
682 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE. VOL. 12. NO. 7. JULY 1990

+J dt dD I s Lr1 xinnu

Then

C / J =

The desired result (6.26) is obtained by using Theorem 4.1 for
H

Corollary 6.1: Let all conditions in Theorem 6.1 hold. Then
5 GI +J l o , m, *; H (6.16) T*.

we obtain The desired result (4.6) is obtained from Lemma 6.3 and the as-
sumption hN = H / N . This completes the proof of Theorem 4.1.

Second, we provide the proof of Corollary 4.2 in Section IV.
Proof: From (4.9) the total amount of calculation of the split-

ting-shooting method is:

Last, let us consider the transformation T* (5.7). Denoting the
corresponding errors E; for T* when using the splitting-shooting
method in Section 11, we then have the following.

Theorem 6.1: Let (5.7) and all conditions in Theorem 4.1 hold.
Then there exist bounds

(6.15) (F-1 (T *) - ’

where 0: - fi,, an: t- 86,.
Consequently, the desired result (6.13) is obtained from Lemmas
6.1, 6.2, and 1J*I = (Y 2) J I , E; = a2€o. (6.27)

Proof: By Of (5.7)7 we have

Below let us prove Theorem 4.1 by using the above lemmas.
We have from (4.5) 1G1 = O ((Y / N) . (6.28)

when is large, there

It then follows

(6.18) 1
EO

h i 5 - Area(S,,,kl).

We obtain

h i
Casesl&II

hi
CasesII&III

ACKNOWLEDGMENT
We express our gratitude to the referees for their valuable sug-

gestions.
REFERENCES

[l] R. L. Burden, J . D. Faires, and A. C. Reynolds, Numerical Analysis,

121 S . Lang, Calculus ofSeveral Variables, 3rd ed. New York: Springer-
2nd ed. Prindle, Weber, & Schmidt, 1981.

. _
Verlagr 1987.

[3] S. Y. Lee, S. Yalamanchili, and J. K . Aggarwal, “Parallel image nor-
malization on a mesh connected array processor,” Pattern Recogn.,
vol. 20, pp, 115-124, 1987.

formarion of Digital Images and Patterns.
tific, 1989.

Englewood Cliffs, NJ: Prentice-Hall, 1973.

McGraw-Hall, 1977.

[4] 2. C. Li, T . D. Bui, Y. Y. Tang, and C. Y. Sum, Computer Trans-
Singapore: World Scien-

[5] G. Strang and G. J. Fix, An Analysis of the Finite Elemenr Method.

[6] 0. C. Zienkiewicz, The Finite Element Method, 3rd ed. New York:

By noting the fact that the boundary layer aOij is made up of two
or three layers of there exists a constant C independent of N ,

A New Region Expansion for Quadtrees

+, and T such that CHUAN-HENG ANG, HANAN SAMET, A N D
I /2 CLIFFORD A. SHAFFER

dmax 5 c[~rea(s i j ,k ,)] 5 ~ ~ ~ (~ J ~ ~ , ~ , ~ , ~ ~ ~ ~ ~ ’ ~ ~ ~ (6.23)
Abstract-A one-pass algorithm is presented to perform region ex-

pansion in images that are represented by quadtrees. The algorithm

Manuscript received June 27, 1988; revised January 30, 1990. Rec-
ommended for acceptance by C. R. Dyer. This work was supported by the
National Science Foundation under Grant IRI-88-02457.

C.-H. Ang is with the Department of Computer Science, National Uni-
versity of Singapore, Singapore OS1 1.

H. Samet is with the Department of Computer Science, and the Institute
of Advanced Computer Studies, and the Center for Automation Research,
University of Maryland, College Park, MD 20742.

C. A. Shaffer is with the Department of Computer Science, Virginia
Polytechnic Institute and State University, Blacksburg, VA 24061.

Combining (6.19)-(6.23), we obtain

(6.24) C H 2
hi Casesl&II I + J 1 2 . m , ~ r l , ~ l 5 ~g l @ ~ l ~ . ~ . ~ ~ ~ ~

and
ChN 112

h i C a s ~ & , I 1 l + ~ J (O , m , ; ~ , , , k ~ 5 ~ ~ l + J l ~ , m . ~ i 2 , J ~ l J l ~ . m , ~ ~ , J ~

ChN H
EO

3 /2
5 - l+lo.m.~i21J(~J~0,m.~i21,) ’

(6 .25) IEEE Log Number 9034830.

