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ABSTRACT 

A method, termed approximate splitting, is proposed to model the node distri- 
bution that results when the PR quadtree is used to store point data drawn from a uni- 
form distribution. This method can account for the aging and phasing phenomena 
which are common in most hierarchical data structures. Approximate splitting is also 
shown to be capable of being adapted to model the node distribution of the PR quad- 
tree with points drawn from a known non-uniform distribution. 
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1. INTRODUCTION 

Geographic information systems store large amount of data including maps of 
roads and regions, locations of cities, etc. Each of these objects can be described with 
different data structures. For example, we may store the gray levels of a region map 
in an array, the locations of cities in lexicographical order of their coordinates, and the 
roads as a set of line segments which are determined by their end points. Ideally, 
these objects should be stored using variants of the same underlying data structure so 
that the effort used to implement and maintain the data structure can be kept to the 
minimum. This goal has been achieved in the implementation of QUILT, a geo- 
graphic information system [Same84b]. In this system, the underlying data structure 
is the linear quadtree [Garg82]. 

The quadtree is a hierarchical data structure used to organize an object space. 
If the object space is an image plane (e.g., a region map), then the quadtree describing 
it is called a region quadtree as defined by Klinger [Klin71, Same84a]. The region 
quadtree decomposes an image into homogeneous blocks. If the image is all one 
color, then it is represented by a single block. If not, then the image is decomposed 
into quadrants, subquadrants ..... until each block is homogeneous. If the object space 
is a set of line segments, then the quadtree that is used is called a PM quadtree 
[Same84a]. If the object space consists of points within a square, e.g., the locations of 
all the cities in certain region, then the corresponding quadtree is a PR quadtree 
[Same84a]. In this case the square is decomposed into quadrants, subquadrants . . . .  
similarly until the number of points in each block is within a certain limit. This limit 
is termed the node capacity of the PR quadtree. 

The quadtree variants that we described enable us to have a unified representa- 
tion of three different types of objects encountered in a geographic information sys- 
tem, namely regions, points, and lines. The storage requirements of the region quad- 
tree are analyzed in [Dyer82, Shaf88] and those of the PM quadtree are analyzed in 
[Same85]. In this paper, we focus on the storage requirements of the PR quadtree. 
Given n points which are to be stored in a PR quadtree, we show how to compute the 
storage requirements, the node distribution, and the average node occupancy. By 
leaming more about the storage requirements of the PR quadtree, we will be able to 
predict the storage used by the PR quadtrees in a dynamic environment. 

Nelson and Samet [Nels86] use a technique termed population analysis to 
analyze the node distribution in a PR quadtree. A population is defined to be the col- 
lection of all the nodes of specific occupancy. For example, all empty nodes form one 
population, nodes containing one point a second, and so forth. A node containing i 
points is said to be of type ni. Adding a point to a node containing i points will either 
convert it to a node with i+1 points or cause the node to split and produce four nodes 
one level deeper with occupancies that vary between 0 and m+l where m is the node 
capacity. This transformation is described by the corresponding transformation 
matrix. The fraction obtained by dividing the number of nodes in population i by the 
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total number of nodes in the PR quadtree is called the population frequency e i . The 
vector ~ formed by all the e i is called the population frequency distribution. 

Population analysis assumes that the distribution of node occupancies is 
independent of the geometric size of the corresponding block. In addition, suppose 
that a steady state can be reached when the points are inserted dynamically, then a set 
of equations involving the population frequencies can be derived and solved by 
numerical method. The population frequency distributions calculated using this tech- 
nique agree fairly well with the experimental results. 

