
Pattern Recognition Letters 15 (1994) 57-63 January 1994
North-Holland

PATREC 1118

A fast quadtree normalization algorithm

Chuan-Heng Ang
Department of lnformation Systems and Computer Science, National University of Singapore, Singapore

Hanan Samet
Computer Science Department and Institute of Advanced Computer Studies and Center for Automation Research, University of
Maryland, College Park. MD 20742, USA

Received 20 February 1992

Abstract

Ang, C.-H. and H. Samet, A fast quadtree normalization algorithm, Pattern Recognition Letters 15 (1994) 57 -
63.

A region quadtree representation of an image can be normalized thereby yielding a quadtree that contains the least
number of nodes in O(s 2 log2 s) time where s is the length of the grid. A new algorithm is proposed whose asymp-
totic time bound is the same but whose first part only takes O(s2). It is shown empirically to be able to produce
the normalized quadtrees for a number of images in real applications.

Keywords. Quadtree normalization, region representation, image processing.

1. Introduction

The region quadtree [4,8,9] is a simple data struc-
ture which can be used to store an image. It can be
stored in main memory (usually with pointers) or on
disk (via a B-tree containing the leaf nodes). In either
case, it is easy to manipulate. Many operations such
as finding a neighboring pixel or block [7] or com-
puting some geometric properties [1 1] can be easily
carried out on a region quadtree (termed quadtree

from now on). Therefore, quadtrees and octrees (the
three-dimensional extension of a quadtree) find use
in image processing [6], computer graphics [1], car-

Correspondence to: H. Samet, Center for Automation Research,
University of Maryland, College Park, MD 20742, USA.
This work was supported in part by the National Science
Foundation under Grant IRI-9017393.

tography, geographic information systems [10], and
other related applications.

Given an image I, its corresponding quadtree can
be constructed as follows. If its color is homogeneous
(i.e., either white or black), then it is represented as
a single node of that color. Otherwise, the image is
represented by a gray node which has four son nodes.
Each son node corresponds to one component of the
image after it has been decomposed into four parts,
namely NW, NE, SW, and SE quadrants with respect
to its center. The decomposition process is repeated
until either the portion of the image under consider-
ation is homogeneous or the grid resolution is reached.
This top-down process used to construct the quad-
tree is called regular decomposition. The origin of the
grid is defined to be at the top leftmost corner with
the x-axis pointing to the right (east) and the y-axis
pointing downward (south). The grid with length s

0167°8655/94/$07.00 © 1994 --Elsevier Science B.V. All fights reserved
SSDI 0167-8655 (93)00091-S

57

Volume 15, number 1 PATTERN RECOGNITION LETTERS January 1994

partitions the image plane into s 2 grid cells, or pixels,
which is also the result of applying regular decompo-
sition to a checkerboard image. In the following dis-
cussion we do not distinguish between a quadtree and
the image, nor between a quadtree node and the part
of the image that it represents.

One shortcoming of the quadtree representation is
the sensitivity of its storage requirements to its posi-
tion. By placing a given black square at different po-
sitions in the image plane, we may be able to store
the image in as little as just one quadtree node or as
many as O (p + n) nodes, where p is the length of the
perimeter of the image and n is such that 2" is the
width of the grid [2,3]. Since the difference in the
storage requirements is so significant, at times it may
be deemed worthwhile to minimize the space re-
quirements of the images stored in quadtrees, espe-
cially when the number of images is large. Given an
image, the quadtree that contains the least number of
leaf nodes among all the quadtrees that represent the
same image is called the normalized quadtree of the
image. If there is more than one quadtree with the
minimum number of leaf nodes, then we choose the
one which has the leftmost and the uppermost black
pixel in order for the normalized quadtree to be
unique.

In [5], an O(s 2 log2 s) algorithm is given to find
the amount of translation required by an image in or-
der to minimize its space requirements when it is
stored in a quadtree. We describe this algorithm in
Section 2, as well as point out an error in its original
formulation. Although the original algorithm ap-
pears to be quite efficient, it still can be improved
upon, and an optimal algorithm is yet to be deter-
mined. We propose an improvement in Section 3. The
new algorithm is analyzed in Section 4 together with
some empirical results. Section 5 contains some con-
cluding remarks.

