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Abstract 

Ang, C.-H. and H. Samet, A fast quadtree normalization algorithm, Pattern Recognition Letters 15 (1994) 57 -  
63. 

A region quadtree representation of an image can be normalized thereby yielding a quadtree that contains the least 
number of nodes in O(s 2 log2 s) time where s is the length of the grid. A new algorithm is proposed whose asymp- 
totic time bound is the same but whose first part only takes O(s2). It is shown empirically to be able to produce 
the normalized quadtrees for a number of images in real applications. 
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1. Introduction 

The region quadtree [4,8,9 ] is a simple data struc- 
ture which can be used to store an image. It can be 
stored in main memory (usually with pointers) or on 
disk (via a B-tree containing the leaf nodes). In either 
case, it is easy to manipulate. Many operations such 
as finding a neighboring pixel or block [7] or com- 
puting some geometric properties [ 1 1 ] can be easily 
carried out on a region quadtree ( termed quadtree 

from now on ). Therefore, quadtrees and octrees (the 
three-dimensional extension of  a quadtree)  find use 
in image processing [ 6 ], computer  graphics [ 1 ], car- 
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tography, geographic information systems [ 10], and 
other related applications. 

Given an image I, its corresponding quadtree can 
be constructed as follows. If  its color is homogeneous 
(i.e., either white or black), then it is represented as 
a single node of  that color. Otherwise, the image is 
represented by a gray node which has four son nodes. 
Each son node corresponds to one component  of  the 
image after it has been decomposed into four parts, 
namely NW, NE, SW, and SE quadrants with respect 
to its center. The decomposition process is repeated 
until either the portion of  the image under consider- 
ation is homogeneous or the grid resolution is reached. 
This top-down process used to construct the quad- 
tree is called regular decomposition. The origin of  the 
grid is defined to be at the top leftmost corner with 
the x-axis pointing to the right (east) and the y-axis 
pointing downward (south).  The grid with length s 

0167°8655/94/$07.00 © 1994 --Elsevier Science B.V. All fights reserved 
SSDI 0167-8655 (93)00091-S 

57 



Volume 15, number 1 PATTERN RECOGNITION LETTERS January 1994 

partitions the image plane into s 2 grid cells, or pixels, 
which is also the result of applying regular decompo- 
sition to a checkerboard image. In the following dis- 
cussion we do not distinguish between a quadtree and 
the image, nor between a quadtree node and the part 
of the image that it represents. 

One shortcoming of the quadtree representation is 
the sensitivity of its storage requirements to its posi- 
tion. By placing a given black square at different po- 
sitions in the image plane, we may be able to store 
the image in as little as just one quadtree node or as 
many as O ( p + n )  nodes, where p is the length of the 
perimeter of the image and n is such that 2" is the 
width of the grid [2,3]. Since the difference in the 
storage requirements is so significant, at times it may 
be deemed worthwhile to minimize the space re- 
quirements of the images stored in quadtrees, espe- 
cially when the number of images is large. Given an 
image, the quadtree that contains the least number of 
leaf nodes among all the quadtrees that represent the 
same image is called the normalized quadtree of the 
image. If there is more than one quadtree with the 
minimum number of leaf nodes, then we choose the 
one which has the leftmost and the uppermost black 
pixel in order for the normalized quadtree to be 
unique. 

In [5], an O(s 2 log2 s) algorithm is given to find 
the amount of translation required by an image in or- 
der to minimize its space requirements when it is 
stored in a quadtree. We describe this algorithm in 
Section 2, as well as point out an error in its original 
formulation. Although the original algorithm ap- 
pears to be quite efficient, it still can be improved 
upon, and an optimal algorithm is yet to be deter- 
mined. We propose an improvement in Section 3. The 
new algorithm is analyzed in Section 4 together with 
some empirical results. Section 5 contains some con- 
cluding remarks. 