Given a population frequency distribution ~, the predicted average node occu- 
pancy can be computed by the dot product of t and the vector (0,1 ..... m). This 
number is determined solely by the node capacity and is not affected by the size of the 
PR quadtree. On the other hand, the actual average node occupancies obtained from 
our experiments show a cyclical variation which is periodic in the logarithm of the 
total number of points stored in PR quadtree. This is termed the phasing phenomenon 
by Nelson and Samet [Nels86] and it is shown in Figure 1. In addition, the PR quad- 
tree also exhibits what is termed the aging phenomenon by Nelson and Samet 
[Nels86]. In this case, after a node is created, it is filled to its capacity as more and 
more points are inserted into it. In other words, the node is aging, or getting older. 
Our experiments also show that bigger blocks fill up faster. This is consistent with an 
analysis based on geometric probability [Sant76]. 

The population analysis method only provides us with the population fre- 
quency distribution. It does not indicate how many nodes containing i points are at 
depth j ,  i.e., the complete node distribution. Thus, we can not predict the average 
node access cost when the PR quadtree is stored in main memory. The population 
analysis ignores the aging phenomenon, Also, the average node occupancy derived 
from the population frequency distribution is fixed regardless of the size of the PR 
quadtree. Therefore, the population analysis falls short in accounting for the phasing 
phenomenon. 

Since the population analysis method fails to reflect the phasing and the aging 
phenomena, the two important characteristics of the PR quadtree, we must look for an 
alternative analysis technique. In this paper, we propose a method termed approxi- 
mate splitting to calculate the approximate values of the average node distribution. 
This enable us to derive an approximation of the population frequency distribution. 
We will refer to these approximations as the predicted node distribution and the 
predicted popMation frequency distribution, respectively. For a PR quadtree that is 
built from a set of random points, i.e., points that are generated from a uniform distri- 
bution, we can obtain its actual node distribution and actual population frequency dis- 
tribution. In order to ease the comparison with [Nels86], we will use the same nota- 
tion and examples that they used. 
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The remainder of this paper is organized as follows. Section 2 introduces the 
approximate splitting method through an example. Section 3 describes the method. 
Section 4 compares the results obtained using the approximate spfitting method with 
those in [Nels86]. Section 5 generalizes the method so that it can be applied to the PR 
quadtree with data points drawn from a non-uniform distribution such as a Gaussian 
distribution. Section 6 discusses the aging and phasing phenomena. Section 7 
discusses the discrepancy between the predicted average node occupancy obtained by 
using the approximate splitting method and the actual average node occupancy. We 
draw conclusions in Section 8. 

2. THE AVERAGE NODE DISTRIBUTION 

Let us first consider a PR quadtree with data points drawn independently from 
a uniform distribution. The probability that a point will fall within a particular region 
is proportional to the area of that region. Given a region that has been partitioned into 

1 
four quadrants, the probability that a point falls within a particular quadrant is --, and 

4 
the probability that it falls outside the quadrant is 3 .  Thus the probability for a node 

4 

that contains two points to have an empty NW quadrant is ( ) .  Since there are 

four quadrants in a node, the average number of empty quadrants is 4x ( ) _ 9. 
4 

I l l  1 3 3 -, -, ~ Similarly, the average number of quadrants with one point is 4x ( 7 ) ( 7 ) ; 7 -  and the 

average number of quadrants with two points is 4x (4)  
4" 

When a PR quadtree contains only one point, it has only one node and its aver- 
age node distribution is trivial. When more than one point is being stored in a quad- 
tree that has a node capacity of one, we have to consider the splitting process. Figure 
2 shows an example of a PR quadtree with node capacity one that contains two points. 
Its actual node distribution is 8 empty nodes and 2 full nodes. In general, a PR quad- 
tree with node capacity m and maximum depth n may contain t points that are drawn 
from a uniform distribution. We adopt the convention that the root node N is at level 
n (or depth 0) and a pixel-size node is at level 0 (or depth n). In order to understand 
the problem involved in calculating and approximating the node distribution, let us 
look at the following example. 