2. Quadtree normalization algorithm

Let the resolution of the grid be n + 1 and its length
be s = 2 "+~. A two-dimensional array of size
2 "+ ~ × 2 "+ ~ is needed to record the color of each pixel.
Initially, the given image is assumed to be enclosed
completely in the NW quadrant of the grid, with some
of its black pixels touching the x- and y-axes. This

array can also be viewed as the 4 "+ ~ leaf nodes of pixel
size in the complete quadtree before merging of nodes
takes place. Merging is just the reverse process of reg-
ular decomposition. Whenever four son leaf nodes of
a gray node are found to be of the same color, they
are deleted and their parent node is changed to that
color. Effectively, they are being merged into a bigger
node representing a block of size 2 X 2 or 4 times the
size of a son leaf node. Each time such a merging takes
place, the number of leaf nodes is reduced by 3.

There are four ways to move the image zero or one
pixel in the x- and y-directions. After the translation,
the number of leaf nodes that are of the size ofa pixel
can be found in each of these four situations. These
quantities will never change when the image is trans-
lated further by 2 k pixels, k> 0, in either direction. In
other words, these leaf nodes will never merge into
bigger nodes no matter how the image is being trans-
lated subsequently with the amount of translation
being at least twice the size of a leaf node. These leaf
nodes appear in quadtree blocks of size 2 X 2 that are
marked as gray whereas the others are merged and
marked with appropriate colors. In fact, this is what
we get when we reduce the length of the grid by half,
or equivalently its resolution by 1, in each direction.
The size of the array required to store the informa-
tion is now reduced to 4 ~, which is one quarter of the
size of the array used before merging. At this point,
each entry of the array records the color of the corre-
sponding 2 X 2 block. Each one pixel transition in this
array is equivalent to a two-pixel transition in the ar-
ray used before merging.

What has been described is just one step of merg-
ing. This merging process can be repeated recursively
until either only one 2 × 2 block is left or further pro-
cessing will not produce any savings when all the ele-
ments of the resulting array are gray. The number of
leaf nodes L and the translations in the x- and y-di-
rections are recorded i fL is found to be the smallest.
The sizes of the arrays used in the recursion are 4 ~+ ~,
4 ~, ..., 4. For each of these arrays, there are four ways
to translate the image before one step of merging is
carried out. Therefore the merging step is invoked
X,~_~ 4 i=O(4 n) times. Since the size of the array in
each step of recursion has been reduced by 3/4, the
cost of this processing can be shown to be within
O(4nn) time and 0 (4 n) space.

Figures 1 and 2 are an image and its purported nor-

58

Volume 15, number 1 PATTERN RECOGNITION LETTERS January 1994

m l l l l l

m l l M

Figure 1. Sample image.

~U,4-

Figure 2. The normalized quadtree for Figure l using the algo-
rithm in [5].

8-

Figure 3. Normalized quadtree after Iranslating Figure 1 by 3
pixels in the x-direction and 1 pixel in the),-direction.

realized quadtree labeled as Figures 5a and 5b in [5].
Figure 2 contains 46 leaf nodes of which one node is
of size 4 × 4 and 2 nodes are of size 2 × 2. Without
referring to our definition of a normalized quadtree,
we are misled into accepting Figure 2 as the normal-
ized quadtree of Figure 1 due to its simplicity. How-
ever, there are other translations with the same num-
ber of leaf nodes. For example, Figure 3 shows the
result of translating the image in Figure 1 by 3 pixels
in the x-direction and by 1 pixel in the y-direction. It
also has 46 leaf nodes. Since the black pixels in Fig-
ure 3 are nearer to the),-axis than those of Figure 2,
Figure 3 should be chosen as the normalized quad-
tree for the image in Figure 1.

3. An improved quadtree normalization algorithm

The algorithm of Li et al. (termed Li's algorithm)
is essentially a depth-first search through a space of
configurations. Each configuration is completely de-
scribed by the resulting array after the merge, the
amount of translation made, and its leaf node count.
Initially, the size of the array is 2 ~+~ × 2 "+~ with 4 n+~
leaf nodes and it is represented as the root node. Since
there are four ways to perform one step of translation
and merging, there are four son nodes corresponding
to the four resulting configurations. Each step of re-
cursion will produce four more nodes at the next level
of the tree describing the space to be searched. It is
easy to see that the related configurations can be
linked together to form a quadtree. The leaf nodes of
this search tree are either arrays of size 2 × 2 or arrays
with only gray elements. Li's algorithm simply
searches cxhaustively through the whole space, look-
ing for the one with the minimum leaf node count.
Its performance can be improved if the search space
can be pruned.