0162-8828/90/0700-0682$01 .OO 0 1990 IEEE

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 12. NO. 7. JULY 1990 683

changes to BLACK those WHITE pixels within a specified distance of
any BLACK node in the image. The algorithm yields a significant im-
provement over previous approaches by 1) reducing the number of
BLACK nodes that must be considered for expansion, and 2) reducing
the number of nodes that must be inserted as a result of the expansion.
This is achieved by the introduction of the concepts of a merging clus-
ter and a vertex set. Empirical tests show that the execution time of
this algorithm generally decreases as the radius of expansion increases,
whereas for previous approaches the execution time generally in-
creases with the radius of expansion.

Index Terms-Cartography, computer-aided design, computer
graphics, geographic information systems, hierarchical data struc-
tures, image dilation, polygon expansion, quadtrees, region expansion.

I. INTRODUCTION

This correspondence addresses the efficient computation of the
region expansion operation (also known as image dilation). It is
useful in computer-aided design (CAD) when we want to find all
objects near a cursor or near a particular set of objects. It can also
be used to simplify the process of planning a collision-free path for
a robot in a two-dimensional environment consisting of obstacles.
In this case, a finite-width robot is treated as a point and the obsta-
cles are expanded by an amount of equal to the size of the robot.
It is also very useful in computer cartography applications where
it is desirable to provide graphic answers to queries such as “find
all wheatfields within five miles of the floodplain.” Such an answer
is computed by expanding the floodplain region in the image and
intersecting the result with another image that represents the wheat-
fields.

In this correspondence we refer to the region expansion task as
the WITHIN function. Given a binary image I , WITHIN generates
a new image which is BLACK at all pixels within a specified radius
of expansion R of the BLACK regions of I. The distance is com-
puted by using the chessboard distance metric which defines the
distance between points (x , , y l) and (x z , y2) as MAX(1x1 - ~ 2 1 ,

In order to simplify the presentation, we assume that the image
is binary and is represented by a region quadtree [SI, [8], [9]. The
region quadtree decomposes an image into homogeneous blocks.
If the image is all one color, it is represented by a single block. If
not, then the image is decomposed into quadrants, subquadrants,
. . . , until each block is homogeneous.

When a quadtree is constructed with pointers, it is referred to as
a pointer-based quadtree. Often the volume of data is so high that
it is preferable to store the quadtree in disk files. In such a case, a
pointer-based representation may require many disk pages to be
accessed. Thus alternative representations such as the linear quad-
tree [3], [I] are used. The linear quadtree represents an image as a
collection of the leaf nodes that comprise it. Each leaf node is rep-
resented by its locational code which corresponds to a sequence of
directional codes that locate the leaf along a path from the root of
the tree. Assuming that the origin of the coordinate system of the
image is located at its upper left corner, then the locational code
of a node is the same as the result of interleaving the bits that com-
prise the x , y coordinates of the upper left comer of the node. In
addition, the depth of the node relative to the root must also be
recorded. The collection of nodes making up the linear quadtree is
usually stored as a list sorted in increasing order of the locational
codes. Such an ordering is useful because it is the order in which
the leaf nodes of the quadtree are visited by a depth-first traversal
of the quadtree. This representation is employed in the QUILT sys-
tem [12] which was used to test the algorithms described in this
correspondence.

Section I1 briefly describes three alternative prior implementa-
tions of the WITHIN function, and outlines their strengths and
weaknesses. Section I11 presents a new algorithm that overcomes
the shortcomings of the methods described in Section 11. Section
IV analyzes the execution time of the new algorithm. Section V
contains some concluding remarks.

I Y I - Y 2 0 .

11. THREE POLYGON EXPANSION ALGORITHMS
The simplest region expansion algorithm, termed WITHIN1 [lo],

visits each node of the quadtree. Each BLACK node, say B, is
expanded by R units and the new square (of width WIDTH (B) +
2 . R) is decomposed into quadtree blocks and inserted into the
output quadtree. The execution time of WITHIN1 increases di-
rectly with R since the number of blocks in a quadtree is propor-
tional to the total perimeter of the regions that comprise it [4].
Many of the regions expanded from the black nodes overlap each
other. As a result, WITHIN1 requires many duplicate insertions
and subsequent mergings of BLACK nodes. This algorithm is the
quadtree analog of the traditional method used in most image pro-
cessing applications [7].