Example 1: Find the average node distribution of the PR quadtrees containing 
1000 points with node capacity one and of maximum depth 9. 
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We can compute by brute force the predicted average node distribution for 
Example 1 as follows. Since the root node contains 1000 points, it is split to produce 
some nodes at depth 1. In particular, at depth 1, the expected number of empty nodes 

110001 looo 
is 4x[ 0 J (~)  , the expected number of nodes containing 1 lxfint is 

4x (~-)(-~-) , the expected number of nodes containing 2 points is 

i171 1 399, 4x (-~-) (~-) ..... and the expected number of nodes containing 1000 points is 

1000] 1 1 ~  
4x 1000J ( a )  . All nodes at depth 1 containing more than one point will be split to 

g 

produce more nodes at depth 2. To calculate the number of empty nodes at depth 2, 
we need to find out the number of nodes produced from the splitting of nodes at depth 
1 of types n2, ns ..... n l ~ .  These numbers are summed up to give the number of  nodes 
at depth 2 of type no. Similarly, we have to find out the number of nodes of types nl, 
.... n l ~  at depth 2. This calculation is carried out up to depth 9 which is the max- 
imum resolution. The average node distribution as well as the average population dis- 
tribution can then be found. 

The amount of calculation involved is so huge that it makes the calculation of 
the average node distribution by this brute force method impractical. It can be used 
only when t is small. When t is large, we are content if we can find a good approxi- 
mation of the average node distribution. In the next section, we describe a method 
which produces an approximate average node distribution. 

3. THE APPROXIMATE SPLrVrlNG PROCESS 

Suppose that we already know how to calculate the average node distribution 
for a subtree, say S, of a certain height. For simplicity, assume that the PR quadtree 
consists of multiple copies of S. Each subtree's corresponding blocks are of the same 
size and contain the same number of points. Since the points are uniformly distributed 
over blocks of the same size, each subtree will have the same average node distribu- 
tion. Using this assumption, we can now approximate the average node distribution of 
the splitting process originating at the root node of the PR quadtree by combining the 
average node distributions of all these subtrees. We use the term approximate split- 
ting to describe this method. The required calculation can be divided into three steps: 

Step 1 : Find the depth s such that the probability of having a leaf node at depth d, 
d ~_s, is smaller than a predetermined small value. In other words, we want to deter- 
mine the depth at which we are quite sure that all nodes will require splitting. 
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Since a node will be split when it contains more than m points, we first find 

the largest integer s such that f =  J - > m .  That is, we distribute the t points into all the 
4 • 

nodes at depth s so that each node contains f points. This value of s may not be the 
1000 1000 1000 
- - -  - -  .- 1 and - - -7-  < 1, we have right choice. For instance, in Example 1, since 44 256 

- y  

S=4. 

Next, we want to estimate the average number of leaf nodes at depth s that can 
possibly be produced dunng the splitting process. In particular, we want to find the 
number of full nodes thus produced. At depth s - l ,  there are 4 s-1 nodes and each of 
them contains 4f points. A node at depth s-1 can be split to produce a node with m 

[~1 1 m 3 41-m 
points at depth s with probability ps= ( ~ )  (~-) . In other words, it can split 

and produce 4ps full nodes. There are 4 '-1 nodes at depth s-1 and hence there are 
4 ~ xp, full nodes which are leaf nodes at depth s. If this number is smaller than a small 
constant e, say 0.1, then we know that when the splitting process begins at depth s - l ,  
the number of  nodes at depth s containing m points will be so small that these full leaf 
nodes can be ignored. For a binomial expansion (p+q)n wi thp+q=l  and p <q, all the 
terms in the expansion before the i th term where i=np are monotonically increasing. 

1 1 
When n=4f and p=~,  m < f = 4 f x ~ = n p .  Thus the probability of  splitting a node at 

depth s-1  with 4f points to produce a node at depth s with j points, j <m, is even 
smaller than that for producing the nodes with m points. We can safely say that split- 
ting a node at depth s-1 will not produce any leaf nodes at depth s (i.e., nodes with m 
or fewer points). In other words, the probability that all the nodes at depth s are 
GRAY nodes is very high. Thus we can stop moving up the tree and prepare to split 
the nodes at depth s. 

s > If 4 xps_e, then we can set s to s - l ,  and f to 4f ,  and repeat the test to see 
whether it is necessary to move up the tree again. 

