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t. The approximate average storage utilization of bu
ket methods withfanout of n, assuming a uniform distribution of data, is shown to depend only onthe fanout and not on any other fa
tors su
h as the dire
tory stru
ture. It obeysthe formula (lnn)=(n�1). The analysis makes use of a generalization of previouslypublished methods for n = 2 and n = 4 and its predi
tions mat
h these results.The formula is appli
able to methods that are based on digital sear
hing (e.g., tries)or balan
ing rather than 
omparison-based methods. The formula is also used todete
t an erroneous statement about the average storage utilization of a ternarysystem in [12℄.Key words: data stru
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tionIn many appli
ations, the volume of data is so high that it is stored inse
ondary storage su
h as disks where it is organized using various datastru
tures for eÆ
ient pro
essing. Sin
e the data (termed re
ords) is usuallyretrieved in 
hunks su
h as pages or blo
ks rather than individually, it isnatural to organize these blo
ks (usually termed bu
kets) so that similarly-valued re
ords are stored together. Methods that make use of bu
kets inorganizing the re
ords are 
alled bu
ket methods. The te
hniques that wedis
uss are appli
able to re
ords 
orresponding to points in one, two, or moredimensions (i.e., multiattribute data). In order to simplify the presentation,we usually refer to the data (i.e., the set of re
ords) as points sin
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2 ANG, SAMETthe dis
ussion of the analysis more meaningful although it is independent ofthe dimensionality of the data.Ea
h re
ord is stored in a 
ertain order in a designated bu
ket with 
a-pa
ity m. When a bu
ket is full, it is split into several bu
kets so that there
ords in the full bu
ket together with the additional re
ord that 
ausedthe bu
ket to split 
an be redistributed a

ording to a given rule into newbu
kets. There are many bu
ket methods in use. They di�er, in part, onthe type of re
ords for whi
h they are designed, the nature of the redistri-bution strategy, and on the number of bu
kets n into whi
h a full bu
ket issplit, termed the fanout. Some may use a dire
tory, or even several levels ofdire
tories, to speed up bu
ket a

ess.If we regard ea
h bu
ket as a node in a tree, then n is just the out degreeof the tree, and the 
orresponding bu
ket method is termed a general bu
ketmethod of fanout n. If we only use the fanouts of the trees to 
lassify thebu
ket methods, then many of them will be found to belong to the same
lass. For example, the B-tree [3℄, the Grid File [12℄, EXHASH [4℄, andEXCELL [16℄ are 
onsidered to be instan
es of the general bu
ket methodof fanout 2, with 0.69 average storage utilization, even though they aredesigned to deal with data of di�erent dimensionality. On the other hand,the PR quadtree (or more 
orre
tly the quadtrie) [13, 15℄ is a general bu
ketmethod of fanout 4. with 0.46 average storage utilization.In this paper we are interested in the average storage utilization of thevarious bu
ket methods. The storage utilization u of bu
ket method R thatuses J bu
kets of 
apa
ity m to provide a total 
apa
ity of a = Jm slots forstoring v re
ords has a value of v=a where u ranges between 0 and 1. Themore full is ea
h bu
ket (i.e. the 
loser to m is the number of re
ords thatea
h bu
ket 
ontains), the smaller is the value of J , and hen
e the larger isthe value of u. Thus the greater the value of u, the more eÆ
ient is R interms of storage utilization. In parti
ular, we show that U , the average ofu, under appropriate data distribution models, only depends on the fanoutvalue n (i.e., how many bu
kets are needed when a full bu
ket is split)thereby enabling us to ignore the implementation details of the di�erentbu
ket methods. It should be 
lear that regardless of the bu
ket methodthat we use, it will often be the 
ase that U os
illates as the number ofpoints in
reases sin
e it is impossible for all bu
kets to always be full.The analysis of the average storage utilization has been 
arried out bya number of resear
hers for di�erent bu
ket methods (e.g., EXHASH [4℄,B-trees [9, 17℄, EXCELL [16℄). Most assume that the data is drawn froma uniform distribution. However, their analysis was for individual bu
ketmethods rather than a general one. Our 
ontribution is a uni�
ation oftheir results in a manner that is independent of the fanout and the dire
torystru
ture. It is important to note that our analysis assumes that if a re
ord isin a parti
ular bu
ket, then it is equally likely to be in any of the 
hildren ofthe bu
ket in the 
ase of a split. This assumption usually leads to a balan
edstru
ture and is thus useful for data stru
tures based on digital methods(e.g., tries). or on the use of balan
ing (e.g., AVL trees [1℄, balan
ed B-



