas is how to deal with non simple shapes, that contain
holes. As a result, Algorithm C does not divide the image into disjoint processing regions (like the slabs in
Algorithm A). Instead. it works along mazimal boundary segments, which are segments of maximal length,
that have white leafs along one side (the white side) and black (or gray atom blocks) on the other side (the
black side) (see Fig. 8). The maximal boundary segments can be found in a linear time using the algorithm
in Appendix A (or the quadtree to chain-code algorithm found in [9]). The main difference from algorithm
A is the replacement of the two merging processes, namely the segment sweeping and the slabs tailoring,
with one simpler merging process (thereby not requiring the use of slabs at all). For this we introduce the
concept of a mized quadiree, where every leaf can be black, white, or a collection of analytic curves (more
details follow). Hence the new merging process is done between mixed quadtree nodes. As a result, there is
no need to explicitly compute the analytic description in any stage of the process. Moreover, no digitization
needs to be applied on an explicit form of the dilated shape (as there is no such form). We could suggest
to dilate, digitize, and convert every atom block to a subquadtree, and then to merge the many resulting
subquadtrees using a simple quadtree merging procedure. However, this would have a heavy price in terms
of requiring many extra digitizations as observed in (d). Therefore, we delay the digitization of analytic
curves into black and white leafs as long as possible. In fact, in many cases this digitization is eliminated
by performing it simultanuesly with the merging process as explained in Appendix B. Algorithm C has four
main stages:

1. Copy Tin to Tinirea while replacing all subtrees of atom gray blocks with new atom black leafs (Fig.
8(b)).

2. Find all maximal black /white boundary segments in Thniz.a (Fig. 8(c)).

3. For each maximal boundary segment, s;:
3.1 Find its rel(T;,. s;. d), where d is the black side of s; (Fig. 1)
3.2 Evaluate its outer path at the white side of s; (Fig. 1)
3.3 Merge the result into Tizeq

4. Convert Tiizeq into a black/white quadtree, T,.;.

Note that stages 3.1 and 3.2 use the same procedures as Algorithm A: the quadtree projection algorithm
given in Section 4.1. the relevance algorithm given in Section 4.3, and the outer-path algorithm given in
Section 4.4.

6 Discussion

It is already known that the complexity of the union of dilated convex shapes is linear in the number of
shapes [6]. However. no algorithm that we know about could find that result in a linear time. In this paper
a linear time dilation algorithm is described, for the special case where a shape given as the union of the
black leafs of a quadtree is dilated with a circle.

REFERENCES 13

Figure 8: Algorithm C expands only the parts necessary for expansion (here » = 6). An example input
quadtree, shown in (a), is divided into atom gray blocks and large black/white blocks in (b). In Algorithm
C. only the marked borders are considered (C), their relevances and the outer-paths are being computed
(the rest are merged with black boxes).

Algorithm C is currently implemented, and the results of our experience will be given in the full paper. An
up-to-date version of this paper can be found at http://www. cs.technion.ac.il/ arnon/papers/qt_dilation.ps.gz.

There are a number of directions for future research. The main goal is to find a more general dilation
algorithm for dilating with structuring elements other than a ball, and for shapes given using other spatial
data structures. This should enable us to gain a better insight on the question of “what kind of additional
information do we need, in order to compute the dilation in a linear time”. As shown here, the order posed
by the quadtree is sufficient.

References

[1] AnG, C. H., SamET, H., AND SHAFFER, C. A. A new region expansion for quadtrees. IEEE Trans-
actions on Patlern Analysis and Machine Inielligence 12, 7 (July 1990), 682-686. (also Proceedings of
the Third International Symposium on Spatial Data Handling, Sydney, Australia, August 1988, 19-37).

[2] DiLLENCOURT. M. B.. SAMET, H., AND TAMMINEN, M. A general approach to connected-component
labeling for arbitrary image representations. Journal of the ACM 39, 2 (April 1992), 253-280.

[3] EpELSBRUNNER, H., GuiBas, L. J., AND SHARIR, M. The complexity and construction of many faces
in arrangements of lines and of segments. Discrele Computational Geometry & (1990), 161-196.

[4] EFraT, A., AND ITAl, A. Improvements on bottleneck matching and related problems using geometry.
In Proceedings of the Twelfth Annual ACM Symposium on Computational Geometry (Philadelphia, May
1996), pp. 301-310.

[5] HaR-PELED, S.. CHAN, T. M., ARONOV. B., HALPERIN, D., AND SNOEYINK, J. The complexity of a
single face of a Minkowski sum. In Proceedings of the Seventh Canadian Conference on Computational
Geometry (Quebec City, August 1995), pp. 91-96.

(6] Kepewm, K., LivNe. R., PacH, J., aND SHARIR, M. On the union of Jordan regions and collision-free
translational motion amidst polygonal obstacles. Discrete Computational Geometry 1 (1986), 59-T1.

[7] PrEPARATA, F. P., AND SHaMos. M. L. Computational Geometry: An Introduction. Springer-Verlag,
New York, NY, 1985.