For Example 1, re=l, f = - - ~ - - > l ,  s=4, 4f=16 and p,= (-~)(~-) =0.008634. 

Therefore 44xp,=3.4>0.1. This means that we have to move up one level and now we 

have f=16, s=3, p,= ( ~ ) ( ~ )  <0.0000001 and 43xp,<0.1. Therefore we may 

decide to split the nodes at depth 3 with k=43=64 subtrees each containing 
t 1000 

f - - - -  - 15.625 points. 
k 64 

Suppose that we would have split the nodes at depth 4 instead of  at depth 3. In 
this case, the nodes produced by this splitting process are at depth 5 or deeper and we 
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have unnecessarily forced the points to be distributed over too many subtrees. On the 
other hand, if we split the nodes at depth 2 instead of depth 3, we will produce a more 
accurate result at the expense of more calculation (i.e., the brute force algorithm). 
This is shown in the empirical results that are tabulated in the next section. In general, 
to produce a result which is more accurate, we should try to split the nodes as high up 
the tree as possible as long as this does not cause any computational problems such as 
arithmetic overflow or underflow, or running out of memory. 

Step 2 : Calculation of the initial node distribution. 

After we have determined the value of s, we know that all the nodes will 
appear at depth s+l  and deeper. The initial node distribution of the nodes at depth s+l 

will be k x ~ where O~j_<t /k and k =4 s . 

Step 3 : Calculate the approximate average node distribution. 

After we have obtained the initial node distribution for those nodes at depth 
s+l, we can repeat the splitting process for those nodes with more than m points until 
the maximum depth of the tree is reached, at which depth all nodes with more than m 
points will be treated as nodes with only m points. The approximate average node 
distribution thus obtained is the p r e d i c t e d  node  d i s t r ibu t ion .  

4. COMPARISON OF THE RESULTS 

In this section, we compare the results predicted by using the approximate 
splitting method and those predicted by Nelson and Samet's method [Nels86]. For 
comparison, we also show the node distributions and the population frequency distri- 
butions obtained from PR quadtrees built by the insertion of 1000 randomly generated 
points. Table 1 shows the actual and predicted node distribution for Example 1. The 
predicted node distribution fits very well with the actual node distribution. 



240 

Table 1. Node distribution of PR quadtree containing 11300 points. 
Depth Actual Approximate Splitting Method 

0 0.0 
1 0.0 
2 0.0 
3 0.0 
4 6.6 
5 300.2 
6 533.7 
7 225.4 
8 71.5 
9 16.1 

n 1 

0.0 
0.0 
0.0 
0.0 

20.1 
354.2 
411.6 
144.9 
49.6 
19.5 

nil 

0.0 
0.0 
0.0 
0.0 
4.7 

309.6 
536.4 
226.1 

64.5 
16.7 

n!  

0.0 
0.0 
0.0 
0.0 

19.4 
361.5 
405.6 
155.3 
43.3 
14.9 

In our comparison, we consider PR quadtrees with node capacity ranging from 
1 to 8, and each PR quadtree contains 1000 random points. From the predicted node 
distribution, we can obtain the predicted population frequency distribution by dividing 
the number of nodes of each population by the total number of nodes in the quadtree. 
In Table 2, we show the population frequency distribution e7 obtained using the dif- 

- - ~ .  -'-I~ ° 

ferent analyses, el ~s obtained using the method in [Nels86], e2 Is obtained by analyz- 
1000 

ing the set of 64 subtrees at depth 3 with points apiece, e3 is obtained by 

%00 
analyzing the set of 16 subtrees at depth 2 with ~ points apiece, and e4 is obtained 

16 
from the PR quadtrees which are built through insertion of 1000 random points, e 1 
and e4 are taken from [Nels86]. 

