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Abstract 

A one-pa.ss algorithm is presented to perform region expansion in images that are 
represented by quadtrees. The algorithm changes to BLACK those WHITE pixels within 
a specified distance of any BLACK node in the image. This process is sometimes referred 
to as polygon expansion or image dilation, The algorithm is especially well-suited to 
images that are.represented using a pointer-less representation such as the linear quad
tree. The algorithm yields a significant improvement over previous approaches by (t) 
reducing the number of BLACK nodes that must be considered for expansion, and (2) 
reducing the number of nodes that must be inserted as a result of the expansion. This is 
achieved by the introduction of the concepts of a merging cluster and a vertex set. 
Empirical tests show that the execution time or this algorithm generally decreases as the 
radius of expansion increases, whereas for previous approaches the execution time gen
erally increases with the radius of expansion. The algorithm is an important component 
of a graphics editor for applications in cartography, computer-aided design, and robotics. 

•The support of the National Science-Foundation under Grant DCR-8&--05557 is gratefully ack· 
nowledged. 
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1. Introduction 

This paper addresses the efficient computation of the region expansion operatiop., 
This operation finds use in a number or applications related to graphics editing. It is 
useful in computer-aided design when we want to find all objects near a cursor or near a 
particular set or objects. It can also be used to simplify the process or plB.nning a 
collision-free path for a robot in a two-dimensional. environment consisting or obstacles. 
In this case, a finite-width robot is treated 88 a point and the obstacles are expanded by 
an amount equal to the size or the robot. This paper primarily aims at computer cartog
raphy applications where it is desirabl..? to provide graphic answers to queries such as 
"Find all wheatfields within five miles or the floodplain". Such an answer is computed 
by expB.nding the .floodplain region in the image and intersecting the result with another 
image that represents the wheatfields. 

The region expansion task is also known as polygon e::ipaMion and image dilation. 
In this paper we refer to it as the WITHIN function. From an implementation stand
point, given a binary image M represented as an array, WITHIN generates a new image 
which is BLACK at all pixels within a specified di.stance or the BLACK regions or M. 
The BLACK pixels of M correspond to those pixels which are initiB.lly within the regions 
or interest, while those pixels outside of such regions are defined 88 WHITE. In the case 
or a multi-colored image, we say that the regions or interest are those that contain the 
non-WHITE pixels. In this case, the result of the WITHIN function is that ail WHITE 
pixels within a specified di.stance of a non-WHITE pixel are set to BLACK. 

Region expansion is often expensive since a large image requires a great deal of 
computation as many pixels must be examined. Of course, the cost of this examination 
process cB.n be greatly reduced when the objects in the image are very well-defined - e.g., 
consisting of primitive instances or known shapes. However, we are interested in images 
such as maps where the shapes of the regions are poorly defined. The algorithm 
presented here executes this function on an image represented by a region quadtree 
(Klinger, 1971, Samet, 1984a). The motivB.tion behind the use or' the region quadtree as 
an image representation is a desire to take advantage or the homogeneity of the image. If 
such homogeneity exists, then the space requirements can be reduced substantially by 
aggregating similarly colored pixels into blocks. In particular, the quadtree has the pro
perty that it acts as a dimension reducing device. For example, for a simple polygon the 
storage requirements of its region quadtree are proportional to its perimeter (Hunter, 
1979), whereas the storage requirements or its array representation are proportional to 
its area. Even more important, the aggregation leads to a reduction in the execution 
time of many primitive functions (e.g., set operations (Hunter, 1979)). In particular, 
algorithms that use the quadtree representation have an execution time that is propor
tional to the number or blocks in the image rB.ther than to their individual sizes (e.g., 
connected component JB.beling (Samet, 1981)). 

Performing region expansion with a quadtree representation is not so simple. We 
can always simulate the algorithm for an arrB.y representation of the image by processing 
each pixel in order and then rebuilding the quadtree. However, this is expensive as it 
requires that every pixel be visited twice. Instead, our goal is to reduce the number of 
node operations so that the algorithm takes advantage of the aggregation in the image. 
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Nevertheless, the amount or time necessary to build a quadtree from the array represen
tation of the expanded image is a good yardstick for measuring the efficiency or any 
algorithm that is proposed since at worst the quadtree could be converted to an array, 
the array WITHIN operation performed, and the quadtree rebuilt all in time propor
tional to the array-to-quadtree conversion step. Thus one of our goals is that as the 
radius of expansion gets sufficiently large, the execution time or any reasonable algorithm 
should start decreasing. 