2. Quadtree normalization algorithm 

Let the resolution of the grid be n + 1 and its length 
be s = 2  "+~. A two-dimensional array of size 
2 "+ ~ × 2 "+ ~ is needed to record the color of each pixel. 
Initially, the given image is assumed to be enclosed 
completely in the NW quadrant of the grid, with some 
of its black pixels touching the x- and y-axes. This 

array can also be viewed as the 4 "+ ~ leaf nodes of pixel 
size in the complete quadtree before merging of nodes 
takes place. Merging is just the reverse process of reg- 
ular decomposition. Whenever four son leaf nodes of 
a gray node are found to be of the same color, they 
are deleted and their parent node is changed to that 
color. Effectively, they are being merged into a bigger 
node representing a block of size 2 X 2 or 4 times the 
size of a son leaf node. Each time such a merging takes 
place, the number of leaf nodes is reduced by 3. 

There are four ways to move the image zero or one 
pixel in the x- and y-directions. After the translation, 
the number of leaf nodes that are of the size ofa pixel 
can be found in each of these four situations. These 
quantities will never change when the image is trans- 
lated further by 2 k pixels, k> 0, in either direction. In 
other words, these leaf nodes will never merge into 
bigger nodes no matter how the image is being trans- 
lated subsequently with the amount of translation 
being at least twice the size of a leaf node. These leaf 
nodes appear in quadtree blocks of size 2 X 2 that are 
marked as gray whereas the others are merged and 
marked with appropriate colors. In fact, this is what 
we get when we reduce the length of the grid by half, 
or equivalently its resolution by 1, in each direction. 
The size of the array required to store the informa- 
tion is now reduced to 4 ~, which is one quarter of the 
size of the array used before merging. At this point, 
each entry of the array records the color of the corre- 
sponding 2 X 2 block. Each one pixel transition in this 
array is equivalent to a two-pixel transition in the ar- 
ray used before merging. 

What has been described is just one step of merg- 
ing. This merging process can be repeated recursively 
until either only one 2 × 2 block is left or further pro- 
cessing will not produce any savings when all the ele- 
ments of the resulting array are gray. The number of 
leaf nodes L and the translations in the x- and y-di- 
rections are recorded i fL is found to be the smallest. 
The sizes of the arrays used in the recursion are 4 ~+ ~, 
4 ~, ..., 4. For each of these arrays, there are four ways 
to translate the image before one step of merging is 
carried out. Therefore the merging step is invoked 
X,~_~ 4 i=O(4  n) times. Since the size of the array in 
each step of recursion has been reduced by 3/4, the 
cost of this processing can be shown to be within 
O(4nn) time and 0 ( 4  n) space. 

Figures 1 and 2 are an image and its purported nor- 
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Figure 1. Sample image. 
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Figure 2. The normalized quadtree for Figure l using the algo- 
rithm in [5]. 

8- 

Figure 3. Normalized quadtree after Iranslating Figure 1 by 3 
pixels in the x-direction and 1 pixel in the ),-direction. 

realized quadtree labeled as Figures 5a and 5b in [ 5 ]. 
Figure 2 contains 46 leaf nodes of  which one node is 
of  size 4 ×  4 and 2 nodes are of  size 2 × 2. Without 
referring to our definition of  a normalized quadtree, 
we are misled into accepting Figure 2 as the normal- 
ized quadtree of  Figure 1 due to its simplicity. How- 
ever, there are other translations with the same num- 
ber of  leaf nodes. For example, Figure 3 shows the 
result of  translating the image in Figure 1 by 3 pixels 
in the x-direction and by 1 pixel in the y-direction. It 
also has 46 leaf nodes. Since the black pixels in Fig- 
ure 3 are nearer to the ),-axis than those of  Figure 2, 
Figure 3 should be chosen as the normalized quad- 
tree for the image in Figure 1. 

3. An improved quadtree normalization algorithm 

The algorithm of  Li et al. ( termed Li's algorithm ) 
is essentially a depth-first search through a space of  
configurations. Each configuration is completely de- 
scribed by the resulting array after the merge, the 
amount  of  translation made, and its leaf node count. 
Initially, the size of  the array is 2 ~+~ × 2 "+~ with 4 n+~ 
leaf nodes and it is represented as the root node. Since 
there are four ways to perform one step of  translation 
and merging, there are four son nodes corresponding 
to the four resulting configurations. Each step of  re- 
cursion will produce four more nodes at the next level 
of  the tree describing the space to be searched. It is 
easy to see that the related configurations can be 
linked together to form a quadtree. The leaf nodes of  
this search tree are either arrays of  size 2 × 2 or arrays 
with only gray elements. Li's algorithm simply 
searches cxhaustively through the whole space, look- 
ing for the one with the minimum leaf node count. 
Its performance can be improved if the search space 
can be pruned. 