APPENDIX A: FINDING THE MAXIMAL BOUNDARY SEGMENTS 14

[8] Ramkumar, G. D. An algorithm to compute the Minkowski sum outer-face of two simple polygons. In
Proceedings of the Twelfth Annual ACM Symposium on Computational Geometry (Philadelphia, May
1996), pp. 234-241.

[9] SamET, H. Applications of Spatial Data Structures: Computer Graphics, Image Processing, and GIS.
Addison-Wesley, Reading, MA, 1990.

[10] SameT. H. The Design and Analysis of Spatial Data Struciures. Addison-Wesley, Reading, MA, 1990.

[11] WeBBER, R. E., AND SamET. H. Linear-time border-tracing algorithms for quadtrees. Algorithmica
& (1992), 39-54. (also University of Maryland Computer Science TR 2309).

Appendix A: Finding the Maximal Boundary Segments

The algorithm takes as its input a black/white quadtree T, and evaluates a list of maximal boundary
segments, as defined earlier in Section 5. The time of the algorithm is linear in the number of nodes in T,

Let J(v) = {j1,Jjz2,..-} denote a list of the black/white color change points along the boundary of the
square region R(v) occupied by T(v). The size of J(») is linear with the size of the tree. O(|T(v)]). (see
Fig. 9(b)). Let HS(j;) denote the half segment of the internal black /white border that is orthogenal to the
boundary of B(v) and that terminates at the junction j;. Let FS(v) denote the list of full segments found
inside B(v). These are all the black/white borders which have both ends inside B(#).

The algorithm traverses the nodes of T in a DFS order. If the visited node v is a leaf, then J(T'(v)) is
a list of its four borders, HS() does not exist, and FS(v) = (. For any non-leaf node v, the algorithm has
already computed J{), HS() and FS() for all four sons. The union of all four son’s FS{) lists forms the
initial FS(v) list. J(v) and HS(v) are just the concatenation of the non-adjacent parts of v’s sons J() and
HS() lists, respectively. In addition, four potential new half-segments are located at the junctions of each
two adjacent sons (see Fig. 9(c)). The algorithm continues by merging J() of each two brothers along their
adjacent border. While doing that, each pair of colinear half segments that have the same color order is
joined into one segment. If a segment has no endpoints in J(v), then it is moved to FS(v).

At the root node v, of the input quadtree, all the remaining half segments are moved from H5() to
F5(v,). The output of the algorithm is F'S(v,). In order to get a complete chain code out of this algorithm,
one should keep for each segment in FS(v) two links to its neighboring segments.

Iy J10
Ig
Ia
Ja lg
14 Is g I7
(a) (b) (c)

Figure 9: Evaluating the black/white border: The quadtree under node v is shown in (a). The recursive
process collects all sons results (b) and evaluates F5(v) (black segments) and HS(v) (gray segments), as
shown in (c).

! APPENDIX B: Mixep QuapTREES (MQT) 15

Appendix B: Mixed Quadtrees (MQT)

Let a mired quadiree (M@QT) denote a quadtree that have three types of leafs: black (opaque) leafs, white
(transparent) leafs, and sketch leafs. A sketch leaf contains a union of black regions over a white background.
Each black region is a simple shape, bounded by a polyarc. In the scope of this work, the MQT supports
the four following operations:

o Convert a quadtree into a MQT (trivial).

e Split a sketch leaf into four sons.

o Merge two MQTs.
o Convert a MQT into a regular quadtree.

The MQT is used as an intermediate data structure during the merge process. lts main advantage is that
merging is postponed until all the relevant information is collected. A white leaf might receive many parts
of outer paths from its neighborhood. However, it is enough to find one such part that covers the entire leaf
to avoid the merging of all the others. Therefore, merging is postponed until all parts have been collected.

The space complexity of a MQT is the number of its black and white leafs plus the total complexity of
its sketch leafs. The complexity of a sketch leaf is the number of line segments and arcs in it and is not
bounded (which is also the case for the PM and PMR quadtrees [9]).

B.1 Convert a Quadtree into a MQT

A quadtree is a special case of MQT. Therefore, no action should be taken for this operation.

B.2 Splitting a Sketch Leaf

The split procedure splits a sketch leaf v into four leafs (sons). This is done by splitting each polvare in v
into four sons. The time is linear with respect to the complexity of the sketch, Note that each son may
become a black leaf if it is completely covered by one of the sketches black regions, or become a white leaf
if it does not intersect any of the sketch’s black regions. Otherwise, it becomes a sketch leaf. In some cases,
all four sons may become black, and the sketch vanishes. We do not test whether or nat the union of all
parts of a sketch cover the leaf area.

B.3 Merging two Mixed Quadtrees

The merge of MQTs is a MQT of the union of all their black regions. The merging algorithm is based on
the traditional recursive quadtree merging algorithm (found in [9]), except for the case of merging a sketch
leaf with a gray node, in which the sketch node should be split.

B.4 Converting a MQT into a Quadtree

In order to convert a MQT back into a quadtree, each of the sketch leafs must be converted into a subquadtree.
This is done by applying the split() algorithm recursively, until the sketch vanishes or its size becomes one
pixel. In the last case, a black/white decision is taken upon digitization (e.g.. point sampling).

