Nordic Journal of Computing

APPROXIMATE AVERAGE STORAGE UTILIZATION
OF BUCKET METHODS WITH ARBITRARY
FANOUT

CHUAN-HENG ANG
Department of Information Systems and Computer Science
National University of Singapore

HANAN SAMET*

Computer Science Department and
Institute of Advanced Computer Studies and
Center for Automation Research
University of Maryland
College Park, MD 2072

Abstract. The approximate average storage utilization of bucket methods with
fanout of n, assuming a uniform distribution of data, is shown to depend only on
the fanout and not on any other factors such as the directory structure. It obeys
the formula (Inn)/(n —1). The analysis makes use of a generalization of previously
published methods for n = 2 and n = 4 and its predictions match these results.
The formula is applicable to methods that are based on digital searching (e.g., tries)
or balancing rather than comparison-based methods. The formula is also used to
detect an erroneous statement about the average storage utilization of a ternary
system in [12].

Key words: data structures, analysis of algorithms, bucket methods, average stor-
age utilization, B-tree, Grid file, EXHASH, EXCELL, quadtries, ternary system.

CR Classification: D.4.3, E.1, E.2, F.2.2, H.2.2

1. Introduction

In many applications, the volume of data is so high that it is stored in
secondary storage such as disks where it is organized using various data
structures for efficient processing. Since the data (termed records) is usually
retrieved in chunks such as pages or blocks rather than individually, it is
natural to organize these blocks (usually termed buckets) so that similarly-
valued records are stored together. Methods that make use of buckets in
organizing the records are called bucket methods. The techniques that we
discuss are applicable to records corresponding to points in one, two, or more
dimensions (i.e., multiattribute data). In order to simplify the presentation,
we usually refer to the data (i.e., the set of records) as points since this makes

* This work was supported in part by the National Science Foundation under Grant IRI
9216970 and the Department of Energy under Contract DEFG0295ER25237.

Received March 1996. Revised September 1996.

2 ANG, SAMET

the discussion of the analysis more meaningful although it is independent of
the dimensionality of the data.

Each record is stored in a certain order in a designated bucket with ca-
pacity m. When a bucket is full, it is split into several buckets so that the
records in the full bucket together with the additional record that caused
the bucket to split can be redistributed according to a given rule into new
buckets. There are many bucket methods in use. They differ, in part, on
the type of records for which they are designed, the nature of the redistri-
bution strategy, and on the number of buckets n into which a full bucket is
split, termed the fanout. Some may use a directory, or even several levels of
directories, to speed up bucket access.

If we regard each bucket as a node in a tree, then n is just the out degree
of the tree, and the corresponding bucket method is termed a general bucket
method of fanout n. If we only use the fanouts of the trees to classify the
bucket methods, then many of them will be found to belong to the same
class. For example, the B-tree [3], the Grid File [12], EXHASH [4], and
EXCELL [16] are considered to be instances of the general bucket method
of fanout 2, with 0.69 average storage utilization, even though they are
designed to deal with data of different dimensionality. On the other hand,
the PR quadtree (or more correctly the quadtrie) [13, 15] is a general bucket
method of fanout 4. with 0.46 average storage utilization.

In this paper we are interested in the average storage utilization of the
various bucket methods. The storage utilization u of bucket method R that
uses J buckets of capacity m to provide a total capacity of @ = Jm slots for
storing v records has a value of v/a where u ranges between 0 and 1. The
more full is each bucket (i.e. the closer to m is the number of records that
each bucket contains), the smaller is the value of J, and hence the larger is
the value of u. Thus the greater the value of u, the more efficient is R in
terms of storage utilization. In particular, we show that U, the average of
u, under appropriate data distribution models, only depends on the fanout
value n (i.e., how many buckets are needed when a full bucket is split)
thereby enabling us to ignore the implementation details of the different
bucket methods. It should be clear that regardless of the bucket method
that we use, it will often be the case that U oscillates as the number of
points increases since it is impossible for all buckets to always be full.