Let us look at one example for illustration. A 22X 2 2 

image and its normalized quadtree are shown in Fig- 
ures 4a and 4b, respectively. Figure 5 shows the search 
space of  the configurations used by Li's algorithm in 
determining the normalized quadtree given in Figure 
4b. The four sons of  any configuration can be ar- 
ranged from left to right to correspond to the result- 
ing configurations obtained by merging and translat- 
ing the array with the values (0, 0), (1, 0), (0, 1), 
and ( 1, 1 ) in the directions of  the x- and ),-axes. The 
configurations chosen to produce the optimal solu- 
tion are those terminating in the node labeled with 
10. According to Li's algorithm, this final configura- 
tion can be further reduced by removing the three 
white 2 × 2 blocks that surround the original image. 

I C~ ,  i 

Figure 4. (a) An example image and (b) its normalized quadtree. 
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Figure 5. The search space of the configurations used by Li's algorithm in determining the normalized quadtree given in Figure 4b. Each 
node is labeled with the number of leaf nodes in its configuration. Each edge is labeled with its translation value. Gray nodes are repre- 

sented by squares with diagonal lines. 

Therefore, the normalized quadtree contains only 7 
leaf nodes. 

Li's algorithm is quite efficient in comparison to 
the brute force approach in the sense that the amount 
of work to be performed in each step of the recursion 
has been significantly reduced. Unfortunately, it does 
not make use of the partial result computed so far to 
cut down further the number ofrecursions that need 
to be performed. To improve its performance, the 
number of recursive calls has to be reduced as each 
call will incur some overhead cost. The sooner a par- 
ticular path of recursion is pruned, the greater is the 
saving. One way to terminate the recursion earlier is 
described below. 

The basic idea is to make use of C, the candidate 
normalized quadtree obtained so far in the compu- 
tation. Let the number of leaf nodes in C be CLEAVES, 
Let the number of leaf nodes that cannot be merged 
in the current recursion before the translation be 
NLEAVES- After the translation and one step of merg- 
ing, the number of white and black nodes of size 2 × 2 
are denoted by NWHIT E and NBLACK, respectively, and 
NLEAVES will be updated by adding those leaf nodes 
that cannot be merged, i.e., of size 1 × 1. Initially, 
NLEAVES is zero. After one step of translation and 
merging, NLEAVES is the number of pixel-sized leaf 
nodes and NWHITE (N BLACK) is the number of white 
(black) nodes of size 2 × 2. They are not necessarily 

the leaf nodes in the quadtree resulting from possible 
merging in the subsequent steps. Therefore, they re- 
quire special treatment in the following calculation. 

It is obvious that if NLEAVES> CLEAVES, then the re- 
sulting quadtree cannot be optimal, and we can stop 
the recursion. Otherwise, calculate IWmTE which is the 
minimum number of white nodes that result after the 
NWHITE nodes are merged. There will be 
Nwl=[_(NwmxE/4J white nodes after one step of 
merging if all of the NWHXTE nodes are adjacent to each 
other so that only the minimum number of white 
nodes will be required to represent them. This will 
leave NWmTE--4"NwL nodes that cannot be merged. 
Similarly, we can find the number of white nodes left 
over after two, three, and in general, k steps of merg- 
ing. The sum of the numbers of all the white nodes 
left over after the merging is IWmTE. 

IWmTE is the minimum number of leaf nodes re- 
quired to represent NWHXTE white nodes at this stage 
of merging. Therefore, if NLEAVES + IW,~TE > CLEAVES, 
then we can also stop the recursion. Otherwise, we 
perform the analogous calculation for the set of black 
nodes to obtain/BLACK" 

If NLEAVES +/WHITE +/aLACK > CLEAVES, then stop 
the recursion. Otherwise, recur and, if necessary, up- 
date CLEAVES when a new candidate is found. 