A second algorithm, termed WITHIN2 [l l] , works on the
WHITE nodes. The BLACK nodes are simply copied into the out-
put tree. WHITE nodes of width less than or equal to (R + 1) /2 ,
as well as their brothers, are inserted into the output quadtree as
BLACK nodes. For WHITE nodes of width greater than (R +
1) / 2 , WITHIN2 has to search through all the neighboring nodes
to determine which portions of these large WHITE nodes that lie
within radius R of a nearby BLACK node can be output as BLACK
nodes. The problem with this approach is that many nodes of the
input quadtree will be visited more than once in search for the
nearby BLACK nodes. In addition, there are many redundant node
insertions.

A third algorithm, termed WITHIN3 [6] , makes two passes over
the nodes in the linear quadtree’s node list to avoid making redun-
dant insertions. The first pass processes the node list in increasing
order of locational codes. For each WHITE node, say W, it con-
verts to BLACK all portions of W that are within a distance R of a
BLACK node that has been encountered at a prior position in the
list. The second pass is analogous except that the list is processed
in reverse order. A substantial amount of computation is required
to determine and maintain the appropriate information about pre-
viously encountered BLACK nodes, and to split the WHITE nodes.
Its execution time increases directly with the radius of expansion
since the number of previously encountered BLACK nodes that
must be examined increases.

111. THE NEW REGION EXPANSION ALGORITHM
Our new algorithm, termed WITHIN4, traverses the input quad-

tree in preorder and writes the result of the expansion to an output
quadtree. It takes no action for large WHITE nodes. All large
BLACK nodes are expanded using WITHIN1 . The algorithm treats
clusters of small nodes as one unit termed a merging cluster (ex-
plained below). For each merging cluster, the algorithm computes
the vertex set (explained below) and performs a node expansion
only when enough information has been collected.

The keys to our new algorithm are the concepts of a merging
cluster and a vertex se t . These concepts allow us to consider a col-
lection of BLACK nodes for expansion instead of expanding each
BLACK node individually. As a result, WITHIN4 is able to reduce
the number of input BLACK nodes that must be considered for
expansion, and to reduce the number of BLACK nodes to be out-
put. These reductions yield an algorithm whose execution time is
asymptotically unaffected by the magnitude of the radius of expan-
sion (see [2]).

A . Merging Cluster
Given an input quadtree, and a radius of expansion R let us ex-

amine a subtree rooted at an internal node M which represents the
largest block whose width is less than or equal to R + 1. Each
WHITE leaf node, say W , in this subtree is within R pixels of a
BLACK leaf node in this subtree and therefore W will be changed
to BLACK after expansion. Of course, M becomes a BLACK node
as a result of the expansion.

Define w (R) to be the largest integer that is a power of 2 and is
l e s s t h a n o r e q u a l t o R + l , i . e . , ~ (R) = 2 ~ ~ R + 1 < 2 ‘ + l f o r
r 1 0. If M is a nonleaf node whose corresponding block is of
width w (R) , then M is a merging cluster of width w (R) . Merging

684 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 12, NO. 7, JULY 1990

cluster M consists of the set of leaf nodes in the subtree rooted at
M . In the rest of this correspondence, whenever we speak of the
width of a node, we mean the width of the node's corresponding
block.

Fig. 1 is an example of a merging cluster with 13 leaf nodes
when R = 3. In this case, w(R) is 4 . In Fig. 1 , A, B, C , and D
are the BLACK nodes in the merging cluster. The comers of their
blocks, termed vertices, are designated by using the corresponding
lower case letter with a subscript that designates the vertex. For
example, asw is the SW vertex of node A.

B. Computing the Vertex Set
Consider the expansion of the merging cluster in Fig. 1 by 3

pixels. The result is given in Fig. 2 from which we make the fol-
lowing observations:

1) The node corresponding to the root of the merging cluster is
now a BLACK node.

2) The area expanded beyond the boundary of the merging clus-
ter in the vertical and horizontal directions always forms a rectan-
gle. The size of each rectangle is determined by the distance be-
tween the boundary and the nearest BLACK node within the
merging cluster.