Let us look at one example for illustration. A 22X 2 2

image and its normalized quadtree are shown in Fig-
ures 4a and 4b, respectively. Figure 5 shows the search
space of the configurations used by Li's algorithm in
determining the normalized quadtree given in Figure
4b. The four sons of any configuration can be ar-
ranged from left to right to correspond to the result-
ing configurations obtained by merging and translat-
ing the array with the values (0, 0), (1, 0), (0, 1),
and (1, 1) in the directions of the x- and),-axes. The
configurations chosen to produce the optimal solu-
tion are those terminating in the node labeled with
10. According to Li's algorithm, this final configura-
tion can be further reduced by removing the three
white 2 × 2 blocks that surround the original image.

I C~ , i

Figure 4. (a) An example image and (b) its normalized quadtree.

59

Volume 15, number 1 PATTERN RECOGNITION LETTERS January 1994

17 22

64

'"'"'11 I I I I 1 1 1
I I I 1 1 1 1
I [l l l l l l l

22 28 16 19 19 22 17 22 22 28 10 13 13 13

Figure 5. The search space of the configurations used by Li's algorithm in determining the normalized quadtree given in Figure 4b. Each
node is labeled with the number of leaf nodes in its configuration. Each edge is labeled with its translation value. Gray nodes are repre-

sented by squares with diagonal lines.

Therefore, the normalized quadtree contains only 7
leaf nodes.

Li's algorithm is quite efficient in comparison to
the brute force approach in the sense that the amount
of work to be performed in each step of the recursion
has been significantly reduced. Unfortunately, it does
not make use of the partial result computed so far to
cut down further the number ofrecursions that need
to be performed. To improve its performance, the
number of recursive calls has to be reduced as each
call will incur some overhead cost. The sooner a par-
ticular path of recursion is pruned, the greater is the
saving. One way to terminate the recursion earlier is
described below.

The basic idea is to make use of C, the candidate
normalized quadtree obtained so far in the compu-
tation. Let the number of leaf nodes in C be CLEAVES,
Let the number of leaf nodes that cannot be merged
in the current recursion before the translation be
NLEAVES- After the translation and one step of merg-
ing, the number of white and black nodes of size 2 × 2
are denoted by NWHIT E and NBLACK, respectively, and
NLEAVES will be updated by adding those leaf nodes
that cannot be merged, i.e., of size 1 × 1. Initially,
NLEAVES is zero. After one step of translation and
merging, NLEAVES is the number of pixel-sized leaf
nodes and NWHITE (N BLACK) is the number of white
(black) nodes of size 2 × 2. They are not necessarily

the leaf nodes in the quadtree resulting from possible
merging in the subsequent steps. Therefore, they re-
quire special treatment in the following calculation.

It is obvious that if NLEAVES> CLEAVES, then the re-
sulting quadtree cannot be optimal, and we can stop
the recursion. Otherwise, calculate IWmTE which is the
minimum number of white nodes that result after the
NWHITE nodes are merged. There will be
Nwl=[_(NwmxE/4J white nodes after one step of
merging if all of the NWHXTE nodes are adjacent to each
other so that only the minimum number of white
nodes will be required to represent them. This will
leave NWmTE--4"NwL nodes that cannot be merged.
Similarly, we can find the number of white nodes left
over after two, three, and in general, k steps of merg-
ing. The sum of the numbers of all the white nodes
left over after the merging is IWmTE.

IWmTE is the minimum number of leaf nodes re-
quired to represent NWHXTE white nodes at this stage
of merging. Therefore, if NLEAVES + IW,~TE > CLEAVES,
then we can also stop the recursion. Otherwise, we
perform the analogous calculation for the set of black
nodes to obtain/BLACK"

If NLEAVES +/WHITE +/aLACK > CLEAVES, then stop
the recursion. Otherwise, recur and, if necessary, up-
date CLEAVES when a new candidate is found.

The sequence of tests that we have described above
is just a minor improvement to Li's algorithm. A ma-

60

Volume 15, number 1 PATTERN RECOGNITION LETTERS January 1994

jo r improvement can be achieved i fa good candida te
can be found as early as possible in the search pro-
cess. It is obvious that a bet ter candida te will be one

with a smaller value of CLEAVES. In Li 's algori thm, a
candida te whose leaf node count is to be used to es-
tablish or update the bound can only be found in the
order dic ta ted by the depth-f i rs t search. This may not
be efficient especially when the best t ransla t ion made
in each step of the recursion happens to be the last of
the four possible moves considered. When this situ-
a t ion arises, a candida te that has just been obta ined
may be replaced very frequently in the subsequent re-
cursion steps, and many steps of recursion are still
required.