Section 2 briefiy reviews the definitions or a quadtree and also the implementa
tion that we used to test our algorithms. Section 3 briefly describes three alternative 
prior implementations or the WITHi.N function, and outlines their strengths and 
weaknesses. Section 4 presents a new algorithm that overcomes the shortcomings or the 
methods described in Section 3. Section 5 analyzes the execution time of the new algo
rithm and discusses how it is confirmed by empirical tests. Section 6 reviews the 
differences between the algorithms. 

.2. A LineB.r Quadtree Implementation 

The region quadtree decomposes an image into homogeneous blocks. If the image 
is all one color, it is represented by a single block. Ir not, the image is decomposed into 
quadrants, subquadrants, ... , until each block is homogeneous. In order to simplify the 
presentation, unless noted otherwise, we assume that the image is binary. Figure 1 illus
trates the region quadtree. The region of Figure la is represented by a binary array in 
Figure Ib. The resulting qu'adtree block decomposition is shown in Figure le, with the 
tree structure represented in Figure Id. When a quadtree is represented by means of 
such a tree structure, it is referred to as a pointi;r-based quadtrei;. Although we have 
defined a quadtree representation only for region data, it can be adapted easily to deal 
with other types of data such 88 points and lines (e.g., (Nelson, 1986, Samet, 1985b)). 

Often the volume of data is so high that it is preferable to store the quB.dtree in 
disk files. In such a case, a pointer-based representation may require many disk pages to 
be accessed. Thus alternative representations such as the linear quadtree (Gargantini, 
1982, Abel, 1983) are used. The linear quad tree represents B.n image as a collection of the 
leaf nodes that comprise it. Each leaf node'is represented by its locational code which 
corresponds to a sequence or directional codes that locate the leaf along a path from the 
root or the tree. Assuming that the origin of the coordinate system of the image is 
located at its upper lert corner, then the locational code of a node is the same as the 
result or interleaving the bits that comprise the ::i, y coordinates of the upper left corner 
of the node. In addition, the depth of the node relative to the root must also be 
recorded. The collection or nodes making up the linear quadtree is usually stored as a list 
sorted in increasing order of the locational codes. Such an ordering is useful because it is 
the order in which the leaf' nodes or the quadtree are visited by a depth~first traversal or 
the quadtree. This representation is employed in the QUILT system (Shaffer, 1987c) 
which was used to test the algorithms described in this paper. 

The algorithms that we describe can be used (with appropriate modifications) in 
both pointer-based and linear quadtrees. However, they are primarily designed for use 
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Figure 1. A re~ion, its maximal blocks, and the corresponding quadtree. 
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with the linear quadtree. This will not make a big difference in the algorithms; however, 
it does mean that we can discuss the algorithms in terms of node searches and insertions 
into a. sorted node list, rather than lower level tree manipulation functions. 

All versions of the WITHIN algorithm use the Chessboard distance metric 
(Rosenfeld, 1982). It defines the distance between points (z1ty1) and (z2,y2) as 
MAX(Jz.-z,l,IY1-Y21l· 

All empirical tests were performed by implementing the different algorithms in 
the QUILT system, a quad.tree-based cartographic information system and cartographic 
editor. Three 512X512 images, named Center, ACC, and Pebble, were used to compare 
the execution time of the four algorithms. These images are shown in Figures 2a, 2b, and 
2c. Center is a map of the 100 year Hood plain in the Russian River Valley. AOC is a 
single landuse class from a landuse class map of the same area. Pebble is an image of 
pebbles. They contain 4693, 3253, and 44950 leaf nodes respectively. For Center and 
ACC, expansions of 8 pixels are also shown, The algorithms are denoted as WITHINi 
(1::5i::54). Figures 3a, 3b, and 3c show the execution times for these algorithms on the 
three images using radius values that range from 1 to 32. They were executed on a 
V AXll/785 running the 4.3BSD version of UNIX. In order to illustrate the relative vari
ation in the performance of the algorithms, we plot the natural logarithms of the execu· 
tion times. 