3) The area of expansion of the merging cluster in a diagonal
direction always forms a staircase-like region. The extreme points
of the staircase are those points which can be obtained by the trans-
lation of the vertices of some of the BLACK nodes in the merging
cluster.

From this example, we discover that the expansion from the
merging cluster is totally determined by VS = { aNw, bNW, cNW.
csw, dSE, dNE, aNE}. The set VS is termed the vertex set of the
merging cluster. The purpose of using the vertex set is to minimize
the number of BLACK elements of the 'merging cluster requiring
expansion.

Let d be in { NW, NE, SW, SE } . Let OPQUAD (d) denote the
vertex direction opposite to d (e.g., OPQUAD(NW) = SE). The
vertex set (V S) of a merging cluster M is defined to be the union
of four vertex subsets VS,. Given BLACK node P in M , vertex U
of P is in VS, if v is the d vertex of P and v is not in the closed
OPQUAD (d) quadrant of any vertex of another BLACK node in
M.

From the definition, it is clear that the four vertex subsets are
disjoint. This means that they can be constructed independently or
even in parallel. Table I shows the changes to each vertex subset
when the BLACK nodes of the merging cluster in Fig. 1 are pro-
cessed in the order A, B, C , D.

It is easy to see that no two vertices in VS,, and Vsd2 can have
the same x coordinate value where d, and d2 are NW and NE, or
SW and SE. As a result, we have:

Corollary: The size of the union of any two horizontally (or
vertically) adjacent vertex subsets VSd, and Vsd2 is less than or
equal to w (R) + 1 , and this bound is attainable. 0

Within a merging cluster, if there is only one black node P , then
P contributes four vertices to the vertex set. Otherwise, at most
two black nodes can contribute three vertices apiece to the vertex
set. All other black nodes cannot contribute more than two vertices
to the vertex set. Therefore, the number of the vertices in a vertex
set is bounded by 2 plus twice the number of BLACK nodes in M .
Thus we have proved the following theorem.

Theorem: The size of the vertex set of meging cluster M is
bounded by the minimum of 2 . w(R) + 2 and 2 + twice the
number of BLACK nodes in M . The bound is attainable. 0
C . Merging Cluster Expansion

The expansion of a merging cluster M in the eight directions can
be decomposed into two groups, namely those that deal with di-
rections { NW, NE, SW, SE} and those that deal with directions
{ N, W, S, E} . We shall describe one expansion from each group.

To expand in the NW direction from a merging cluster, only the
elements of VSNw need to be considered. The result of the expan-

'NW NE

csw
Fig. 1 . Example of a merging cluster.

Fig. 2 . Result of expanding the merging cluster in Fig. 1 by 3 pixels.

TABLE I
BUILDING VERTEX SUBSETS FOR FIG 1

node I VS,, 1 vs, I VS,," I vs,,

sion is a staircase-shaped region formed in the NW direction with
the steps of the staircase marked by the vertices in VSNw which
have been translated by (-R, -R); i .e. , they are obtained by sub-
tracting R from the coordinates of each vertex in VSNw. To insert
all the nodes that are components of the staircase, we find the
smallest quadtree block that covers the staircase and begin the reg-
ular decomposition. Blocks which are completely within (or out-
side) the staircae are inserted as BLACK (or WHITE). Blocks
which partially overlap the staircase are decomposed into four
equal-sized blocks which are processed recursively.

To expand in the W direction, we use the vertex v in VSNw (or
VS,,) which is closest to the westem boundary of the merging clus-
ter. The result of the expansion is a rectangle T with height w(R)
and width R - d, where dw where dw is the distance from U to
the W edge of M .

A further reduction in processing time can be achieved by taking
advantage of the interactions between the blocks of neighboring
merging clusters. If the d neighbor of the merging cluster is a big
black node or a merging cluster where d is one of the eight direc-
tions, then the expansion towards the d direction need not be per-
formed.

IV. ANALYSIS
The four WITHIN algorithms were tested on three 512 X 512

images named Center, Acc, and Pebble, shown in Fig. 3(a), (b),
and (c), respectively. These figures also show the result of ex-
panding them by 4 pixels. The natural logarithm of their execution
times is plotted in Figs. 4(a), (b), and (c) as a function of the radius
of expansion (i.e., R). Notice that the execution times for even
values of R are generally smaller than those for values of R - 1

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 12, NO. 7. JULY 1990 685

(C)
Fig. 3 . Three images: (a) center, (b) acc, (c) pebble. All regions are ex-

panded by 4 pixels.

