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APPROXIMATE AVERAGE STORAGE UTILIZATIONOF BUCKET METHODS WITH ARBITRARYFANOUTCHUAN-HENG ANGDepartment of Information Systems and Computer SieneNational University of SingaporeHANAN SAMET�Computer Siene Department andInstitute of Advaned Computer Studies andCenter for Automation ResearhUniversity of MarylandCollege Park, MD 20742Abstrat. The approximate average storage utilization of buket methods withfanout of n, assuming a uniform distribution of data, is shown to depend only onthe fanout and not on any other fators suh as the diretory struture. It obeysthe formula (lnn)=(n�1). The analysis makes use of a generalization of previouslypublished methods for n = 2 and n = 4 and its preditions math these results.The formula is appliable to methods that are based on digital searhing (e.g., tries)or balaning rather than omparison-based methods. The formula is also used todetet an erroneous statement about the average storage utilization of a ternarysystem in [12℄.Key words: data strutures, analysis of algorithms, buket methods, average stor-age utilization, B-tree, Grid �le, EXHASH, EXCELL, quadtries, ternary system.CR Classi�ation: D.4.3, E.1, E.2, F.2.2, H.2.21. IntrodutionIn many appliations, the volume of data is so high that it is stored inseondary storage suh as disks where it is organized using various datastrutures for eÆient proessing. Sine the data (termed reords) is usuallyretrieved in hunks suh as pages or bloks rather than individually, it isnatural to organize these bloks (usually termed bukets) so that similarly-valued reords are stored together. Methods that make use of bukets inorganizing the reords are alled buket methods. The tehniques that wedisuss are appliable to reords orresponding to points in one, two, or moredimensions (i.e., multiattribute data). In order to simplify the presentation,we usually refer to the data (i.e., the set of reords) as points sine this makes� This work was supported in part by the National Siene Foundation under Grant IRI{9216970 and the Department of Energy under Contrat DEFG0295ER25237.Reeived Marh 1996. Revised September 1996.



2 ANG, SAMETthe disussion of the analysis more meaningful although it is independent ofthe dimensionality of the data.Eah reord is stored in a ertain order in a designated buket with a-paity m. When a buket is full, it is split into several bukets so that thereords in the full buket together with the additional reord that ausedthe buket to split an be redistributed aording to a given rule into newbukets. There are many buket methods in use. They di�er, in part, onthe type of reords for whih they are designed, the nature of the redistri-bution strategy, and on the number of bukets n into whih a full buket issplit, termed the fanout. Some may use a diretory, or even several levels ofdiretories, to speed up buket aess.If we regard eah buket as a node in a tree, then n is just the out degreeof the tree, and the orresponding buket method is termed a general buketmethod of fanout n. If we only use the fanouts of the trees to lassify thebuket methods, then many of them will be found to belong to the samelass. For example, the B-tree [3℄, the Grid File [12℄, EXHASH [4℄, andEXCELL [16℄ are onsidered to be instanes of the general buket methodof fanout 2, with 0.69 average storage utilization, even though they aredesigned to deal with data of di�erent dimensionality. On the other hand,the PR quadtree (or more orretly the quadtrie) [13, 15℄ is a general buketmethod of fanout 4. with 0.46 average storage utilization.In this paper we are interested in the average storage utilization of thevarious buket methods. The storage utilization u of buket method R thatuses J bukets of apaity m to provide a total apaity of a = Jm slots forstoring v reords has a value of v=a where u ranges between 0 and 1. Themore full is eah buket (i.e. the loser to m is the number of reords thateah buket ontains), the smaller is the value of J , and hene the larger isthe value of u. Thus the greater the value of u, the more eÆient is R interms of storage utilization. In partiular, we show that U , the average ofu, under appropriate data distribution models, only depends on the fanoutvalue n (i.e., how many bukets are needed when a full buket is split)thereby enabling us to ignore the implementation details of the di�erentbuket methods. It should be lear that regardless of the buket methodthat we use, it will often be the ase that U osillates as the number ofpoints inreases sine it is impossible for all bukets to always be full.The analysis of the average storage utilization has been arried out bya number of researhers for di�erent buket methods (e.g., EXHASH [4℄,B-trees [9, 17℄, EXCELL [16℄). Most assume that the data is drawn froma uniform distribution. However, their analysis was for individual buketmethods rather than a general one. Our ontribution is a uni�ation oftheir results in a manner that is independent of the fanout and the diretorystruture. It is important to note that our analysis assumes that if a reord isin a partiular buket, then it is equally likely to be in any of the hildren ofthe buket in the ase of a split. This assumption usually leads to a balanedstruture and is thus useful for data strutures based on digital methods(e.g., tries). or on the use of balaning (e.g., AVL trees [1℄, balaned B-