3. Three Polygon Expansion Algorithms 

The simplest region expansion algorithm, termed WITHIN1 (Samet, 1984c), visits 
each node of the quadtree. Each BLACK node, say B, is expanded by R units and the 
new square (of width WIDTH(B)+2·R~. is decomposed into quadtree blocks and inserted 
into the output quadtree. The executi0n time of WITHINl increases directly with R 
since the number of blocks in a quadtree is proportional to the total perimeter or the 
regions that comprise it (Hunter, 1978). Although the algorithm that we. have imple
mented aggregates the resulting blocks before inserting them into the output quadtree, 
WITHINl still requires many duplicate insertions and subsequent mergings 0£ BLACK 
nodes. Note that the execution times for even values of R are generally smaller than 
those for odd values due to the effects of node aggregation which reduces the number of 
blocks inserted into the output quadtree. In other words, a quad tree node expanded by 
an even number of pixels R can be represented with fewer quadtree blocks than one 
expanded by R + 1 pixels. 

A second algorithm, termed lVITHIN£ (Shaffer, 1987b), tries to avoid the exces
sive insertion and merging required by WITHINl by focusing the work on the WHITE 
nodes of the quadtree instead of the BLACK nodes. Again, assume that R is the radius 
of expansion. WHITE nodes of width less than or equal to (R+l)/2, as well as their 
brothers, are inserted into the output quadtree as BLACK nodes. WHITE nodes of 
width greater than (R+l)/2 have their distance from the closest BLACK node deter
mined by use of a modified Chessboard distance transrorm (Samet, 1982). Those por· 
tions of these large WHITE nodes that lie within radius R of a nearby BLACK node are 
output as BLACK nodes. The problem with this approach is that many nodes of the 
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Figure 2. Three images: {a) Center, (b) ACC, {c) Pebble. 
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Figure 3. Execution times: (a) Center, (b) ACC, (c) Pebble. 
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input quadtree will be visited more than once while finding the distance from large 
WHITE nodes to the nearby BLACK nodes. In addition, there are many redundant node 
insertions. Like WITHIN!, the execution times of WITHIN2 for even values of R are 
generally lower than those for the adjacent odd values of R because of the effects of 
node aggregation. 

A third algorithm, termed WITHINS (Mason, 1987), uses an active border data 
structure to facilitate two passes over the nodes in the linear quadtree's node list. The 
goal is to avoid making redundant insertions. The first pass processes the node list in 
increasing order of locational codes. For each WHITE node, say W, it converts to 
BLACK all portions of W that are within a distance R of a BLACK node that has been 
encountered at a prior position in the list. The second pass is analogous except that the 
list is processed in reverse order. This approach is similar to that used to execute the 
WITHIN function on an array representation, However, the quadtree implementation 
requires a substantial amount of computation to determine and maintain the appropriate 
inrormation about previously encountered BLACK nodes, and to split the WHITE nodes, 
Moreover, its execution time increases directly with the radius of expansion since the 
number of previously encountered BLACK nodes that must be examined increases. 

4. The New Region Expansion Algorithra 

Our new algorithm, termed WITHIN4, traverses the input quadtree in preorder 
and writes the result of the expansion to an output quadtree, It takes no action for 
large WHITE nodes, For large BLACK nodes and clusters of small nodes, the algorithm 
adjusts the vertex set {explained below) and performs a node expansion only when 
enough information has been collected. 

WITHIN4's design stems Crom the observation that the execution times of algo
rithms that operate on linear quad.trees are dominated by the number of nodes that are 
inspected and inserted - in other words, by the 1/0 time required to locate and update 
the nodes in the node list. To improve the performance of such algorithms, we would 
like to reduce both the number of nodes requiring inspection (e.g., in WITHIN3 and in 
the distance transform computation step of WITHIN2), and the number of node inser
tions (the dominant factor in WITHIN!, and also important in WITHIN2). WITHIN4 
aehieves these goals by 1) reducing the number of input BLACK nodes that must be 
considered for expansion, and 2) reducing the number of output BLACK nodes that 
rriust be inserted as a result of the expansion. These reductions yield an algorithm 
whose execution time is r~latively unaffected by the magnitude of the radius or expan
sion. 