APPROXIMATE AVERAGE STORAGE UTILIZATION 3trees [17℄, et
.). Su
h stru
tures are the subje
t of our analysis. In 
ontrast,in the 
ase of 
omparison-based methods (e.g., binary sear
h trees [8℄, pointquadtrees [6℄, et
.), the order in whi
h the data is en
ountered is important.Their analyses 
omplement our results. In parti
ular, they are based on theuse of generating fun
tions (e.g., [7℄) and, of 
ourse, yield di�erent results.We do not dis
uss them further here.The rest of this paper is organized as follows. We �rst derive in Se
tion2 the average storage utilization for arbitrary n by generalizing the methodof [4℄. This method is quite 
omplex but is done to show that we 
anonly obtain an asymptoti
 result (i.e., as the number of re
ords gets verylarge) whi
h os
illates about its mean. Next, in Se
tion 3, we obtain anapproximate average storage utilization, whi
h is the same as the meanderived in Se
tion 2 but in a mu
h simpler manner, by generalizing themethod of [9℄. Se
tion 4 veri�es the results obtained in Se
tions 2 and 3 andshows how a previously published result for a ternary system is dis
overed tobe erroneous. Se
tion 5 
on
ludes our presentation by mentioning a simpleappli
ation of the formula.2. Derivation of Average Storage UtilizationIn this se
tion we perform a detailed mathemati
al analysis of the averagestorage utilization of a general bu
ket method of fanout n. The analysis is ageneralization from n = 2 to arbitrary values of n (thereby being appli
ableto any other bu
keting methods based on digital methods and balan
ing) ofthe analysis performed by Fagin, et al. [4℄ for EXHASH whi
h is based onan analysis by Knuth [8℄.Let T be a given tree stru
ture of a general bu
ket method of fanout nwith v points (i.e., re
ords) with node (i.e., bu
ket) 
apa
ity m. Let I be thenumber of internal nodes, J the number of leaf nodes (i.e., bu
kets), and Sbe the total number of nodes of T . We have S = I+J . Sin
e I = (S�1)=n,we have I = S�J = nI+1�J . So J = (n�1)I+1. By taking the averageover all T 
ontaining v random points, we have E[J ℄ = (n� 1) � E[I℄ + 1.As explained in [5, page 159℄, we 
an assume that the random pointsfalling within a node at depth j follow a Poisson distribution su
h that theprobability for a node to 
ontain k points ise�vjvkjk! where vj = vnj :The probability for a node to be internal ispj = 1Xk=m+1 e�vjvkjk! ;whi
h is just the probability for the node to 
ontain more than m points.Stri
tly speaking, the summation should begin with k = m+ 1 and only go