APPROXIMATE AVERAGE STORAGE UTILIZATION 3trees [17℄, et.). Suh strutures are the subjet of our analysis. In ontrast,in the ase of omparison-based methods (e.g., binary searh trees [8℄, pointquadtrees [6℄, et.), the order in whih the data is enountered is important.Their analyses omplement our results. In partiular, they are based on theuse of generating funtions (e.g., [7℄) and, of ourse, yield di�erent results.We do not disuss them further here.The rest of this paper is organized as follows. We �rst derive in Setion2 the average storage utilization for arbitrary n by generalizing the methodof [4℄. This method is quite omplex but is done to show that we anonly obtain an asymptoti result (i.e., as the number of reords gets verylarge) whih osillates about its mean. Next, in Setion 3, we obtain anapproximate average storage utilization, whih is the same as the meanderived in Setion 2 but in a muh simpler manner, by generalizing themethod of [9℄. Setion 4 veri�es the results obtained in Setions 2 and 3 andshows how a previously published result for a ternary system is disovered tobe erroneous. Setion 5 onludes our presentation by mentioning a simpleappliation of the formula.2. Derivation of Average Storage UtilizationIn this setion we perform a detailed mathematial analysis of the averagestorage utilization of a general buket method of fanout n. The analysis is ageneralization from n = 2 to arbitrary values of n (thereby being appliableto any other buketing methods based on digital methods and balaning) ofthe analysis performed by Fagin, et al. [4℄ for EXHASH whih is based onan analysis by Knuth [8℄.Let T be a given tree struture of a general buket method of fanout nwith v points (i.e., reords) with node (i.e., buket) apaity m. Let I be thenumber of internal nodes, J the number of leaf nodes (i.e., bukets), and Sbe the total number of nodes of T . We have S = I+J . Sine I = (S�1)=n,we have I = S�J = nI+1�J . So J = (n�1)I+1. By taking the averageover all T ontaining v random points, we have E[J ℄ = (n� 1) � E[I℄ + 1.As explained in [5, page 159℄, we an assume that the random pointsfalling within a node at depth j follow a Poisson distribution suh that theprobability for a node to ontain k points ise�vjvkjk! where vj = vnj :The probability for a node to be internal ispj = 1Xk=m+1 e�vjvkjk! ;whih is just the probability for the node to ontain more than m points.Stritly speaking, the summation should begin with k = m+ 1 and only go



4 ANG, SAMETup to k = v instead of k = 1. In the following, in order to simplify ourpresentation, we always omit the range of an integral and the range of theindex of a summation as long as the omission does not ause any onfusion.Sine there are nj possible nodes at depth j, and letting pj be the probabilitythat eah possible node is atually an internal node, the average number ofinternal nodes at depth j is njpj. We �nd thatE[I℄ = 1Xj=0njpj =Xj njXk e�vj vkjk! =Xj Xk nje�vj vkjk! :Sine vj = v=nj , we an rewrite the term within the double summation asakbk where ak = e�vj vk�1j(k � 1)! and bk = v=k:Sine all ak's are positive, P1k=m+1 ak onverges to a value whih is lessthan P1k=1 ak = 1. Sine bk is dereasing and limk!1 bk = 0, Pk akbkonverges [14, theorem 3.42 page 70℄. Moreover, it onverges absolutely.The order of the summation an be interhanged [14, theorem 3.45 page71℄. Thus we haveE[I℄ =Xk Xj nje�vj vkjk! =Xk vkk! Xj nj(1�k)e�vnj :From [8, page 132℄ we know thate�x = 12�i Z 12+1i12�1i �(w)xw dwwhere the integration is over the line 1=2 + ti, and t is a real number. Byhanging the variable z to w � 1, we havee�x = 12�i Z � 12+1i� 12�1i �(z + 1)xz+1 dz:Using z! for �(z + 1), we have,E[I℄ = Xk vkk! Xj nj(1�k) 12�i Z � 12+1i� 12�1i z!=( vnj )z+1dz= Xk vkk! 12�i Z � 12+1i� 12�1i z!vz+1 Xj (nz+2�k)jdzSine k � m+1 � 2 for non-leaf nodes and a point on the line of integrationan be expressed as z = �1=2+ ti where t is a real number, we have Re(z+2�k) = �1=2+2�k < 0 and hene jnz+2�kj = jn3=2�kj�jntij = jn3=2�kj < 1.