4.1. Reduction of the Number or Nodes to be Expanded 

The keys to our new algorithm are the concepts or a merging cluster and a vertex 
set. These concepts allow us to consider a collection of BLACK nodes for expansion 
instead or expanding each BLACK node individually. 
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Given an input quad_ tree, Q, and a radius ·of expansion, R, let us look at a sub
tree rooted at an internal node S which represents the largest block whose width is less 
than or equal to R +1. Any WHITE leaf node in this subtree is within R pixels of a 
BLACK leaf node in the subtree and therefore will be changed to BLACK after expan
sion. S becomes a BLACK node as a result of the expansion. Therefore, we see that 
instead of changing each WHITE node in the subtree rooted at S to a BLACK node and 
then merging all these small BLACK nodes into one big BLACK node (as done by 
WITIIlN2), we can just insert S as a single BLACK node. This motivates us to process 
collections or nodes, when possible, instead of examining the leaf nodes individually. 

Define w(R) to be the largest integer that is a power of 2 and is less than or 
equal to R+l, i.e., w(R)=2rSR+1<2r+l for r~O. If Mis a non-leaf node in Q 
whose corresponding block is of width w(R), then M is a merging cluster of width 
w(R). Merging cluster M consists of the set of leaf nodes in the subtree rooted at M. 
In the rest of this paper, whenever we speak of the width of a node, we mean the width 
of the node's corresponding block. 

Figure 4 is an example of a merging cluster with 13 leaf nodes when R =3. In 
this case, w(R) is 4. In Figure 4, A, B, C, and D are the BLACK nodes in the merging 
cluster. The corners of their blocks, termed vertices, are designated by using the 
corresponding lower case letter with a subscript that designates the vertex. For example, 
11.sw is the SW vertex of node A. 

The execution time of WITI:IIN2 can be reduced by observing that there is no 
need to individually insert ea.ch member or a. merging cluster as a BLACK node. 
Instead, we just insert a single BLACK node of width w(R). However, the main cost of 
WITHIN2 (i.e., processing those WHITE nodes of width greater than (R+I)/2} is not 
reduced by this method. This is because the determination of how much of the expan
sion will "spill over" the boundary of the BLACK node just created is much more 
difficult. We address this problem in the next section. 

4.2. Computi!!_g_lii_~-.Y.~rtex Set 

Consider the expansion of the merging cluster in Figure 4 by 3 pixels. The result 
is given in Figure 5 from which we make the following observations: 

(I) The node correspondiag to the root of the merging cluster is now a BLACK node. 

(2) The area expanded beyond the boundary of the merging cluster in the vertical 
and horizontal directions always forms a rectangle. The size of each rectangle is 
determined by the distance between the boundary and the nearest BLACK node. 
For example, expansion in the western direction results in a rectangle of size 3 
by 4 since a BLACK node appears on the western border of the merging cluster. 
The sizes of the rectangles formed in the northern, eastern, and southern direc
tions are 4 by 2, 3 by 4, and 4 by 3, respectively. 
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(3) The area of expansion of the merging cluster in a diagonal direction always forms 
a staircase-like region. The extreme points of the staircase are those points which 
can be obtained by translation of the vertices of some of the BLACK nodes in the 
merging cluster. For example, in Figure 5, the area of expansion in the NW direc
tion is the staircase marked by the points a'NW, b'NW• and c'NW which are 
obtained by translating the NW vertices !lmv• bNW, and cNW by the amount 
(-3,-3). Similarly, the NE vertices 8NE and dNE are translated by (3,-3} into a'NE 
and d'NE, the SW vertex c5w is translated by {-3,3} into c'sw, and the SE vertex 
d5E is translated by (3,3} into d'sE· The expansion in the direction of a vertex is 
completely determined by a subset of the set of all vertices in that direction. 

Based on observation (3), we now focus on how to compute efficiently the 
minimal subset, say V, of vertices of elements of the merging cluster. We know that the 
expansion from the merging cluster is totally determined by this set. For example, the 
merging cluster in Figure 4 has a minimal subset V={~ ,bNW ,cNW ,c

5
w ,d

5
E, dNE 

,~}. The set V is termed the vertex set of the merging cluster. The purpose of the 
vertex set is to m.inimize the number of BLACK elements of the merging cluster requir
ing expansion. 