WITHIN3

WlTHlNl

WITHIN2

WITHIN4

10 20 30 4 0

Radius [in pixels]

(a)

WITHIN3

5 - WlTHlNl

WITHIN2
4 -

3 -

WITHIN4

Radius [in pixels]

(b)

WlTHlNl
WITHIN3

7 -

6 -

5 - WITHIN2

4 - . , . I . I . I
WITHIN4

0 1 0 20 30 4 0

Radius [in pixels]

(C)
Fig. 4. Execution times for expanding the three images: (a) center, (b)

acc, (c) pebble.

and R + 1 (which are odd) due to the effects of node aggregation,
which means that fewer blocks need to be inserted into the output
quadtree.

As Fig. 4 demonstrates, the execution time of WITHIN4 gen-
erally increases at a much slower rate than the other algorithms. In
fact, it decreases as R gets sufficiently large. It can be shown that
the execution time of WITHIN4 is asymptotically independent of
R [2]. This can be seen by observing that as R increases the merg-
ing clusters get bigger and there are fewer of them. On the other
hand, the complexity of the vertex set usually increases as the size
of the merging cluster increases. These two effects tend to cancel
each other out; hence accounting for the relative indpendence of R.

.-

686 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE. VOL. 12. NO. 7, JULY 1990

Nevertheless, the radius of expansion does have an effect on the
execution time. As R increases from 2‘ - 2 to 2‘ - 1, w (R) is
doubled, thereby reducing the number of merging clusters. In par-
ticular, this means that at most four merging clusters of size 2‘- i

are merged into one merging cluster of size 2‘, or equivalently, four
node insertions are being replaced by one. Considering the four
merging clusters together, at most eight expansions in the direc-
tions of a comer can be avoided depending on whether the sur-
rounding nodes are WHITE or not. All of these savings lead to a
reduction in the execution time.

When R is between 2‘ - 1 and 2‘+ - 2, w (R) is constant (i.e.,
2‘) and the execution time increases slowly as R increases since
more nodes will be inserted. The execution times for odd values of
R show a cyclical behavior which is characterized by a slow in-
crease as R increases from 2‘-’ to 2“’ - 2, followed by a drop
back to nearly the lowest execution time for 2“’ - 1. The behav-
ior for even values of R follows the same pattern.

V. CONCLUDING REMARKS
In this correspondence we have described and compared four

region expansion algorithms (i.e., WITHINl, WITHIN2,
WITHIN3, and WITHIN4). The execution times of WITHIN1 and
WITHIN3 increase as R increases and hence they are less attrac-
tive. WITHIN4 is more efficient than WITHIN2 for the following
reasons:

1) Every BLACK node in a merging cluster is individually in-
serted by WITHIN2, whereas only one insertion is needed for
WITHIN4.

2) A node can be inserted by WITHIN4 at most eight times since
there are at most eight neighboring merging clusters, whereas for
WITHINZ, the number of repeated insertions of a node increases
as R increases.

Although WITHIN4 outperforms the other three WITHIN al-
gorithms, it still makes many redundant insertions. By using a more
efficient algorithm to compute the vertex sets, as well as to expand
from them, the performance of WITHIN4 can be further improved.

At this point, we must still ask if all this effort is really worth
the trouble. A good yardstick for measuring the performance of our
algorithm is to compare it with an approach that would convert the
quadtree to an array, perform the array WITHIN algorithm, and
then rebuild the quadtree. Using the QUILT system building the
quadtrees for the center and pebble images took 16 and 110 sec-
onds, respectively [1 I]. Of course, we must still perform the region
expansion operation. For each of these images, using WITHIN4
was faster whereas WITHIN1, WITHIN2, and WITHIN3 were all
considerably slower, Thus we see that WITHIN4 is indeed worth
the trouble.

REFERENCES

[I] D. J. Abel and J. L. Smith “A data structure and algorithm based on
a linear key for a rectangle retrieval problem,” Comput. Vision,
Graphics, ImageProcessing, vol. 24, no. 1 . pp. 1-13, Oct. 1983.

[2] C. H. Ang, “Analysis and applications of hierarchical data struc-
tures, ” Ph.D. dissertation, Dep. Comput. Sci., Univ. Maryland,
College Park, Tech. Rep. TR-2255, June 1989.