The sequence of tests that we have described above 
is just a minor improvement to Li's algorithm. A ma- 
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jo r  improvement  can be achieved i fa  good candida te  
can be found as early as possible in the search pro- 
cess. It is obvious that  a bet ter  candida te  will be one 

with a smaller  value of  CLEAVES. In Li 's  algori thm, a 
candida te  whose leaf node count  is to be used to es- 
tablish or update  the bound  can only be found in the 
order  dic ta ted by the depth-f i rs t  search. This may not 
be efficient especially when the best t ransla t ion made 
in each step of  the recursion happens  to be the last of  
the four possible moves  considered.  When this situ- 
a t ion arises, a candida te  that has just  been obta ined 
may be replaced very frequently in the subsequent re- 
cursion steps, and many steps of  recursion are still 
required. 

If  we can find a heurist ic that  will lead us to some 
leaf nodes of  the configurat ion search tree with leaf 
node counts close to that of  the opt imal  solution, then 
the search space can be pruned more effectively. A 
bet ter  method  to get a good candida te  quickly is as 
follows. Start with 4 n+~ leaf nodes. In each i teration,  
four t ranslat ions will be a t t empted  with the transla- 
t ions along the x- and y-axes being 0 or l pixel long. 
As a result, four different  arrays will be produced  in 

each i teration.  After one step of  t ranslat ion and 

merging, the NLEAVES value of  each array is com- 
puted.  Further  recursive calls using these arrays will 
be made according to the increasing order  of  their  

NLEAVES values. That  is, the search space remains  the 
same but the order  in which it is searched has been 
changed to favor those t ranslat ions that  are more 
likely to lead us to the opt imal  solution. After n iter- 
at ions in which 4n different  t ranslat ions have been 
at tempted,  we obtain the first four quadtrees that have 

been translated,  as well as the required t ranslat ions 
of  the ones with the least NLEAVES value at each level 
of  i teration. The one with the least NLEAVES value will 
be the first candidate  used to establish the bound.  If  
more than one t ransla t ion results in the least number  
of  leaf nodes, then we choose the one with the mini-  
mum translat ion in the y- and x-direct ions.  

Figure 6 shows the search tree for the same image 
given in Figure 4. In order  to make it easy for us to 
compare  the search space explored by the new algo- 
r i thm with that  used by Li 's algori thm, the arrange- 
ment  of  the configurat ions remains  the same with the 
unders tanding that  the order  of  evaluat ion is now 
governed by the ascending order  o f  their  leaf node 
counts. Whichever  has the least number  of  leaf nodes 

0 
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Figure 6. The search space of the configurations used by the new 
algorithm in determining the normalized quadtree given in Fig- 
ure 4b. Each node is labeled with the number of leaf nodes in its 
configuration. Each edge is labeled with its translation value. Gray 

nodes are represented by squares with diagonal lines. 

will be evaluated first. A node is labeled with its 

NLEAVES value. Therefore, among the four sons of  the 
root node, the one labeled with 4 will be evaluated 
first - that is, before those labeled with 12, 16, and 

16 on the same level. After 2 i terations,  which pro- 
duce 8 configurations,  we have found the first candi-  
date which is the configurat ion labeled with 7. This 
happens  to be the opt imal  solution. 

For  ease of  reference, when this new algorithm is 
implemented  in a program, we refer to the port ion of  
the program that executes up to the point  at which 
the first candidate  is obta ined as step 1 q/the new al- 
gorithm. After this step, the bound established will be 
used in the search through the configurat ion search 
tree. 

4. Analysis and empirical results 

It is easy to see that step 1 of  the new algorithm 
requires O ( 4 n ) or O (s 2 ) t ime, whereas the execution 
t ime of  the entire algori thm is still O (s 2 log s) t ime - 
that is, the same complexi ty  as the original algo- 
ri thm. In practice, the improvement  is significant as 
can be seen from the results obta ined in the following 
exper iments  using the QUILT geographic informa- 
tion system [ 10]. 

Three programs were written and run on a SUN 3/  
50 workstat ion.  The first program is used to imple- 
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ment Li's algorithm. The second program is just the 
first step of  the new algorithm. The third program 
implements the complete new algorithm. No attempt 
is made to optimize these programs. The execution 
times of  the programs also include the time needed 
to read in the image file from the disk which takes 
about 2 to 3 seconds. Thus the execution times that 
we give do not reflect fully the actual time taken by 
the algorithms. Nevertheless, the improvements  are 
quite clear. 