Let d be in {NW, NE, SW, SE}. Let OPQUAD(d) denote the vertex direction 
opposite to d (e.g., OPQUAD(NW)=SE). The vertex set (VS) of a merging cluster M 
is defined to be the union of four vertex subsets VS,. Given BLACK node P in M, ver
tex v of P is in VS, if v is the d vertex of P and v is not in the c!OO:ed OPQUAD{d) 
quadrant of any vertex of another BLACK node in M. For example, the vertex set V of 
the merging cluster in Figure 4 can be decomposed into VSNw={~,bNW,cNW}, 
VSNE={8Ng,dNE}, VSsw={c5w} and VSsE={d5E}. Each subset VS, has the property 
that the expansion from VS1 in direction d subsumes the expansion in direction d from 
all the BLACK nodes in the merging cluster. In other words, vertex subset VS, com
pletely determines the expansion from the merging cluster in direction d. 

Now, let us consider expansion in direction D where D is in {N, W, S, E}. Let 
COM?vl:ON_EDGE( Q 1,Q 2} indicate the boundary of the block containing quadrants Q 1 
and Q2 that is common to both of them; e.g., COMM:ON_EDGE(NW,NE}=N. For 
each D there exists a pair of vertex directions d1 and d

2 
such that 

COMM.ON_EDGE(di.d2)=D. Given a merging cluster P, it can be shown that there 
exist two Vertices VI and V2 that are elements Of VS,

1 
and VS,

2
, respectively, SUCh that 

v1 and v2 are at the same distance £rom the boundary of P's block in direction D. For 
example, in Figure 5, vertices ~ in VSNw and ~in VSNE are both closest to the 
northern boundary of the merging cluster. We can always choose one of these two ver· 
tices to determine the extent of the expanded rectangle in direction D. Thus we see 
that the vertex set completely determines the expansion from the merging cluster in each 
of the eight directions. 

It can be shown that the four vertex subsets are disjoint {Ang, 1988). This means 
that they can be constructed independently or even in parallel. This allows us· to sim
plify the following discussion by describing how _to construct a single vertex subset VSsE 
of merging cluster M using a preorder traversal of the nodes comprising the merging 
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Figure 4. Example of a merging cluster. 
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Figure 5. Result of expanding the merging cluster in Figure 4 by 3 pixels. 
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cluster. The other vertex sets are constructed in aii. analogous fashion. 

Initially, VSsE is empty. The SE vertex of the first BLACK node of M is 
inserted. For each subsequent BLACK node in M, say P, the position of the SE vertex 
of P, say t1, is compared with the vertices currently in the set. If t1 is in the opposite 
quadrant (i.e., NW} with respect to any vertex in the set, say u, then the expansion of t1 

in the SE direction is subsumed by u and hence v is excluded from VSsE· Otherwise, 
insert v into VSsE after removing all vertices currently in VSsE that are in the NW qua
drant or ti. 

Table 1 shows the changes to each vertex subset during the process of building 
the vertex set for the merging cluster in Figure 4. For example, the construction of 
VSSE is as follows. Assume that the BLACK nodes are processed in the order A,B,C,D. 
When node A is processed, VSSE is empty and hence a5E is inserted into VS . For node 
B, b5E is inserted into VSSE be~ause b5E is not in the NW quadrant of aSE n~~ is aSE (i.e., 
the current contents of VSSE) m the NW quadrant of bsE· Similarly, we insert cSE into 
VSSE for node C. However, node D results in the placement of dSE in VSSE and the 
removal of aSE• bsE and cSE from VSSE since they are in the NW quadrant of dSE' At 
the end of the process, VS5E = {dsE}. 

When the vertices in each VS, are arranged in ascending order of the values of 
their x coordinates, the values of their corresponding y coordinates are in the following 
order: VSNw is descending; VSNE is ascending; VSsw is ascending; VSSE is descending; 

It is easy to see that nO two vertices in VS, can have the same x coordinate 
value. Thus the number of vertices in any VS, is at most w(R). Therefore, the size of 
the vertex set is less than or equal to 4·w(R ). In fact, we can tighten the bound as fol
lows. Let US say that tWO Vertex SUbsets VS,

1 
and VS,

2 
are adjacent if 

COMMON_EDGE(d1,d2) 7'0. 