4 ANG, SAMETup to k = v instead of k = 1. In the following, in order to simplify ourpresentation, we always omit the range of an integral and the range of theindex of a summation as long as the omission does not 
ause any 
onfusion.Sin
e there are nj possible nodes at depth j, and letting pj be the probabilitythat ea
h possible node is a
tually an internal node, the average number ofinternal nodes at depth j is njpj. We �nd thatE[I℄ = 1Xj=0njpj =Xj njXk e�vj vkjk! =Xj Xk nje�vj vkjk! :Sin
e vj = v=nj , we 
an rewrite the term within the double summation asakbk where ak = e�vj vk�1j(k � 1)! and bk = v=k:Sin
e all ak's are positive, P1k=m+1 ak 
onverges to a value whi
h is lessthan P1k=1 ak = 1. Sin
e bk is de
reasing and limk!1 bk = 0, Pk akbk
onverges [14, theorem 3.42 page 70℄. Moreover, it 
onverges absolutely.The order of the summation 
an be inter
hanged [14, theorem 3.45 page71℄. Thus we haveE[I℄ =Xk Xj nje�vj vkjk! =Xk vkk! Xj nj(1�k)e�vnj :From [8, page 132℄ we know thate�x = 12�i Z 12+1i12�1i �(w)xw dwwhere the integration is over the line 1=2 + ti, and t is a real number. By
hanging the variable z to w � 1, we havee�x = 12�i Z � 12+1i� 12�1i �(z + 1)xz+1 dz:Using z! for �(z + 1), we have,E[I℄ = Xk vkk! Xj nj(1�k) 12�i Z � 12+1i� 12�1i z!=( vnj )z+1dz= Xk vkk! 12�i Z � 12+1i� 12�1i z!vz+1 Xj (nz+2�k)jdzSin
e k � m+1 � 2 for non-leaf nodes and a point on the line of integration
an be expressed as z = �1=2+ ti where t is a real number, we have Re(z+2�k) = �1=2+2�k < 0 and hen
e jnz+2�kj = jn3=2�kj�jntij = jn3=2�kj < 1.



APPROXIMATE AVERAGE STORAGE UTILIZATION 5Sin
ePj jnz+2�kjj 
onverges, Pj(nz+2�k)j also 
onverges [14, theorem 3.45page 71℄. Therefore,E[I℄ = Xk vkk! 12�i Z � 12+1i� 12�1i z!vz+1 11� nz+2�kdz= Xk vkk! 12�i Z � 12+1i� 12�1i �(z)dz where �(z) = z!vz+1 11� nz+2�k :The integrals of 
omplex variables 
an sometimes be solved by �ndingthe poles of the integrand, superimposing a 
losed 
urve over the path ofintegration, and applying the Cau
hy residue theorem [14℄. The poles of afun
tion �(z) are de�ned to be those z whi
h satisfy �(z) = 1 or equiva-lently, 1=�(z) = 0. A pole z is simple if it is a simple root of 1=�(z) = 0. Inthe above integration, the poles of the integrand are those obtained from z!whi
h are z = �1;�2; � � � that will for
e z! to be
ome 1 and those roots of1� nz+2�k = 0 whi
h are z = k� 2+ 2�ih logn e, where h is an integer. Allthese poles are simple.Letting L1 be the line joining the points �12 � si to �12 + si, we haveE[I℄ =Xk vkk! 12�iG where G = Z � 12+1i� 12�1i �(z)dz = lims!1 ZL1 �(z)dzLet L2 = [k�3=2���si; k�3=2��+si℄, L3 = [�1=2�si; k�3=2���si℄,L4 = [k�3=2��+si;�1=2+si℄. Then C = �L1[L3[L2[L4 is a 
losed 
urve.We assume this 
urve to be extended to in�nity impli
itly in the followingderivation and drop lims!1 from now on. Now RC = R�L1 + RL2 + RL3 + RL4 .By the S
hwarz re
e
tion prin
iple, the fun
tion value of �(z) on L3 isidenti
al to that on L4. Therefore, RL3 = � RL4 . Thus G = RL1 = � RC + RL2 ,and we haveE[I℄ =Xk vkk! 12�iG = B +Xk vkk! 12�i ZL2 �(z)dz whereB =Xk vkk! 12�i � �� ZC �(z)dz� :Noti
e that all the poles f�1;�2; � � �g are outside the region bounded byC whereas the poles k � 2 + 2�ih logn e are within the region when C issuÆ
iently large.. A