If we can find a heurist ic that will lead us to some
leaf nodes of the configurat ion search tree with leaf
node counts close to that of the opt imal solution, then
the search space can be pruned more effectively. A
bet ter method to get a good candida te quickly is as
follows. Start with 4 n+~ leaf nodes. In each i teration,
four t ranslat ions will be a t t empted with the transla-
t ions along the x- and y-axes being 0 or l pixel long.
As a result, four different arrays will be produced in

each i teration. After one step of t ranslat ion and

merging, the NLEAVES value of each array is com-
puted. Further recursive calls using these arrays will
be made according to the increasing order of their

NLEAVES values. That is, the search space remains the
same but the order in which it is searched has been
changed to favor those t ranslat ions that are more
likely to lead us to the opt imal solution. After n iter-
at ions in which 4n different t ranslat ions have been
at tempted, we obtain the first four quadtrees that have

been translated, as well as the required t ranslat ions
of the ones with the least NLEAVES value at each level
of i teration. The one with the least NLEAVES value will
be the first candidate used to establish the bound. If
more than one t ransla t ion results in the least number
of leaf nodes, then we choose the one with the mini-
mum translat ion in the y- and x-direct ions.

Figure 6 shows the search tree for the same image
given in Figure 4. In order to make it easy for us to
compare the search space explored by the new algo-
r i thm with that used by Li 's algori thm, the arrange-
ment of the configurat ions remains the same with the
unders tanding that the order of evaluat ion is now
governed by the ascending order o f their leaf node
counts. Whichever has the least number of leaf nodes

0

IIIIIIII I
I l l l l l l l
I l l l l l l l l

7 11 11 11

Figure 6. The search space of the configurations used by the new
algorithm in determining the normalized quadtree given in Fig-
ure 4b. Each node is labeled with the number of leaf nodes in its
configuration. Each edge is labeled with its translation value. Gray

nodes are represented by squares with diagonal lines.

will be evaluated first. A node is labeled with its

NLEAVES value. Therefore, among the four sons of the
root node, the one labeled with 4 will be evaluated
first - that is, before those labeled with 12, 16, and

16 on the same level. After 2 i terations, which pro-
duce 8 configurations, we have found the first candi-
date which is the configurat ion labeled with 7. This
happens to be the opt imal solution.

For ease of reference, when this new algorithm is
implemented in a program, we refer to the port ion of
the program that executes up to the point at which
the first candidate is obta ined as step 1 q/the new al-
gorithm. After this step, the bound established will be
used in the search through the configurat ion search
tree.

4. Analysis and empirical results

It is easy to see that step 1 of the new algorithm
requires O (4 n) or O (s 2) t ime, whereas the execution
t ime of the entire algori thm is still O (s 2 log s) t ime -
that is, the same complexi ty as the original algo-
ri thm. In practice, the improvement is significant as
can be seen from the results obta ined in the following
exper iments using the QUILT geographic informa-
tion system [10].

Three programs were written and run on a SUN 3/
50 workstat ion. The first program is used to imple-

61

Volume 15, number 1 PATTERN RECOGNITION LETTERS January 1994

ment Li's algorithm. The second program is just the
first step of the new algorithm. The third program
implements the complete new algorithm. No attempt
is made to optimize these programs. The execution
times of the programs also include the time needed
to read in the image file from the disk which takes
about 2 to 3 seconds. Thus the execution times that
we give do not reflect fully the actual time taken by
the algorithms. Nevertheless, the improvements are
quite clear.

In Table 1, we list the number of translations made
to normalize three image files called floodplain, to-
pography, and landuse. The grid size is 512 X 512.
Their normalized quadtrees contain 5182, 24859 and
28237 leaf nodes respectively. It can be seen that the
number of translations made has been reduced dras-
tically from 87381 to about 300. In other words, al-
most all the work necessary to evaluate those arrays
of small size is eliminated.

Table 2 lists the execution times of the three pro-
grams using the above three image files. Since step 1
of the new algorithm is implemented as a separate
program, its execution time also includes the time re-
quired to read in an image file. Despite using such a
crude method of measuring the execution times, the
time taken by step 1 o f the new algorithm is only 1/7
of the old algorithm. The complete new algorithm also
reduces the total execution time of the old algorithm
by more than half. This reduction is significant. It also
demonstrates that evaluating the big arrays in the first
four iterations in step I o f the new algorithm is very

Table 1
Number of translations made

Image file Old algorithm New algorithm

floodplain 87381 120
topography 87381 228
landuse 87381 304

Table 2
Timings of the three algorithms (seconds)

Image file Old New Step 1 of
algorithm algorithm new algorithm

floodplain 278.0 80.5 42.0
topography 274.4 120.1 41.8
landuse 275.3 109.2 41.9

lime consuming (i.e., four arrays of size
O (2 " + ' × 2 n + 1)) .