Theorem: The size of the union of any two adjacent vertex subsets VS,
1 

and vs,
2 

is 
less than or equal to w(R}+I, and this bound is attainable. 
Proof: The proof is simplified by looking at the different cases individually. For exam
ple, consider the case of VSNw an~ VSNE· Since all the points (pixels) in the SW 

Table I. Building vertex subsets for Figure 4. 

nodo VS 
A {'mv} {•swl 
B {'mv,bNW) {bswl 
c {'mv,bNW,cNW) l•swl 
D { ,b } {c } 
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quadrant with respect to the last vertex v in VSNw will not be in VSNE• the vertices in 
VSNE can only be taken from the region containing points with :r coordinate values 
greater than that of ti. Therefore, all vertices in VSNW and VSNE have different x coor
dinate values. Within a block of width w(R), there can be at most w(R)+I different. :r 
coordinate values. Thus there can be no more than w(R)+l vertices. Similar reasoning 
can be applied to any pair of adjacent vertex subsets VS,

1 
and VS,

2
• The bound is 

attained when the only BLACK pixels in the merging cluster are those on either major 
diagonal of a merging cluster (e.g., Figure 6). • 

If a node P is the only BLACK node in merging cluster M which is closest to 
the boundary of M in a given direction (e.g., nodes A, C and Din Figure 4), then P will 
contribute two vertices to the vertex set. Otherwise, a given node will contribute at 
most one vertex. Therefore, the number of the vertices in a vertex set is bounded by 4 
plus the number of BLACK nodes in M. This bound is attainable as shown in Figure 7. 
Thus we have proved the following corollary: 

Corollary: The size of the vertex set of merging cluster M is bounded by the minimum 
of 2·w(R }+2 and 4 + the number of BLACK nodes in M, The bound is attainable. 

4.3. Node E!P..!nsion 

Now that we have de6ned the concepts of a merging clustei and a vertex set, we 
describe the generation of the region within R pixels of the vertex set. The expansions 
of a merging cluster in the eight directions can be decomposed into two groups, namely 
those that deal with directions {NW, NE, SW, SE} and those that deal with directions 
{N, W, S, E}. We shall describe one expansion from each group. 

To expand in the NW direction from a merging cluster, only the elements of 
VSNw need to be considered. The result of the expansion is a staircase-shaped region 
formed in the NW direction with the steps of the staircase marked by the vertices in 
VSNw which have been translated by (-R ,-R); i.e., they are obtained by subtracting R 
from the coordinates of each vertex in VSuw· To insert all the nodes that are com
ponents of the staircase, find the sip.allest quadtree block which covers the staircase. 
Blocks which are completely within (or outside} the staircase are inserted as BLACK {or 
WHITE}. Blocks which partially overlap the staircase a.re decomposed into four equal· 
sized blocks which are processed recursively. 

To expand in the W direction, we use the vertex t1 in VSNw which is closest to 
the western boundary of the merging cluster since the expansion from t1 in direction W 
subsumes the expansions from all other vertices. Alternatively, we can also use the 
western-most vertex in VSsw which has the same x coordinate value. Note that the 
result of the expansion in directions N, E, S, W which is outside the block, say B, 
corresponding to the merging cluster is a rectangle, say T. This is a direct consequence 
of the size of the merging cluster's block being limited to at most R+l. In the case of 
expansion in direction W, rectangle Tis adjacent to the west side of B, has height equal 
to that of B, and width R-dw Where dw is the distance from ti to the W edge of B. 
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So far we have described how to process the nodes of size (R+l}/2 or less by 
combining them into merging clusters, All WHITE nodes are ignored because they do 
not require any a.ction. Our algorithm is completed by describing how to process la.rge 
BLACK nodes (i.e., of size greater than (R+l)/2). For such a node B of width W, B 
will simply be expanded as in algorithm WITHIN!. In other words, the area correspond
ing to a square of size W +2R centered on B is decomposed into quadtree nodes which 
are inserted into the output tree. 

A further reduction in processing time c11.n be achieved by taking advantage of 
the interactions between the blocks of neighboring merging clusters. For example, in 
Figure S, a merging cluster P needs to be expanded in direction SW only if Q, the block 
that is adjacent to it only at its SW ver_tex, is WHITE and of size greater than or equal 
to w(R). If Q is BLACK or Q is an element of a merging cluster, then P need not be 
expanded in the SW direction. Otherwise, those pixels of Q that are within R pixels of 
the vertex set of P are inserted and the nodes labeled ~. Q1, and ~ may also need to 
be visited. Note that we check the colors of nodes Q, ~. Q

1
, and Q

2 
before P is 

expanded in direction SW. This check has to be d~:me not only for efficiency reasons, but 
also to prevent the corruption of the output tree since the merging cluster of Q may 
have been processed before the merging cluster of P. By 'corrupt', we mean that we do 
not want to overwrite with the value BLACK a node which had another value in the ori
ginal (multicolored) input tree. 