Table 2. Average population frequency distributions of PR quadtrees. 

m =1: ~=(.500,.500) 

d~2=(.538,.462) 

~=(.538,.462) 

~4=(.536,.464) 



m =2: e 1=(.278,.418,.304) 

e 2~=(.332,.426,.242) 

e 3--~(.330,.425,245) 

e-~=(.326,.427,.247) 
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m=3: ei=(.165,.320,.305,.210) 

ez=(.221,.359,.268,.151) 

e3=(.216,.358,.273,.153) 

e4=(.213,.364,.273,.149) 

m=4: e1=(.102,.239,.276,.225,.158) 

e~=(.141,.279,.263,.187,.130) 

e3~=(.140,.282,.270,.186,.122) 

e4--~(.139,.293,.264,.184,.120) 

m=5: e1=(.065,.179,.238,.220,.172,.126) 

e~=(.078,.190,.232,.211,.170,.119) 

e3-~(.083,.204,.244,.208,.155,.106) 

e~=(. 084,.217,.241,. 204,. 151 ,. 1 04) 

m=6: d~=(.043,. 132,.200,.207,. 176,.137,. 105) 

e-~=(.037,. 117,. 190,.221,.202,. 148,.086) 

e 3-~(.046,. 139,208,216,. 181,. 130,080) 

1 e 4=(.050,. 150,.201,.215,. 176,.127,.08 ) 
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m=7: d~--(.028,.098,. 165,. 189,. 173,. 143,. 114,.090) 

~2--( .019, .077,160,. 219, .219 ,. 166,097, .044) 

~=(.027,.099,. 177,.214,. 197,. 146,.091,.049) 

~=(.034 ,. 110,. 177 ,.214,. 187 ,. 143 ,.091 ,.044) 

m=8: e 1=(.019 ,.073 ,. 135 ,. 168,. 166,. 145 ,. 119, .097 ,.078) 

e~-(.013,.063,. 147,.216,.224,. 172,. 102,.047,.017) 

~--(.019, .079 ,. 160,.209, .203 ,. 155,097, .052,025) 

e 4-~=( .024, .086,151, .206,. 194 ,. 156,. 100, .049, .034) 

From the above data, we see that splitting the nodes nearer the root produces 
better results, 1.e., e 3 is mole  accurate than e2. We also notice that e 3 matches e 4 quite 
closely. Table 3 shows the average node occupancies AVGi for the distributions 
shown in Table 2. The average node occupancy can be found by computing the dot 
product of ei with the vector (0,1,2 ..... m). 

The last column AVG4/m shows the average storage utilization of  the PR quad- 
tree with node capacity m. The average of  all the entries in this column is 0.474. It is 
an approximation of  the average storage utilization of  all the PR quadtrees of  node 
capacities ranging from 1 to 8. 

Table 3. Average node occupancy. 
Node capacity (m) 

1 
2 
3 
4 
5 
6 
7 
8 

AVG 1 

0.50 
1.03 
1.56 
2.10 
2.63 
3.17 
3.72 
4.25 

AVG~ 

0.46 
0.91 
1.35 
1.89 
2.56 
3.22 
3.65 
3.83 

AVG3 

0.46 
0.92 
1.36 
1.87 
2.47 
3.06 
3.50 
3.76 

AVG 4 

0.46 
0.92 
1.36 
1.85 
2.44 
3.03 
3.44 
3.79 

AVG4/m 
0.460 
0.460 
0.453 
0.463 
0.488 
0.505 
0.491 
0.475 
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5. APPLICATIONS OF APPROXIMATE SPLITTING 

Suppose that we are given a PR quadtree with data points drawn from a known 
non-uniform distribution. If we can partition the quadtree into subtrees such that each 
of them can be regarded as a PR quadtree with points drawn from a certain uniform 
distribution, then the complicated splitting process of the original PR quadtree can be 
modeled by the combination of the splitting processes of all the subtrees in the parti- 
tion. With such an adaptation, the approximate splitting process can have a wider 
application. In the following, we will look at two examples. 