Although we have shown empirically that the new
algorithm outperforms the old one, further improve-
ment is still possible. Notice that the image is stored
in the NW quadrant of a big array with other quad-
rants of the array being used to store white pixels. By
not storing these white pixels explicitly, we can re-
duce the space required by 3/4. With this reduction
in the required space and some minor changes in the
way that the pixels are being examined, the process-
ing of the array can also be speeded up.

One striking discovery from our experiments is that
the candidate chosen by step 1 of the new algorithm
is always the normalized quadtree. This is a very in-
teresting and important result. If it could be proved
that step 1 always produces the normalized quadtree
instead of just a candidate, then step 1 will be an op-
timal quadtree normalization algorithm with time
bound O(s 2)

Unfortunately, we can demonstrate that step 1
alone cannot produce a normalized quadtree by us-
ing the image in Figure 7a. Without translation, Fig-
ure 7a will have 32 leaf nodes ofpixel size and 8 black
or white nodes of size 2 × 2. Translating the image by
one pixel to the right and one pixel down results in
an image that also has 32 leaf nodes of pixel size and
the same number of black or white nodes of size 2 × 2,
as shown in Figure 7b. Since the NLEAVES values of
both Figure 7a and Figure 7b are equal after one step
o f translation and merging (i.e., 8), Figure 7a will be
evaluated first as it is nearer to the y-axis. Therefore,
Figure 7a is chosen as the first candidate by step 1 of
the new algorithm and it is used in the search for the
normalized quadtree which is Figure 7b.

m M
I I I I I

I I I I I

/11

Figure 7. Sample image showing that step 1 is not sufficient by
itself to produce the normalized quadtree; (a) is chosen by step

1 while (b) is the normalized quadtree.

62

Volume 15, number 1

5. Conclusion

PATTERN RECOGNITION

[31

An i m p r o v e m e n t to a well known quad t r ee nor-

ma l i za t i on a lgo r i thm [5] has been desc r ibed and

analyzed. Concep tua l ly , the new a lgor i thm consis ts

o f 2 steps. A l though step 1 o f the new a lgor i thm has

been found to be suff ic ient by i tse l f to p roduce the

n o r m a l i z e d quad t r ee very quick ly for the three image

files that were tested, we have shown that it fails to

guaran tee an op t ima l result in general . Never the less ,

it is still o f in teres t to users who wish to save s o m e

disk space used by images s tored in quad t r ee files

wi thou t paying the high c o m p u t i n g cost no rmal ly as-

soc ia ted with q u a d t r e e no rma l i za t ion .

References

[1] Foley, J.D., A. van Dam, S.K. Feiner and J.F. Hughes
1990). Computer Graphics: Principles and Practice.

Addison-Wesley, Reading, MA, second edition.
[2] Hunter, G.M. (1978). Efficient Computation and Data

Structures for Graphics. PhD thesis, Department of
Electrical Engineering and Computer Science, Princeton
University, Princeton, NJ.

LETTERS January 1994

Hunter, G.M. and K. Steiglitz (1979). Operations on
images using quad trees. IEEE Trans. Pattern Anal.
Machine lntell., 1 (2), 145-153.

[4] Klinger, A. (1971). Patterns and search statistics. In: J.S.
Rustagi, Ed. Optimizing Methods in Statisti~:~. Academic
Press, New York, 303-337.

[5] l_i, M., W.I. Grosky and R. Jain (1982). Normalized
quadtrees with respect to translations. Computer Graphics
and Image Processing 20 (1), 72-81.

[6] Rosenfeld, A. and A.C. Kak (1982). Digital Picture
Processing. Academic Press, New York, second edition.

[7] Samet, H. (1982). Neighbor finding techniques for images
represented by quadtrees. Computer Graphics and hnage
Processing 18 (1), 37-57.

[8] Samet, H. (1990), Apphcations ~2[Spatial Data Structures."
Computer Graphics, hnage Processing, and GIS. Addison-
Wesley, Reading, MA.

[9] Samet, H. (1990). The Design and Analysis of Spatial Data
Structures. Addison-Wesley, Reading, MA.

[10] Shaffer, C.A., H. Samet and R.C. Nelson (1990) QUILT:
a geographic information system based on quadtrees.
Internal. J. Geographical ln[ormation Systems 4 (2), 103-
131.

[11] Shneier, M. (1981). Calculations of geometric properties
using quadtrees. Computer Graphics and linage Processing
16 (3). 296-302.

63