As Figure 3 demonstrates, the execution time of WITHIN4 generally increases at 
a much slower rate and even decreases with increasing R. WITHIN4 usually outper
forms the other algorithms. This is a result of the interaction between two factors which 
have opposite effects. The first, and most important, factor is the number of merging 
clusters, while the second factor is the radius of expansion. AB the radius of expansion 
increases, the size of the merging cluster also increases. This means that there are fewer 
merging clusters and thus the execution time should decrease since there is less need for 
expansion. On the other hand, as the radius of expansion increases, there is an increase 
in the number of nodes that must be inserted as a result of expanding from thC merging 
cluster's vertex set. This has been explained in the discussion of WITHIN! in Section 2. 
Al; the data in Figure 2 shows, these two competing factors tend to cancel each other 
out. 

The data of Figure 3 also confirms the following more detailed analysis of the 
effect of the radius of expansion. Assume an image or size 2" X2 11

• Clearly, when 
R 2'.: 211 -1 only one node needs to be inserted into the output quadtree. In the more 
general case, as R increases from 2r-2 to 2'-1, w(R) is doubled, thereby significantly 
reducing the number of nodes to be expanded, and the time required to expand them is 
less than that for R = 2r -2. w(R) is constant (i.e., 2r} when R is between 2' -1 and 
2•+1-2, and the execution time increases slowly (but linearly - recall the analysis of 
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Figure 6. Example merging cluster where the upper bound on the size of two adjacent 
vertex subsets is attained. 

figure 7. Example merging cluster where the upper bound on the size of the vertex set 

is attained. 

Figun~ 8. Example merging cluster ronfiguration. 
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WITHINl) as R increases since more nodes will be inserted. The execution times for odd 
values of R show a cyclical behavior which is chara.cterized by a slow increase as R 
increases from 2' -1 to 2•+

1
-2, followed by a drop back to nearly the lowest execution 

time for 2•+
1
-1. The behavior for even values of R generally follows the same pattern 

although, as mentioned in Section 2, the execution times are reduced due to the effect.a of 
node aggregation which result.a in fewer nodes. 

The oscillatory pattern of execution times of WITHIN4 for odd and even values 
of R is analogous to those of WITHINl and WITHIN2. The only difference occurs when 
!l increases from 2•+l_3 to 2•+1-1: In this case, the execution time of WITHINl 
increases as there are more nodes of size 1 to be inserted, whereas the execution times of 
w_JTHIN2 and W!THIN4. decrease. For WITHIN2, the decrease is caused by the dou
bling of the maximum size of the WHITE nodes which are automatically inserted as 
BLAC!K nodes. For WITHIN~, the analogous result is that w(R) is doubled, thereby 
reducing the number of merging clusters. In particular this means that at most four 
merging clusters P1, Pz, P 3, and P4 of size 2'" are merg;d into one merging cluster p of 
size 2•+

1
• Therefore, at most eight expansions in the directions of a corner can be 

avo!ded depending on whether the surrounding nodes are WHITE or not. For example it 
P1 ts a NW son of P, then it is possible to avoid the NE and SW expansions from p' it 
there are large WHITE nodes in those directions Four insertions of p p p and 1p 

• .. 'l• 3• 4 
as BLACK nodes are now replaced by one insertion of P regardless of whether p. is a 
merging cluster or a WHITE node. All these savings result in a reduction of the e

0
xecu

tion time, This is confirmed by the results shown in Table 2 

Table 2. Execution times(seconds' of WITHIN4 for larp;e radii 
Radius Center ACC 

64 11.5 12.6 
128 11.l 10.9 
256 8.6 6.0 
512 5.1 3.9 

. In gen~ral, t~e complexity of the region expansion process depends on the com
plexity of ~he 1ma~e m the sense that as the number of nodes in the image (especially the 
expanded image) mcreases, so will the execution time for small radius values. However 
as the radius of expansion increases past a certain· value, for many complex images th; 
expanded i~age will .have a signi6cantly smaller number of nodes due to merging. Thus 
th~ . expansion algorithm should run faster for algorithms that process small nodes 
efficiently (e.g.,WITHIN2 and WITHIN4}. This reduces the attractiveness of WITHINl 
and WITHIN3 as their execution times must increase when R increases regardless of 
node size. This is borne out by the Pebble image, where it is seen that the execution 
times of both WITHIN4 and WITHIN2 show a steady decrease with increasing R. In 
contrast, for the much smaller Center and ACC images, as R increases, the execution 
times of WITHIN4 are relatively constant while those for WITHIN2 increase. For these 
images the WHITE area is sufficiently large that the amount of merging has not yet 
started to dominate. . 