The analysis of the average storage utilization has been carried out by
a number of researchers for different bucket methods (e.g., EXHASH [4],
B-trees [9, 17], EXCELL [16]). Most assume that the data is drawn from
a uniform distribution. However, their analysis was for individual bucket
methods rather than a general one. Our contribution is a unification of
their results in a manner that is independent of the fanout and the directory
structure. It is important to note that our analysis assumes that if a record is
in a particular bucket, then it is equally likely to be in any of the children of
the bucket in the case of a split. This assumption usually leads to a balanced
structure and is thus useful for data structures based on digital methods
(e.g., tries). or on the use of balancing (e.g., AVL trees [1], balanced B-

APPROXIMATE AVERAGE STORAGE UTILIZATION 3

trees [17], etc.). Such structures are the subject of our analysis. In contrast,
in the case of comparison-based methods (e.g., binary search trees [8], point
quadtrees [6], etc.), the order in which the data is encountered is important.
Their analyses complement our results. In particular, they are based on the
use of generating functions (e.g., [7]) and, of course, yield different results.
We do not discuss them further here.

The rest of this paper is organized as follows. We first derive in Section
2 the average storage utilization for arbitrary n by generalizing the method
of [4]. This method is quite complex but is done to show that we can
only obtain an asymptotic result (i.e., as the number of records gets very
large) which oscillates about its mean. Next, in Section 3, we obtain an
approximate average storage utilization, which is the same as the mean
derived in Section 2 but in a much simpler manner, by generalizing the
method of [9]. Section 4 verifies the results obtained in Sections 2 and 3 and
shows how a previously published result for a ternary system is discovered to
be erroneous. Section 5 concludes our presentation by mentioning a simple
application of the formula.

2. Derivation of Average Storage Utilization

In this section we perform a detailed mathematical analysis of the average
storage utilization of a general bucket method of fanout n. The analysis is a
generalization from n = 2 to arbitrary values of n (thereby being applicable
to any other bucketing methods based on digital methods and balancing) of
the analysis performed by Fagin, et al. [4] for EXHASH which is based on
an analysis by Knuth [8].

Let T be a given tree structure of a general bucket method of fanout n
with v points (i.e., records) with node (i.e., bucket) capacity m. Let I be the
number of internal nodes, J the number of leaf nodes (i.e., buckets), and S
be the total number of nodes of . We have S = I+ J. Since I = (S —1)/n,
we have [= S—J=nl+1—-J. SoJ = (n—1)I+1. By taking the average
over all T' containing v random points, we have E[J] = (n — 1) - E[I] + 1.

As explained in [5, page 159], we can assume that the random points
falling within a node at depth j follow a Poisson distribution such that the
probability for a node to contain k points is

e Vi ,U]?

. where v; =

k! ni’

The probability for a node to be internal is

[e%e) —vj .k
e Jv;
R E J
p] - k' I
k=m-+1 ’

which is just the probability for the node to contain more than m points.
Strictly speaking, the summation should begin with £ = m + 1 and only go

4 ANG, SAMET

up to kK = v instead of £k = oo. In the following, in order to simplify our
presentation, we always omit the range of an integral and the range of the
index of a summation as long as the omission does not cause any confusion.
Since there are n/ possible nodes at depth 5, and letting p;j be the probability
that each possible node is actually an internal node, the average number of
internal nodes at depth j is njpj. We find that

k

Zn]p] Zn]Ze J— = Zanefvj::—]i.

j k

Since v; = v/n?, we can rewrite the term within the double summation as
arbr, where

kal

ap = efvfﬁ and by =v/k.
Since all ay’s are positive, > 32 | aj converges to a value which is less
than > 72, ar = 1. Since by is decreasing and limg_ o b = 0, >4 agby
converges [14, theorem 3.42 page 70]. Moreover, it converges absolutely.