Example 2: Consider an appfication where the locations of the houses in a cer- 
tain area are captured in a PR quadtree. As shown in Figure 2, it is known that the 
housing density in a particular sector, say A which is 1/16 of the area, is double the 
housing density in the rest of the area. Can we predict the node distribution if we 
know that there are 1000 houses in the area given that at most one house is associated 
with each node? 

To solve this problem, we divide the area into 16 squares and regard each of 
2 

them as a subtree rooted at a quadtree block at depth 2. Sector A contains w x l 0 0 0  
17 

points and each of the other 15 subtrees has --3-x1000 points. The predicted node dis- 
17 

tdbufion of the PR quadtree is the sum of the predicted node distribution of sector A 
and 15 times the predicted node distribution of any other sector. The result is shown 
in Table 4. This result matches very well with the actual node distribution that is 
obtained by generating three PR quadtrees and taking the average of their node distri- 
butions. 

Table 4. Node distribution of the PR quadtree in example 2. 
Depth Actual Predicted 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

n o 

0.0 
0.0 
0.0 
0.0 
5.00 

296.33 
522.66 
246.66 

57.66 
12.66 

n |  

0.0 
0.0 
0,0 
0,0 

28.33 
334.66 
402.33 
182.00 
40.00 
12.66 

no 
0.0 
0.0 
0.0 
0.0 
5.38 

303.62 
526.49 
229.75 

66.44 
17.23 

n 1 

0.0 
0.0 
0.0 
0.0 

21.12 
350.92 
401.18 
158.31 
44.66 
13.45 



244 

Example 3: Suppose that a PR quadtree has 1000 points in a 512 by 512 
square and that the x and y coordinates are independently distributed according to the 
Gaussian distribution with mean 256 and standard deviation 128. 

For this example, the square contains the points that lie within two standard 
deviations from the mean. Since the points will cluster around the mean value, we 
would like to divide the square into smaller areas around the center of the square as 
shown in Figure 3. This partition also reflects the fact that the leaf nodes correspond- 
ing to the blocks surrounding the center appear at deeper levels of the PR quadtree. 
Let a=0.3830 be the probability for the x (or y) coordinate of a point to fall within 0.5 
standard deviation from the mean and let b=0.6826 be that for 1 standard deviation. 
The probability that a point which is generated according to this specific Gaussian dis- 
tfibution will fall into a particular region ca]a be calculated as follows. There are 4 

subtrees of type A with total probability (~)  x4; 8 subtrees of type B with probability 
z 2 

b -a  x a x8, b-a  (--~-),~ -~ " 4 subtrees of type C with probability (-~--)  x4; 8 subtrees of type D 

1-b xbx8, _ ~  with probability ( - ~ - )  ~ • and 4 subtrees of type E with probability ( )2X4. The 

number of points contained in each subtree is just the product of the probability asso- 
ciated with the subtree and 1000. The node distribution of each subtree can then be 
calculated. The sum of the node distributions of all the subtrees is the predicted node 
distribution of the PR quadtree containing 1000 points. Table 5 shows that the 
predicted node distribution fit well with the actual node distribution that is obtained by 
taking the average of the node distributions of three PR quadtrees built from 1000 
random points generated according to a Gaussian distribution. 

/ 

! 

Table 5. Node distribution of a PR quadtree with points drawn 
from a Gaussian distribution. 

Depth Actual Predicted 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

n 0 

0.00 
0.00 
0.00 
0.33 

28.00 
236.00 
502.66 
291.00 

98.00 
18.00 

n 1 

0.00 
0.00 
0.00 
0.00 

40.00 
257.33 
417.00 
192.33 
77.00 
18.00 

n 0 

0.00 
0.00 
0.00 
0.01 

16.15 
259.13 
511.13 
266.34 

81.46 
21.44 

n!  