Although the complexity of the image is an important factor in determining the 
complexity of the region expansion process, it is overshadowed by the size of the merging 
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cluster. The effect of the size of the merging cluster on WITHIN4 has atr;ady bee~ d~ 
cussed. It also has an indirect effect on WITHIN2. Recall that WITHIN2 s work hes m 
processing WHITE nodes. As R increases, "."e kno~ that more WHITE nodes .can 
automatically be inserted as BLACK nodes - m particular, all WHITE nodes of width 
less than or equal to (R+l)/2. For example, WITHIN2's execu.ti?~ time~ for the Cent~r 
image exceed those for the ACC image by about 30% for the m1t1al .r~~1us values. Th!S 
correlates well with the ratio of their total node counts. Although m1t1ally Center has 
more nodes than ACC, for R>16, ACC contains more WHITE nodes of size> 8X.8 
than Center and thus more work will be required to expand ACC than Center. This 
imbalance increases as R increases and is reflected by Figures 2a and 2b which show 
that the execution time of expanding ACC (79.3 sec.) exceeds that for Center (61.6 sec.) 
by about 30% for R=32. 

In Section 1 we mentioned that a good yardstick for measuring the performance 
of a region expansion algorithm is the amount of time necessary to build the expanded 
quadtree from an array representation. Using the QUILT system, building quadtrees for 
the Center and Pebble images took approximately 16 and 110 seconds (Shaffer, 1987a), 
respectively. Recall that these images contain 4693 and 44950 nodes respectively. The 
building algorithm has the property that its execution time is directly proporti~nal to 
the number of nodes in the image. For R > 15, the expanded Center and Pebble images 
contain approximately 8000 and 46000 nodes, respectively. Fot R =32 expanding them 
by '\VITHIN4 took 12 and 76 seconds, respectively, "."'hich mea~s .that build.ing them 
from an array representation is not as fast as expandmg and butldm~ them s1multane~ 
ously. By this measure, WITHIN! and WITHIN3 a~e not attractive. Of course, .a 
different implementation may yield different execution times (e.g., for WITHIN3), but we 
believe that our qualitative explanations of the algorithms are appropriate. Now, let us 
compare WITHIN2 and WITHIN4 more closely. 

(1) 

(2) 

(3) 

In WITHIN2, every BLACK node in a merging cluster is individua!ly inser~ed 
while in WITHIN4 only one insertion must be performed for the entire mergmg 
cluster. However, WITHIN2 can be modified to avoid this shortcoming. 

In WITHIN4, no repeated insertions are caused by the BLACK nodes ';ithin a 
merging cluster. Only a different merging cluster can cause a node to be mserted 
repeatedly. Moreover, a node c~n be inserted at most eight times s~nce there are 
at most eight neighboring mergmg clusters. In WITHIN2, a n~e m the output 
tree say B may be repeatedly inserted as a result of the expans10n of each of the 
BLACK nodes in the i11put tree which are within radius R of B. 

In WITHIN4 nodes are expanded using the merging cluster's block as the hub for 
the expansio~ process. This approach is similar to the expansion based on a 
BLACK node in WITHINI. '\VITHIN4 stores the vertex set as an array sorted by 
the value of the x coordinate. Some of the operations on the vertex set require a 
sequential search. The data that we gathered revealed that, on the average, for 
radius values up to 32 each vertex subset VS.i contained about two vertices. 
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~Uij;~; __ tb·e_·performance of WITHIN4 is unlikely to be improved by using a more 
rD."J>JeX:data structure to organize the vertex set. 

~t~i;fi~:,~-,~Q{ ·'/ 

... :Tlie-fatio' Of the execution time of WITHIN2 to that of WITHIN4 increases with 
.)R.'·,The magnitude of the ratio {6 for Center and ACC and 5 for Pebble) depends 1

·:'on the complexity of the expanded image. If the image does not have large 
WHITE nodes (e.g., Pebble), then the ril.tio is small since most 'of WITHIN2's 
time is devoted to processing large WHITE nodes. 
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