The order of the summation can be interchanged [14, theorem 3.45 page
71]. Thus we have

_] v 1-k
ZZ”J N Zklzn()eTL]'
From [8, page 132] we know that

1 [atooiT
el =— / (w)dw

271 J1 i W

where the integration is over the line 1/2 + ¢i, and ¢ is a real number. By
changing the variable z to w — 1, we have

1 (3t [(z+1
-z _ / wdz_

i —1ogi z2tl

Using z! for I'(z + 1), we have,

2+ooz

Bl = ZZ.Z g [G

ok 1 postoci 2k
= T 97 4 1 Z(n) dz
p k! 274 ~1ocoi p&t 7

Since k > m+1 > 2 for non-leaf nodes and a point on the line of integration
can be expressed as z = —1/2+ ¢ where ? is a real number, we have Re(z +
2—k) = —1/242—Fk < 0 and hence [n*+t2-F| = |p3/2-F|.|nt| = |n3/27F| < 1.

APPROXIMATE AVERAGE STORAGE UTILIZATION 5

Since - ; |n**2=F7 converges, > (n*T2=%)J also converges [14, theorem 3.45
page 71]. Therefore,

k _1 ;
¥ 1 g toot 4| 1
Ell = Zk:HQ_m'/;m e
2
k iy 1
v o1 3 Hoot 21 1
= 9 /7_7001 ¢(z)dz where ¢(z) = e s

The integrals of complex variables can sometimes be solved by finding
the poles of the integrand, superimposing a closed curve over the path of
integration, and applying the Cauchy residue theorem [14]. The poles of a
function ¢(z) are defined to be those z which satisfy ¢(z) = oo or equiva-
lently, 1/¢(z) = 0. A pole z is simple if it is a simple root of 1/¢(z) = 0. In
the above integration, the poles of the integrand are those obtained from 2!
which are z = —1,—2, - - - that will force z! to become oo and those roots of
1 —n?*27F = 0 which are z = k — 2 + 27ihlog,, e, where h is an integer. All
these poles are simple.

Letting L; be the line joining the points f% — st to —% + si, we have

—1400i
Z——G where G= | = ¢(z)dz = lim [¢(2)dz

k' 2 7 7%7002' =2 JT.

Let Ly = [k—3/2—e—si,k—3/2—e€+si], Ly = [-1/2—si,k—3/2—€— si],
Ly =[k—3/2—€e+si,—1/2+4si]. Then C = —L1{UL3ULyULy is a closed curve.
We assume this curve to be extended to infinity implicitly in the following
derivation and drop lims—,« from now on. Now [= [, + [, + [+ [},
By the Schwarz reflection principle, the function value of ¢(z) on L3 is
identical to that on Ly. Therefore, [; = —[; . ThusG = [, =— [+ [},
and we have

- Z'QM < /d) dz)'

Notice that all the poles {—1, —2,---} are outside the region bounded by
C whereas the poles k — 2 + 2mihlog, e are within the region when C is
sufficiently large.. According to the Cauchy residue theorem, the integral
of a complex function ¢(z) over a closed curve is 27i times the sum of the
residues of the function at the poles. The residue of ¢(z) at a pole which
is outside the closed curve is zero. If ¢(z) is written as g(z)/f(z), then
the residue of ¢(z) at a simple pole w within a closed curve is g(w)/f' (w).
Since the poles {—1, —2,---} lie outside C, the residues at these points are
zeroes. If we rewrite the integrand ¢(z) as g(z)/f(z) where g(z) = 2!v**!

6 ANG, SAMET

and f(z) =1 —n*T27% then we have f'(z) = —n*+t2"Flog,n. For each pole
w =k — 2+ 2mihlog, e, and therefore
f'(w) = —(log, n)n?™hloene = _log_n(n'o&n e)h%i = —log, n.

We have

. 1 (k—2+42nmihlog,e)!
_ dz = -2 : L
/C ¢(2)dz) ; “log,n vk 1+2mihlog, e

= 2m Z logn e(k — 24+ 27ih logn e)!vfk+172m'h log,, e
h

We can now solve for B.
B = YUb [s
T Wem e 20z

k .
= > 7,;—, S log,, e(k — 2 + 2mihlog,, e)lv KH1-2mihlog, ¢
k " h

— 3" Y log, e(k — 2 + 2rihlog, e)%eamh log., v
k h !

i k—2+2mihl o)1
= v Z e 2mihlog, v gg o Z (+ l:'l 0gy €)
h k .
i k— 24 2mihl !
= 1)26*2mhlognv(logn e)A where A = Z (+ Izr'z 0g,, e) .
h k=m+1 :