0.00 
0.00 
0.00 
0.09 

35.34 
296.41 
406.96 
185.92 
54.93 
16.75 

,i 



245 

6. AGING AND PHASING 

Nelson and Samet's analysis [Nels86] computes the average population fre- 
quency distribution for a PR quadtree with a certain node capacity. As long as the 
node capacity remains the same, no matter how many points the PR quadtree holds, 
the average population frequency distribution of the PR quadtree remains the same, 
and so is the predicted average node occupancy. This is obviously not true. Therefore 
there is a discrepancy between the actual average node occupancy and the average 
node occupancy predicted by their method. They attribute the discrepancy to two fac- 
tors termed phasing and aging that could not be explained by population analysis. 

On the other hand, phasing can be demonstrated by the approximate splitting 
method. In Figure 4, the average node occupancies of the PR quadtrees with node 
capacity 8 as predicted by the approximate splitting method are plotted against the 
number of points stored in the PR quadtrees. The actual average node occupancies are 
superimposed in the same graph for easy comparison. Figure 4 shows dearly that the 
graph does oscillate and is periodic in the logarithm of the total number of data items 
stored in the trees. 

Aging is responsible for the fact that larger nodes have occupancies in excess 
of the predicted average occupancy of the whole PR quadtree. This is accounted for 
in the approximate splitting process as can be seen from Table 6 which shows the 
average node occupancy by node level for Example 1. The predicted node distribu- 
tion for Example 1 is shown in Table I and its average node occupancy is 0.46 which 
is the first entry of the column with heading AVG4 in Table 3. Comparing with the 
number 0.46, we find that larger nodes in the predicted node distribution do have 
higher occupancies. The data in Table 6 is obtained from Table 1 as follows. For 

20.1 
nodes at depth 4, the actual node occupancy is - - = 0 . 7 5  and the predicted aver- 

6.6+20.1 
19.4 

age node occupancy is - - - 0 . 8 1 .  Similarly, we can compute the rest of the ratios 
4.7+19.4 

in the table. From the table, we see that the predicted average node occupancy is 
smaller for smaller nodes. The anomalously high value for the actual average node 
occupancy at depth 9 is the result of the implementation which truncates the tree at 
that depth [Nels86]. 
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Table 6. Average node occupancy by node level. 
Depth 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

Actual 
0.00 
0.00 
0.00 
0.00 
0.75 
0.54 
0.44 
0.39 
0.41 
0.55 

Predicted 
0.130 
0.00 
0.00 
0.00 
0.81 
0.54 
0.43 
0.41 
0.40 
0.47 

7. DISCREPANCY 

In Figure 4 we see that although the curve of the predicted average node occu- 
pancy oscillates in step with that of the actual average node occupancy, the predicted 
values achieve higher peaks and lower valleys. This is the result of the assumption 
that all subtrees partitioning a PR quadtree contain the same number of  points. 
According to this assumption, when a subtree achieves its maximum of  the average 
node occupancy, so have all other subtrees when the approximate splitting method is 
used. If this constraint is relaxed by allowing the subtrees to have different number of 
points as in the real situation, then the values of their average node occupancies will 
spread so that the average of  these values will have less variation and hence the oscil- 
lation of the curve is dampened. 

The number of points falling into the root nodes of the subtrees at depth s fol- 
lows the binomial distribution with parameters t and p ,  where t is the number of 
points contained in the PR quadtree, and p is the probability that a random point falls 
into the root node of a particular subtree of the approximate splitting process. For a 
PR quadtree of  maximum depth n, we have p=4 -°'-s). When t is large, the binomial 
distribution can be approximated by a normal distribution with mean ~=tp and stan- 
dard deviation cr=,ltp(1-p) [Fell57, page 172]. The probability that the number of 
points in a subtree is within one standard deviation from the mean value is about 0.68. 
Since we are only interested in the approximation of the average node occupancy, one 
simple improvement that can be made to reduce the amplitude of the curve of the 
predicted average node occupancy is to divide the subtrees into three groups contain- 
ing lX--~ points, l.t points, and ~+¢r points in the proportion of 20, 60, and 20. This pro- 
portion is chosen because about 60 percent of the points fall within one standard devi- 
ation from the mean. Figure 5 shows the curves of the actual and modified predicted 
(labeled Predictedl) average node occupancies. The corresponding data can be found 
in Table 7. It is clear that the accuracy of  the predicted average node occupancy has 
been improved noticeably after the modification. 
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Table 7. Variation in 
Number of points 