APPROXIMATE AVERAGE STORAGE UTILIZATION 5SinePj jnz+2�kjj onverges, Pj(nz+2�k)j also onverges [14, theorem 3.45page 71℄. Therefore,E[I℄ = Xk vkk! 12�i Z � 12+1i� 12�1i z!vz+1 11� nz+2�kdz= Xk vkk! 12�i Z � 12+1i� 12�1i �(z)dz where �(z) = z!vz+1 11� nz+2�k :The integrals of omplex variables an sometimes be solved by �ndingthe poles of the integrand, superimposing a losed urve over the path ofintegration, and applying the Cauhy residue theorem [14℄. The poles of afuntion �(z) are de�ned to be those z whih satisfy �(z) = 1 or equiva-lently, 1=�(z) = 0. A pole z is simple if it is a simple root of 1=�(z) = 0. Inthe above integration, the poles of the integrand are those obtained from z!whih are z = �1;�2; � � � that will fore z! to beome 1 and those roots of1� nz+2�k = 0 whih are z = k� 2+ 2�ih logn e, where h is an integer. Allthese poles are simple.Letting L1 be the line joining the points �12 � si to �12 + si, we haveE[I℄ =Xk vkk! 12�iG where G = Z � 12+1i� 12�1i �(z)dz = lims!1 ZL1 �(z)dzLet L2 = [k�3=2���si; k�3=2��+si℄, L3 = [�1=2�si; k�3=2���si℄,L4 = [k�3=2��+si;�1=2+si℄. Then C = �L1[L3[L2[L4 is a losed urve.We assume this urve to be extended to in�nity impliitly in the followingderivation and drop lims!1 from now on. Now RC = R�L1 + RL2 + RL3 + RL4 .By the Shwarz reetion priniple, the funtion value of �(z) on L3 isidential to that on L4. Therefore, RL3 = � RL4 . Thus G = RL1 = � RC + RL2 ,and we haveE[I℄ =Xk vkk! 12�iG = B +Xk vkk! 12�i ZL2 �(z)dz whereB =Xk vkk! 12�i � �� ZC �(z)dz� :Notie that all the poles f�1;�2; � � �g are outside the region bounded byC whereas the poles k � 2 + 2�ih logn e are within the region when C issuÆiently large.. Aording to the Cauhy residue theorem, the integralof a omplex funtion �(z) over a losed urve is 2�i times the sum of theresidues of the funtion at the poles. The residue of �(z) at a pole whihis outside the losed urve is zero. If �(z) is written as g(z)=f(z), thenthe residue of �(z) at a simple pole w within a losed urve is g(w)=f 0(w).Sine the poles f�1;�2; � � �g lie outside C, the residues at these points arezeroes. If we rewrite the integrand �(z) as g(z)=f(z) where g(z) = z!=vz+1



6 ANG, SAMETand f(z) = 1�nz+2�k, then we have f 0(z) = �nz+2�k loge n. For eah polew = k � 2 + 2�ih logn e, and thereforef 0(w) = �(loge n)n2�ih logn e = � loge n(nlogn e)h2�i = � loge n:We have� ZC �(z)dz = �2�iXh 1� loge n (k � 2 + 2�ih logn e)!vk�1+2�ih logn e= 2�iXh logn e(k � 2 + 2�ih logn e)!v�k+1�2�ih logn e:We an now solve for B.B = Xk vkk! 12�i (� ZC �(z)dz)= Xk vkk! Xh logn e(k � 2 + 2�ih logn e)!v�k+1�2�ih logn e= Xk Xh logn e(k � 2 + 2�ih logn e)! vk!e�2�ih logn v= vXh e�2�ih logn v logn eXk (k � 2 + 2�ih logn e)!k!= vXh e�2�ih logn v(logn e)A where A = Xk=m+1 (k � 2 + 2�ih logn e)!k! :As noted before, the summation index k starts from m + 1 for an internalnode. NowA = Xk=0 (k +m� 1 + 2�ih logn e)!(k +m+ 1)!= (m� 1 + 2�ih logn e)!(m+ 1)! F (m+ 2�ih logn e; 1;m + 2; 1)where F (a; b; ;x) = 1 + a � b1 � x+ a � (a+ 1) � b � (b+ 1)1 � 2 �  � (+ 1) x2 + � � � is a hyperge-ometri series. When x = 1, F (a; b; ; 1) = �()�(� a� b)�(� a)�(� b) .In addition, when b = 1, F (a; 1; ; 1) = �()�( � a� 1)�(� a)�(� 1) = � 1� a� 1.Therefore, we haveA = (m� 1 + 2�ih logn e)!(1� 2�ih logn e) �m! andB = vXh e�2�ih logn v logn e(m� 1 + 2�ih logn e)!(1� 2�ih logn e) �m!= vmXh m;he�2�ih logn v = vm�m(logn v)