ording to the Cau
hy residue theorem, the integralof a 
omplex fun
tion �(z) over a 
losed 
urve is 2�i times the sum of theresidues of the fun
tion at the poles. The residue of �(z) at a pole whi
his outside the 
losed 
urve is zero. If �(z) is written as g(z)=f(z), thenthe residue of �(z) at a simple pole w within a 
losed 
urve is g(w)=f 0(w).Sin
e the poles f�1;�2; � � �g lie outside C, the residues at these points arezeroes. If we rewrite the integrand �(z) as g(z)=f(z) where g(z) = z!=vz+1



6 ANG, SAMETand f(z) = 1�nz+2�k, then we have f 0(z) = �nz+2�k loge n. For ea
h polew = k � 2 + 2�ih logn e, and thereforef 0(w) = �(loge n)n2�ih logn e = � loge n(nlogn e)h2�i = � loge n:We have� ZC �(z)dz = �2�iXh 1� loge n (k � 2 + 2�ih logn e)!vk�1+2�ih logn e= 2�iXh logn e(k � 2 + 2�ih logn e)!v�k+1�2�ih logn e:We 
an now solve for B.B = Xk vkk! 12�i (� ZC �(z)dz)= Xk vkk! Xh logn e(k � 2 + 2�ih logn e)!v�k+1�2�ih logn e= Xk Xh logn e(k � 2 + 2�ih logn e)! vk!e�2�ih logn v= vXh e�2�ih logn v logn eXk (k � 2 + 2�ih logn e)!k!= vXh e�2�ih logn v(logn e)A where A = Xk=m+1 (k � 2 + 2�ih logn e)!k! :As noted before, the summation index k starts from m + 1 for an internalnode. NowA = Xk=0 (k +m� 1 + 2�ih logn e)!(k +m+ 1)!= (m� 1 + 2�ih logn e)!(m+ 1)! F (m+ 2�ih logn e; 1;m + 2; 1)where F (a; b; 
;x) = 1 + a � b1 � 
x+ a � (a+ 1) � b � (b+ 1)1 � 2 � 
 � (
+ 1) x2 + � � � is a hyperge-ometri
 series. When x = 1, F (a; b; 
; 1) = �(
)�(
� a� b)�(
� a)�(
� b) .In addition, when b = 1, F (a; 1; 
; 1) = �(
)�(
 � a� 1)�(
� a)�(
� 1) = 
� 1
� a� 1.Therefore, we haveA = (m� 1 + 2�ih logn e)!(1� 2�ih logn e) �m! andB = vXh e�2�ih logn v logn e(m� 1 + 2�ih logn e)!(1� 2�ih logn e) �m!= vmXh 
m;he�2�ih logn v = vm�m(logn v)



APPROXIMATE AVERAGE STORAGE UTILIZATION 7where 
m;h = logn e(1� 2�ih logn e) (m� 1 + 2�ih logn e)!(m� 1)! and�m(x) =Xh 
m;he�2�ihx:We still need to solve RL2 �(z)dz in order to evaluate E[I℄. From [4℄, wehave 12�i ZL2 �(z)dz = O (k � 1� �)!(vk� 12��(12 � �))! andXk vkk!O (k � 1� �)!vk� 12�� � (12 � �)! = O v 12+�� � (12 � �)! = O(v 12 log v)when � = 1=log v. Therefore, we now haveE[I℄ = B +O(v 12 log v) = vm�m(logn v) +O(v 12 log v) andE[J ℄ = 1 + (n� 1)E[I℄ = 1 + (n� 1)( vm�m(logn v) +O(v 12 log v))When m is �xed, re
all from Se
tion 1 that the storage utilization u isv=Jm. Thus, the average storage utilization U isU = vmE[J ℄ = 1mv + (n� 1)�m(logn v) +O(v� 12 log v)When v ! 1, we have mv ! 0 and v� 12 log v ! 0. In this 
ase, limv!1 Udoes not exist sin
e �m is os
illating. The os
illation is 
aused by the fa
tthat as the number of points v in
reases, it is impossible for all the bu
ketsto always be full thereby 
ausing a variation in the storage utilization uand the average storage utilization U as they are 
omputed in terms of thenumber of avaliable slots for storing points. The average of �m(x) is
m;0 = logn e(m� 1)!1 � (m� 1)! = logn e:Therefore, the mean value of U is1(n� 1) logn e = loge nn� 1 :3. A Simpler DerivationThe rationale behind the long, and somewhat tedious, pro
ess of derivingthe average storage utilization U of a general bu
ket method is to enableus to realize that U 
an only be represented by �m(logn v) asymptoti
ally.There are other terms of smaller order whi
h 
ontribute to U and diminish