As noted before, the summation index & starts from m + 1 for an internal
node. Now

A = Z(/c-l—mfl-l-Qm'h,logne)!
s (k+m+1)!
— 1+ 2mihl !
= (m + 2wihlog,,) F(m + 2mihlog, e, 1;m + 2;1)
(m +1)!
- b - (@ 1) -b-(b 1
P(c)l(c—a—b
ometric series. When z =1, F(a,b;c; 1) = (©)l(c—a—b)

I'(c—a)l(c—10)
In addition, when b = 1, F(a, 1;¢;1) = EEC)F(C)F(G — 3 _ e .
c—a)l(c— c—a —

Therefore, we have
(m — 1+ 2mihlog,, e)!
(1 — 2mihlog,, €) - m!

B = v Z e 2mihl1og, v 10gn e
h

v o v
= LY e = 2 (og,)
m m

A and

(m — 1+ 2mihlog,, e)!
(1 — 2wihlog, e) - m!

APPROXIMATE AVERAGE STORAGE UTILIZATION 7

where
log,, e (m — 1+ 2mihlog, e)!

mh = 1 2rihlog,, ¢) (m — 1)

(I)m('[;) = Z Cm7h6727rih$.
h

We still need to solve [} ¢(2)dz in order to evaluate E[I]. From [4], we

have
1 (k—1—¢)!
- ¢(Z)d2 =0 (I) and
2 J1. CRETEY)

vt (k—1—¢) pite .

when € = 1/logv. Therefore, we now have

E[Il =B+ O(v% logv) = ﬂd)m(logn v) + O(v% logv) and
m

E[J]=1+(n - DE[I] =1+ (n — 1)(Z®n(log, v) + O(v? logv))
m
When m is fixed, recall from Section 1 that the storage utilization u is
v/Jm. Thus, the average storage utilization U is

U — v _ 1

mE[J] m 4 (y—1)®,,(log, v) + O(v? logv)

[

When v — 0o, we have % — 0 and v*% logv — 0. In this case, lim,_, o U
does not exist since ®,,, is oscillating. The oscillation is caused by the fact
that as the number of points v increases, it is impossible for all the buckets
to always be full thereby causing a variation in the storage utilization u
and the average storage utilization U as they are computed in terms of the
number of avaliable slots for storing points. The average of ®,,(z) is

_log, e(m—1)!
Cm,0 = m = log, e.

Therefore, the mean value of U is

1 _log.n

(n—1)log,e mn—1"

3. A Simpler Derivation

The rationale behind the long, and somewhat tedious, process of deriving
the average storage utilization U of a general bucket method is to enable
us to realize that U can only be represented by ®,,(log,, v) asymptotically.
There are other terms of smaller order which contribute to U and diminish

8 ANG, SAMET

as v — oc. Most importantly, the average storage utilization does not have
a limit as v — oo. Instead, it always oscillates around the mean c,, .

If we are only interested in finding the mean value of U, the average
storage utilization, then we can adapt the result described in [9] to the case
of a general bucket method. Assume that in a tree T' of a general bucket
method, each full node with m points is split into n nodes each containing
m/n points. Strictly speaking, there should be m + 1 points in this case,
but in order to simplify matters we use m in our derivation. The storage
utilization u of T" with v points and k leaf nodes is u = v/(km). By taking

the average, we have
v .1
U = Flu] = —FE|[~].
ju] = Z B[]
The minimum value of k is v/m, and arises when all the nodes are full.
The maximum value of &k is nv/m and arises just after all the nodes have
been produced by splitting their parent nodes. Assume that the number
of nodes follows a uniform distribution in the interval [v/m,nv/m]. The
corresponding density is thus

1 m

3=

nv
m

and we have

1 m)/ml m
E[-] = ——dk
5] /v/m kE(n—1)v

m nv/m
= —[Ink
(n—1)v [In]”/m
m nv v
= — " (ln= _ln—
(n—1)v _ nm)
m

L N
(n—1)v n

Substituting into U yields the same result as we obtained in Section 2 for
the mean of U that is

U="-—" lun= lnn-
m (n—1)v n—1

The result obtained in this section is an approximation as we have assumed
that the distribution of the leaf nodes is uniform in its range of values
rather than the distribution of the points. Also, we have assumed that
the distribution of the leaf nodes is continuous where, in fact, the number
of leaf nodes can only take on integer values. Thus we have shown that the
approximate value of U derived in this section is the same as the mean of
U derived in Section 2. In the rest of this paper we refer to both of these
values as the approzimate average storage utilization.