" 2  . . . . .  g, 

250 
300 
350 
400 
500 
600 
700 
800 
900 

1000 
1100 
1200 
1300 
1400 
1500 
1600 
1700 
1800 
1900 
2000 
2100 
2200 
2300 
2400 
2500 
2600 
2700 
2800 
2900 
3000 
3100 
3200 
3300 
3400 
3500 
3600 
3700 
3800 
3900 
4000 

the average nod e occupancy. 
Actual 
3.846 
4.052 
4.204 
3.977 
3.671 
3.426 
3.282 
3.392 
3.558 
3.762 
3.904 
4.081 
4.146 
4.154 
4.135 
4.025 
3.919 
3.825 
3.708 
3.618 
3.540 
3.462 
3.427 
3.380 
3.355 
3.322 
3.332 
3.334 
3.349 
3.366 
3.397 
3.428 
3.462 
3.488 
3.537 
3.587 
3.630 
3.674 
3.714 
3.754 

Modified predicted, 
3.773 
4.147 
4.258 
3.951 
3.585 
3.387 
3.364 
3.432 
3.604 
3.783 
3.946 
4.088 
4.158 
4.177 
4.168 
3.950 
3.812 
3.759 
3.680 
3.588 
3.553 
3.478 
3.467 
3.413 
3.364 
3.374 
3.343 
3.393 
3.380 
3.411 
3.415 
3.446 
3.493 
3.519 
3.561 
3.597 
3.653 
3.694 
3.732 
3.778 

Predicted 
3.763 
4.343 
4.494 
4.315 
3.668 
3.280 
3.201 
3.317 
3.530 
3.763 
4.127 
4.343 
4.466 
4.494 
4.433 
4.315 
4.155 
3.986 
3.819 
3.668 
3.537 
3.429 
3.343 
3.280 
3.235 
3.209 
3.198 
3.201 
3.217 
3.242 
3.276 
3.317 
3.365 
3.417 
3.472 
3.530 
3.588 
3.647 
3.706 
3.763 
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8. CONCLUDING REMARKS 

The approximate splitting process is a means to obtain an approximation of the 
node distribution and the average population frequency distribution of a PR quadtree. 
It can account for the aging andphasing phenomena and gives a fairly accurate predic- 
tion of both distributions. It does not resort to solving the equations using numerical 
methods as that was done in [Nels86]. The approximate splitting process can also be 
adapted to PR quadtrees with the points drawn from a known non-uniform distribu- 
tion. It is useful in estimating the storage requirements as well as the performance of 
the PR quadtree when it is built in main memory. 

The process of partitioning a given PR quadtree with the points drawn from a 
known non-uniform distribution is similar to the way we construct a step function to 
approximate an arbitrary ffun'ction. Since the partitioning greatly depends on the prior 
knowledge of the non-uniform distribution, it is difficult to design a scheme to auto- 
mate the partitioning process of any given PR quadtree, although such a scheme is 
desirable. 
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Figure I Average node occupancy of a PR quadtree. 
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A 

Figure  2 Par t i t ion of a residential  area. 

i 

E 

D 

D 

E 

D 

C 

B 

B 

C 

B B 

A A 

A A 

B B 

D 

D 

C 

B 

B 

C 

D 

E 

D 

D 

E 

Figure 3 Par t i t ion of a square  containing the  points  whose 
coordinates follow Gaussian distribution. 
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Figure 4 Comparison between the predicted and actual 
average node occupancies. 
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Figure 5 Comparison between the modified predicted and 
the actual average node occupancies. 