8 ANG, SAMETas v !1. Most importantly, the average storage utilization does not havea limit as v !1. Instead, it always os
illates around the mean 
m;0.If we are only interested in �nding the mean value of U , the averagestorage utilization, then we 
an adapt the result des
ribed in [9℄ to the 
aseof a general bu
ket method. Assume that in a tree T of a general bu
ketmethod, ea
h full node with m points is split into n nodes ea
h 
ontainingm=n points. Stri
tly speaking, there should be m + 1 points in this 
ase,but in order to simplify matters we use m in our derivation. The storageutilization u of T with v points and k leaf nodes is u = v=(km). By takingthe average, we have U = E[u℄ = vmE[ 1k ℄:The minimum value of k is v=m, and arises when all the nodes are full.The maximum value of k is nv=m and arises just after all the nodes havebeen produ
ed by splitting their parent nodes. Assume that the numberof nodes follows a uniform distribution in the interval [v=m; nv=m℄. The
orresponding density is thus1nvm � vm dk = m(n� 1)v dk;and we have E[ 1k ℄ = Z nv=mv=m 1k m(n� 1)v dk= m(n� 1)v [lnk℄nv=mv=m= m(n� 1)v (ln nvm � ln vm)= m(n� 1)v lnn:Substituting into U yields the same result as we obtained in Se
tion 2 forthe mean of U | that isU = vm � m(n� 1)v lnn = lnnn� 1 :The result obtained in this se
tion is an approximation as we have assumedthat the distribution of the leaf nodes is uniform in its range of valuesrather than the distribution of the points. Also, we have assumed thatthe distribution of the leaf nodes is 
ontinuous where, in fa
t, the numberof leaf nodes 
an only take on integer values. Thus we have shown that theapproximate value of U derived in this se
tion is the same as the mean ofU derived in Se
tion 2. In the rest of this paper we refer to both of thesevalues as the approximate average storage utilization.
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al ResultsIn order to evaluate the a