APPROXIMATE AVERAGE STORAGE UTILIZATION 9

4. Empirical Results

In order to evaluate the accuracy of our formula for the approximate average
storage utilization, we compare the values it yields with known values of
some widely used bucket methods. When n = 2, U = 0.693. This is close
to 0.67 which is reported as the average storage utilization of the B-tree [8],
the Grid file [12], and EXCELL [16]. When n = 4, U = 0.462. This is close
to 0.47 which is reported as the average utilization of a PR quadtree [16].

When n = 3, the general bucket method is termed a ternary system. Its
average storage utilization has been observed to be 0.39 [12] which is quite
different from our predicted analytic value of (In3)/2 = .549. No formal
derivation for the 0.39 value was given in [12]. As we show below, we believe
that our predicted value of .549 is more plausible and that the value of 0.39
is far too low for a ternary system.

Consider a general bucket method of fanout 2. Although its minimum
storage utilization is 0.5, when a binary tree which consists of only one
full bucket is split, the approximate average storage utilization is 0.693 —
that is, an increase of 0.193 over the minimum value. Similarly, when the
fanout of the general bucket method is 4, its minimum storage utilization is
0.25, while its approximate average storage utilization is 0.462 — that is, an
increase of 0.212 over the minimum value. Therefore, we would expect that
the approximate average storage utilization of a general bucket method of
fanout 3 to have an increment somewhere around (0.193 +0.212)/2 = 0.202
in excess of its minimum storage utilization which is 0.333. In other words,
the average storage utilization of a ternary system is expected to be about
0.535, which is an approximation of 0.549, our predicted analytic result.

As further evidence for our doubts about the correctness of the result
reported previously [12] for the ternary system, we performed some empirical
tests. In particular, we wrote a program to create a specified number of trees
with a given fanout, each of which contains a designated number of random
points, and calculated the average storage utilization of these trees. When
the average storage utilizations are plotted against the number of points
stored in the trees, the curves were found to oscillate for all the general
bucket methods regardless of the fanout values. Figure 4.1 shows the results
for a ternary system which confirm our doubts about the value reported
in [12].

From the analysis in Section 2, we know that the average storage utiliza-
tion of a general bucket method is basically a periodic function in log, v.
Thus, taking the average of the maximum and the minimum of the values
from Figure 4.1 produces a more satisfactory result in estimating the aver-
age storage utilization than that obtained by simply taking the average of
all the values in Figure 4.1. Moreover, to minimize the contribution of the
term O(v~/21ogv) in the formula for the average storage utilization, larger
values of v should be used whenever possible. Referring to Figure 4.1, we
see that for the ternary system, the maximum is around 0.576, the minimum
is 0.525, and the average is 0.551, which is close to the predicted analytic

10 ANG, SAMET

06 | | | | | |
0.59 | Average storage utilization <— -
0.58
0.57
0.56
0.55
0.54
0.53
0.52 .
0.51 .

05]]]]]]
1000 1500 2000 2500 3000 3500 4000
Number of points

X 100%

Fig. 4.1: Average storage utilization of a ternary system.

Fanout | Empirical value | Predicted value
2 0.695 0.693
3 0.551 0.549
4 0.468 0.462
5 0.415 0.402
6 0.376 0.358

Fig. 4.2: Average storage utilizations of general bucket methods.

value of 0.549. Using such an estimating technique, Figure 4.2 tabulates the
empirical values of the average storage utilizations for the general bucket
methods of fanout 2 to 6. The figure also tabulates the predicted analytic
values for comparison. From the figure, we see that the empirical and pre-
dicted analytic values are in close agreement.