APPROXIMATE AVERAGE STORAGE UTILIZATION 7where m;h = logn e(1� 2�ih logn e) (m� 1 + 2�ih logn e)!(m� 1)! and�m(x) =Xh m;he�2�ihx:We still need to solve RL2 �(z)dz in order to evaluate E[I℄. From [4℄, wehave 12�i ZL2 �(z)dz = O (k � 1� �)!(vk� 12��(12 � �))! andXk vkk!O (k � 1� �)!vk� 12�� � (12 � �)! = O v 12+�� � (12 � �)! = O(v 12 log v)when � = 1=log v. Therefore, we now haveE[I℄ = B +O(v 12 log v) = vm�m(logn v) +O(v 12 log v) andE[J ℄ = 1 + (n� 1)E[I℄ = 1 + (n� 1)( vm�m(logn v) +O(v 12 log v))When m is �xed, reall from Setion 1 that the storage utilization u isv=Jm. Thus, the average storage utilization U isU = vmE[J ℄ = 1mv + (n� 1)�m(logn v) +O(v� 12 log v)When v ! 1, we have mv ! 0 and v� 12 log v ! 0. In this ase, limv!1 Udoes not exist sine �m is osillating. The osillation is aused by the fatthat as the number of points v inreases, it is impossible for all the buketsto always be full thereby ausing a variation in the storage utilization uand the average storage utilization U as they are omputed in terms of thenumber of avaliable slots for storing points. The average of �m(x) ism;0 = logn e(m� 1)!1 � (m� 1)! = logn e:Therefore, the mean value of U is1(n� 1) logn e = loge nn� 1 :3. A Simpler DerivationThe rationale behind the long, and somewhat tedious, proess of derivingthe average storage utilization U of a general buket method is to enableus to realize that U an only be represented by �m(logn v) asymptotially.There are other terms of smaller order whih ontribute to U and diminish



8 ANG, SAMETas v !1. Most importantly, the average storage utilization does not havea limit as v !1. Instead, it always osillates around the mean m;0.If we are only interested in �nding the mean value of U , the averagestorage utilization, then we an adapt the result desribed in [9℄ to the aseof a general buket method. Assume that in a tree T of a general buketmethod, eah full node with m points is split into n nodes eah ontainingm=n points. Stritly speaking, there should be m + 1 points in this ase,but in order to simplify matters we use m in our derivation. The storageutilization u of T with v points and k leaf nodes is u = v=(km). By takingthe average, we have U = E[u℄ = vmE[ 1k ℄:The minimum value of k is v=m, and arises when all the nodes are full.The maximum value of k is nv=m and arises just after all the nodes havebeen produed by splitting their parent nodes. Assume that the numberof nodes follows a uniform distribution in the interval [v=m; nv=m℄. Theorresponding density is thus1nvm � vm dk = m(n� 1)v dk;and we have E[ 1k ℄ = Z nv=mv=m 1k m(n� 1)v dk= m(n� 1)v [lnk℄nv=mv=m= m(n� 1)v (ln nvm � ln vm)= m(n� 1)v lnn:Substituting into U yields the same result as we obtained in Setion 2 forthe mean of U | that isU = vm � m(n� 1)v lnn = lnnn� 1 :The result obtained in this setion is an approximation as we have assumedthat the distribution of the leaf nodes is uniform in its range of valuesrather than the distribution of the points. Also, we have assumed thatthe distribution of the leaf nodes is ontinuous where, in fat, the numberof leaf nodes an only take on integer values. Thus we have shown that theapproximate value of U derived in this setion is the same as the mean ofU derived in Setion 2. In the rest of this paper we refer to both of thesevalues as the approximate average storage utilization.