ura
y of our formula for the approximate averagestorage utilization, we 
ompare the values it yields with known values ofsome widely used bu
ket methods. When n = 2, U = 0:693. This is 
loseto 0.67 whi
h is reported as the average storage utilization of the B-tree [8℄,the Grid �le [12℄, and EXCELL [16℄. When n = 4, U = 0:462. This is 
loseto 0.47 whi
h is reported as the average utilization of a PR quadtree [16℄.When n = 3, the general bu
ket method is termed a ternary system. Itsaverage storage utilization has been observed to be 0.39 [12℄ whi
h is quitedi�erent from our predi
ted analyti
 value of (ln 3)=2 = :549. No formalderivation for the 0.39 value was given in [12℄. As we show below, we believethat our predi
ted value of .549 is more plausible and that the value of 0.39is far too low for a ternary system.Consider a general bu
ket method of fanout 2. Although its minimumstorage utilization is 0.5, when a binary tree whi
h 
onsists of only onefull bu
ket is split, the approximate average storage utilization is 0.693 {that is, an in
rease of 0.193 over the minimum value. Similarly, when thefanout of the general bu
ket method is 4, its minimum storage utilization is0.25, while its approximate average storage utilization is 0.462 { that is, anin
rease of 0.212 over the minimum value. Therefore, we would expe
t thatthe approximate average storage utilization of a general bu
ket method offanout 3 to have an in
rement somewhere around (0:193 + 0:212)=2 = 0:202in ex
ess of its minimum storage utilization whi
h is 0.333. In other words,the average storage utilization of a ternary system is expe
ted to be about0.535, whi
h is an approximation of 0.549, our predi
ted analyti
 result.As further eviden
e for our doubts about the 
orre
tness of the resultreported previously [12℄ for the ternary system, we performed some empiri
altests. In parti
ular, we wrote a program to 
reate a spe
i�ed number of treeswith a given fanout, ea
h of whi
h 
ontains a designated number of randompoints, and 
al
ulated the average storage utilization of these trees. Whenthe average storage utilizations are plotted against the number of pointsstored in the trees, the 
urves were found to os
illate for all the generalbu
ket methods regardless of the fanout values. Figure 4.1 shows the resultsfor a ternary system whi
h 
on�rm our doubts about the value reportedin [12℄.From the analysis in Se
tion 2, we know that the average storage utiliza-tion of a general bu
ket method is basi
ally a periodi
 fun
tion in logn v.Thus, taking the average of the maximum and the minimum of the valuesfrom Figure 4.1 produ
es a more satisfa
tory result in estimating the aver-age storage utilization than that obtained by simply taking the average ofall the values in Figure 4.1. Moreover, to minimize the 
ontribution of theterm O(v�1=2 log v) in the formula for the average storage utilization, largervalues of v should be used whenever possible. Referring to Figure 4.1, wesee that for the ternary system, the maximum is around 0.576, the minimumis 0.525, and the average is 0.551, whi
h is 
lose to the predi
ted analyti
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Fig. 4.1: Average storage utilization of a ternary system.Fanout Empiri
al value Predi
ted value2 0.695 0.6933 0.551 0.5494 0.468 0.4625 0.415 0.4026 0.376 0.358Fig. 4.2: Average storage utilizations of general bu
ket methods.value of 0.549. Using su
h an estimating te
hnique, Figure 4.2 tabulates theempiri
al values of the average storage utilizations for the general bu
ketmethods of fanout 2 to 6. The �gure also tabulates the predi
ted analyti
values for 
omparison. From the �gure, we see that the empiri
al and pre-di
ted analyti
 values are in 
lose agreement.5. Con
lusionWe have shown two ways to derive a general formula used to 
al
ulate theapproximate average storage utilization of a general bu
ket method. As aresult, there is no need to perform the tedious derivation of the averagestorage utilization of a spe
i�
 bu
ket method in the future. The formula issimple and easy to use.An immediate appli
ation of our result is to estimate of the storage re-



APPROXIMATE AVERAGE STORAGE UTILIZATION 11quirements of a bu
ket method. In parti
ular, If a bu
ket method with node
apa
ity m is used to store v points, then the expe
ted number of leaf nodes(or bu
kets) E[J ℄ that is required 
an be 
al
ulated by using the formulaE[J ℄ = vmU � (n� 1)v(logn e)m = (n� 1) loge n vm:For veri�
ation purposes, it has been reported in [2℄ that for a PR quadtreewithm = 1 and v = 1000, the average number of leaf nodes 
reated is 2153.4whi
h is very 
lose to the estimated value E[J ℄ of 2164.Another 
onsequen
e of our analysis is that we are now able to explainthe phasing phenomenon [10, 11℄ (i.e., the os
illation of the plot of theaverage storage utilization of a bu
ket method). Sin
e U = 1=�m(logn v)asymptoti
ally and �m is periodi
 in logn v, we have that U is also periodi
in logn v and its 
urve will 
u
tuate like a sine fun
tion around the average
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