5. Conclusion

We have shown two ways to derive a general formula used to calculate the
approximate average storage utilization of a general bucket method. As a
result, there is no need to perform the tedious derivation of the average
storage utilization of a specific bucket method in the future. The formula is
simple and easy to use.

An immediate application of our result is to estimate of the storage re-

APPROXIMATE AVERAGE STORAGE UTILIZATION 11

quirements of a bucket method. In particular, If a bucket method with node
capacity m is used to store v points, then the expected number of leaf nodes
(or buckets) E[J] that is required can be calculated by using the formula

v (n—1)v

v
ElJ] = = (n— 1)log.n2.
[J] (n) ogenm

mU (log,, e)m

For verification purposes, it has been reported in [2] that for a PR quadtree
with m = 1 and v = 1000, the average number of leaf nodes created is 2153.4
which is very close to the estimated value E[.J] of 2164.

Another consequence of our analysis is that we are now able to explain
the phasing phenomenon [10, 11] (i.e., the oscillation of the plot of the
average storage utilization of a bucket method). Since U = 1/®,,(log, v)
asymptotically and ®,, is periodic in log,, v, we have that U is also periodic
in log, v and its curve will fluctuate like a sine function around the average

Cm,0-

6. Acknowledgements

We have benefitted greatly from discussions with Michael B. Dillencourt.

References

[1] ADEL’SON-VEL’sKIl, G. M. AND LaNDIS, E. M. 1962. An algorithm for the
organization of information. Doklady Akademii Nauk SSSR 146, 263 266.

[2] ANaG, C. 1989. Applications and analysis of hierarchical data structures. PhD
thesis, University of Maryland, College Park, MD.

[3] BAYER, R. AND McCRrEIGHT, E. M. 1972. Organization and maintenance of
large ordered indices. Acta Informatica 1, 3, 173-189.

[4] FAGIN, R., NIEVERGELT, J., PIPPENGER, N., AND STRONG, H. R. 1979. Ex-
tendible hashing - a fast access method for dynamic files. ACM Transactions on
Database Systems 4, 3 (September), 315 344.

[65] FELLER, W. 1970. An Introduction to Probability Theory and its Applications,
third edition. Volume 1. John Wiley and Sons, New York.

[6] FINKEL, R.A. AND BENTLEY, J.L. 1974. Quad trees: a data structure for re-
trieval on composite keys. Acta Informatica 4, 1, 1-9.

[7] HosHi, M. AND FLAJOLET, P. 1992. Page usage in a quadtree index. BIT 32, 3,
384 402.

[8] KNuTH, D. E. 1973. The Art of Computer Programming: Sorting and Searching.
Volume 3. Addison-Wesley, Reading, MA.

[9] LEuNG, C. H. C. 1984. Approximate storage utilization of B-trees: a simple
derivation and generalizations. Information Processing Letters 19, 12 (Novem-
ber), 199 201.

[10] NEeLsoN, R. C. AND SAMET, H. 1986. A population analysis of quadtrees with
variable node size. Tech. report, Computer Science TR 1740, College Park, MD.

[11] NELSON, R. C. AND SAMET, H. 1987. A population analysis for hierarchical data
structures. In Proceedings of the SIGMOD Conference, 270-277.

[12] NIEVERGELT, J., HINTERBERGER, H., AND SEvCIK, K. C. 1984. The grid file:
an adaptable, symmetric multikey file structure. ACM Transactions on Database
Systems 9, 1 (March), 38-71.

[13] ORENSTEIN, J. A. 1982. Multidimensional tries used for associative searching.
Information Processing Letters 14, 4 (June), 150-157.

12

ANG, SAMET

RuDpIN, W. 1966. Real and Complex Analysis. McGraw-Hill, New York.
SAMET, H. 1990. The Design and Analysis of Spatial Data Structures. Addison-
Wesley, Reading, MA.

TAMMINEN, M. 1982. Performance analysis of cell based geometric file organi-
zations. Computer Graphics, Vision, and Image Processing 24, 2 (November),
168 181.

Yao, A. C. 1978. On random 2-3 trees. Acta Informatica 9, 2, 159-168.