In Table 1, we list the number  of  translations made 
to normalize three image files called floodplain, to- 
pography, and landuse. The grid size is 512 X 512. 
Their normalized quadtrees contain 5182, 24859 and 
28237 leaf nodes respectively. It can be seen that the 
number  of  translations made has been reduced dras- 
tically from 87381 to about 300. In other words, al- 
most all the work necessary to evaluate those arrays 
of  small size is eliminated. 

Table 2 lists the execution times of  the three pro- 
grams using the above three image files. Since step 1 
of  the new algorithm is implemented as a separate 
program, its execution time also includes the time re- 
quired to read in an image file. Despite using such a 
crude method of  measuring the execution times, the 
time taken by step 1 o f  the new algorithm is only 1/7 
of  the old algorithm. The complete new algorithm also 
reduces the total execution time of  the old algorithm 
by more than half. This reduction is significant. It also 
demonstrates that evaluating the big arrays in the first 
four iterations in step I o f  the new algorithm is very 

Table 1 
Number of translations made 

Image file Old algorithm New algorithm 

floodplain 87381 120 
topography 87381 228 
landuse 87381 304 

Table 2 
Timings of the three algorithms (seconds) 

Image file Old New Step 1 of 
algorithm algorithm new algorithm 

floodplain 278.0 80.5 42.0 
topography 274.4 120.1 41.8 
landuse 275.3 109.2 41.9 

lime consuming (i.e., four arrays of  size 
O ( 2 " + ' × 2 n + 1 ) ) .  

Although we have shown empirically that the new 
algorithm outperforms the old one, further improve- 
ment is still possible. Notice that the image is stored 
in the NW quadrant  of  a big array with other quad- 
rants of  the array being used to store white pixels. By 
not storing these white pixels explicitly, we can re- 
duce the space required by 3/4. With this reduction 
in the required space and some minor changes in the 
way that the pixels are being examined, the process- 
ing of  the array can also be speeded up. 

One striking discovery from our experiments is that 
the candidate chosen by step 1 of  the new algorithm 
is always the normalized quadtree. This is a very in- 
teresting and important  result. If  it could be proved 
that step 1 always produces the normalized quadtree 
instead of  just a candidate, then step 1 will be an op- 
timal quadtree normalization algorithm with time 
bound O(s  2) 

Unfortunately, we can demonstrate that step 1 
alone cannot produce a normalized quadtree by us- 
ing the image in Figure 7a. Without translation, Fig- 
ure 7a will have 32 leaf nodes ofpixel size and 8 black 
or white nodes of  size 2 × 2. Translating the image by 
one pixel to the right and one pixel down results in 
an image that also has 32 leaf nodes of  pixel size and 
the same number of  black or white nodes of  size 2 × 2, 
as shown in Figure 7b. Since the NLEAVES values of  
both Figure 7a and Figure 7b are equal after one step 
o f  translation and merging (i.e., 8 ), Figure 7a will be 
evaluated first as it is nearer to the y-axis. Therefore, 
Figure 7a is chosen as the first candidate by step 1 of  
the new algorithm and it is used in the search for the 
normalized quadtree which is Figure 7b. 

m M 
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Figure 7. Sample image showing that step 1 is not sufficient by 
itself to produce the normalized quadtree; (a) is chosen by step 

1 while (b) is the normalized quadtree. 
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5. Conclusion 

PATTERN RECOGNITION 

[31 

An i m p r o v e m e n t  to a well known  quad t r ee  nor-  

ma l i za t i on  a lgo r i thm [5]  has been  desc r ibed  and  

analyzed.  Concep tua l ly ,  the new a lgor i thm consis ts  

o f  2 steps. A l though  step 1 o f  the new a lgor i thm has 

been  found  to be suff ic ient  by i tse l f  to p roduce  the 

n o r m a l i z e d  quad t r ee  very  quick ly  for the three  image 

files that  were  tested,  we have  shown that  it fails to 

guaran tee  an op t ima l  result  in general .  Never the less ,  

it is still o f  in teres t  to users who  wish to save s o m e  

disk space used by images  s tored  in quad t r ee  files 

wi thou t  paying  the high c o m p u t i n g  cost no rmal ly  as- 

soc ia ted  with q u a d t r e e  no rma l i za t ion .  
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