[3] I. Gargantini, “An effective way to represent quadtrees,” Commun.
ACM, vol. 25, no. 12, pp. 905-910, Dec. 1982.

[4] G. M. Hunter, “Efficient computation and data structures for graph-
ics,” Ph.D. dissertation, Dep. Elec. Eng. Comput. Sci., Princeton
Univ., Princeton, NJ, 1978.

151 A. Klinger, “Patterns and search statistics,” in Optimizing Methods
in Statistics, J. S . Rustagi, Ed. New York: Academic, 1971, pp.

[6] D. C. Mason, “Dilation algorithm for a linear quadtree,” Image Vi-

[71 A. Rosenfeld and A. C. Kak, Digital Picture Processing, 2nd ed.

IS] H . Samet, The Design and Analysis of Spatial Data Structures.

303-337.

sion Comput., vol. 5 , no. 1, pp. 11-20, Feb. 1987.

New York: 1982.

Reading, MA: Addison-Wesley, 1990.

[9] -, Applications of Spatial Data Structures: Computer Graphics,
Image Processing, and GIs. Reading, MA: Addison-Wesley, 1990.

[IO] H. Samet, A. Rosenfeld, C. A. Shaffer, R. C. Nelson, and Y . G.
Huang, ‘‘Application of hierarchical data structures to geographical
information systems, Phase 111,” Dep. Comput. Sci., Univ. Mary-
land, College Park, Tech. Rep. TR-1457, Nov. 1984.

[I l l C. A. Shaffer and H. Samet, “An algorithm to expand regions rep-
resented by linear quadtrees,” Image Vision Compur., vol. 6, no. 3,

[I21 C. A. Shaffer, H. Samet, and R. C. Nelson, “QUILT: A geographic
information system based on quadtrees,” Dep. Comput. Sci., Univ.
Maryland, College Park, Tech. Rep. TR-1885, July 1987.

pp. 162-168, Aug. 1988.

A Spatial Sampling Criterion for Sonar Obstacle
Detection

ROMAN KUC

Abstract-This correspondence describes a spatial sampling crite-
rion for sonar systems that allows all obstacles within a given radius
from the sensor to be detected. The environment considered is a two-
dimensional floor plan that is extended into the third dimension, in
which the scanning is performed in the horizontal plane. In this envi-
ronment, edge-like reflectors, such as edges of doors or doorways, and
oblique surfaces are the most difficult to detect. By considering the
physics of sound propagation, we determine the sonar scanning density
required to detect these objects. An experimental verification is in-
cluded. The limitations of detecting objects with sonar in a more gen-
eral environment are discussed. These results can used to determine
the necessary spacing in a transducer ring array and the maximum step
size that a mobile robot can translate without danger of collision.

Zndex Terms-Acoustics, intelligent sensors, map building, obstacle
avoidance, robot navigation, sensors, signal processing, sonar, time-
of-flight ranging.

I. INTRODUCTION
Acoustic sensors provide an inexpensive means for determining

the proximity of objects and have shown utility for implementing
sonar systems for robot navigation [1]-[3]. One of the most popular
is the rime-of-flight (TOF) system implemented by Polaroid [4].
However, problems arise in the straightforward, but naive, inter-
pretation of TOF readings: objects that are present are not always
detected and range readings produced by the TOF system do not
always correspond to objects at that range [5]-171. Because of these
problems, many researchers abandon sonar-only navigation sys-
tems and include additional sensing systems, such as collision de-
tectors [8], [9] and vision systems [9]-[l l]. For some applications,
we feel that adequate understanding of sonar echo production will
allow obstacle avoidance schemes to be accomplished with sonar
only.

This correspondence describes a spatial sampling criterion that
indicates the proper procedure to interrogate the environment to
detect any obstacles within the vicinity of the sensor. The environ-
ment to be considered is a general two-dimensional floor plan that

Manuscript received July 22, 1988; revised August 24, 1989. Recom-
mended for acceptance by R. De Mori. This work was supported by the
Yale Science and Engineering Association and by the National Science
Foundation under Grant ECS-8802627.

The author is with the Intelligent Sensors Laboratory, Department of
Electrical Engineering, Yale University, New Haven, CT 06520.

IEEE Log Number 8933760.

0162-8828/90/0700-0686$01 .OO 0 1990 IEEE