APPROXIMATE AVERAGE STORAGE UTILIZATION 94. Empirial ResultsIn order to evaluate the auray of our formula for the approximate averagestorage utilization, we ompare the values it yields with known values ofsome widely used buket methods. When n = 2, U = 0:693. This is loseto 0.67 whih is reported as the average storage utilization of the B-tree [8℄,the Grid �le [12℄, and EXCELL [16℄. When n = 4, U = 0:462. This is loseto 0.47 whih is reported as the average utilization of a PR quadtree [16℄.When n = 3, the general buket method is termed a ternary system. Itsaverage storage utilization has been observed to be 0.39 [12℄ whih is quitedi�erent from our predited analyti value of (ln 3)=2 = :549. No formalderivation for the 0.39 value was given in [12℄. As we show below, we believethat our predited value of .549 is more plausible and that the value of 0.39is far too low for a ternary system.Consider a general buket method of fanout 2. Although its minimumstorage utilization is 0.5, when a binary tree whih onsists of only onefull buket is split, the approximate average storage utilization is 0.693 {that is, an inrease of 0.193 over the minimum value. Similarly, when thefanout of the general buket method is 4, its minimum storage utilization is0.25, while its approximate average storage utilization is 0.462 { that is, aninrease of 0.212 over the minimum value. Therefore, we would expet thatthe approximate average storage utilization of a general buket method offanout 3 to have an inrement somewhere around (0:193 + 0:212)=2 = 0:202in exess of its minimum storage utilization whih is 0.333. In other words,the average storage utilization of a ternary system is expeted to be about0.535, whih is an approximation of 0.549, our predited analyti result.As further evidene for our doubts about the orretness of the resultreported previously [12℄ for the ternary system, we performed some empirialtests. In partiular, we wrote a program to reate a spei�ed number of treeswith a given fanout, eah of whih ontains a designated number of randompoints, and alulated the average storage utilization of these trees. Whenthe average storage utilizations are plotted against the number of pointsstored in the trees, the urves were found to osillate for all the generalbuket methods regardless of the fanout values. Figure 4.1 shows the resultsfor a ternary system whih on�rm our doubts about the value reportedin [12℄.From the analysis in Setion 2, we know that the average storage utiliza-tion of a general buket method is basially a periodi funtion in logn v.Thus, taking the average of the maximum and the minimum of the valuesfrom Figure 4.1 produes a more satisfatory result in estimating the aver-age storage utilization than that obtained by simply taking the average ofall the values in Figure 4.1. Moreover, to minimize the ontribution of theterm O(v�1=2 log v) in the formula for the average storage utilization, largervalues of v should be used whenever possible. Referring to Figure 4.1, wesee that for the ternary system, the maximum is around 0.576, the minimumis 0.525, and the average is 0.551, whih is lose to the predited analyti
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Fig. 4.1: Average storage utilization of a ternary system.Fanout Empirial value Predited value2 0.695 0.6933 0.551 0.5494 0.468 0.4625 0.415 0.4026 0.376 0.358Fig. 4.2: Average storage utilizations of general buket methods.value of 0.549. Using suh an estimating tehnique, Figure 4.2 tabulates theempirial values of the average storage utilizations for the general buketmethods of fanout 2 to 6. The �gure also tabulates the predited analytivalues for omparison. From the �gure, we see that the empirial and pre-dited analyti values are in lose agreement.5. ConlusionWe have shown two ways to derive a general formula used to alulate theapproximate average storage utilization of a general buket method. As aresult, there is no need to perform the tedious derivation of the averagestorage utilization of a spei� buket method in the future. The formula issimple and easy to use.An immediate appliation of our result is to estimate of the storage re-
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