A Cost Model for Query Optimization Using R-Trees

Walid G. Aref

Matsushita Information Technology Laboratory

Panasonic Technologies, Inc.
Two Research Way
Princeton, New Jersey 08540
aref@mitl.research.panasonic.com
Phone: 609-734-7349
Fax: 609-987-8827

Abstract

A cost model is presented for optimising queries thet involve
accessing spatial objects which are indexed by an R-tree.
The model is useful for estimating the selectivity factor as
well as the cost of some commonly used spatial operations,
¢.g., the window intersection and the spatial join operations.
Performance studies are conducted that verify the validity
of the cost model using real as well as synthetic data sets.

1 Introduction

A spatial database is a coliection of objects that span the
same underlying space, where each object may have an ar-
bitrary extent.” Usually, spatial databases are very large in
data volume. Consequently, n spatial database is organised
using spatisl access methods that provide efficient access
and flexible manipulation of the data. There are many ways
to represent and organise a set of objects inside a data struc-
ture [13]. In the following we review some of these represen-
tations.

One way is to decompose a spatial object into disjoint
cells. This means that the spatisl object is represented by
more than one entity inside the data structure. Some ex-
ample representations include a partition of the spatial ob-
ject into s collection of convex blocks (the cell tree (8]}, 2
collection of square blocks at predetermined positions (the
quadtree [12]), or a collection of rectangles (the RY-tree {7)).
An alternative way is to represent a spatial object by only
one entity inside the data structure, e.g., by s point in
higher dimensions as in the case of representing an n-
dimensional polygon having k boundary points by & point
in nk-dimensions and then store it in a point data structure
(e.g., the Grid File [16]), or by some conservative spproxi-
mation of the object as in the case of representing the same
polygon by its minimum eaclosing rectangle {e.g., the R-
tree [10]).

In this paper we focus on the representstion of objects
by only one entity. In particular, we use the R-tree represen-
tation as an example since it is one of the widely used data

Permission to ooRy without fee all or part of this material is
granted provided that the coples are not made of distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association' of Computing
Machinery. To copy otherwise, of to republish, requires a fes
2ndfor specific permission.

CIKM'94 Workshop 12/94, Gaithersburg, MD, USA
© 1594 ACM 0-89791-750-2/94/0012...$3.50

Hanan Samet
Computer Science Department and
Center for Automation Research and

Institute for Advanced Computer Studies
The University of Maryland
College Park, Maryland 20742
hjs@cs.umd.edu
Phone: 301-405-1755
Fax: 301-314-9115

structures for indexing spatial dats in extensible database
systems. However, our techniques caa be sdapted to spply
to other similar data stzuctures (e.§., see [2] for an equivalent
study for the quadtree).

Many performance studies have been conducted that test
and analyse the performance of the R-tree for various types
of operations (see {11, 8, 15} for some recent studies). This
paper is an attempt to integrate the results of these studies
into one model that can be used by an extensible query opti-
miser to estimate the cost of predicates that involve spatial
operations for R-tree based indexes. More specifically, in
this paper, we focus on two types of operstions: the window
intersection and spatial join operations.

In order for an extensible query optimiser to handle a
newly added operation into the extensible database system,
the optimiser has to be informed of the following sspects
about this operstion:

» an estimate of the selectivity factor of the operation
¢ an estimate of the cost of the operation

o the algebraic axioms that relate this operation to the
other operations in the algebra

In this paper we focus on these aspects for the two spe-
tial operations mentioned sbove when the underlying spa-
tial database is indexed using an R-tree. This can serve asa
framework for realising & cost model for optimising spatisl
queries.

The rest of the paper proceeds as follows. Section 2 pro-
vides an overview of the R-tree dats structure as well as
the spatial operations that we address in the paper, namely
the window intersection and spatial join operations. Sec-
tion 8 contains formulas for estimating selectivity factors.
Section 4 contains formulas for estimating the execution cost
of the operations. Section 5 describes our experimental set-
ting as well as the experimental results while contrasting
them with the developed formulas. Section 6 contains con-
cluding remarks.

2 Overview

2.1 The R-Tree

The R-Tree [10] is » balanced tree that stores the spatial
data by using the concept of & minimum bounding {or en-
closing) rectangle. Objects are grouped into hierarchies of
enclosing rectangles. The R-tree is similar to a B-tree with

key values in the B-tree nodes replaced by bounding rect-
angles. However, unlike a B-tree, the bounding boxes of
different nodes of the R-tree may overlap. Figure 1 gives

] J1E]

Figure 1: An example illustrating a set of tectangles and
their corresponding R-tree.

an example of an R-tree. A spatial data object may be asso-
ciated with only one bounding rectangle. However, the area
that the object spans may be included in several bounding
rectangles. This may result in descending more than one
tree path when searching for an object in the databage. The
Rt-tree [21) was designed to address this issue by decom-
posing the objects into multiple pieces, so as to produce

non-overlapping enclosing rectangles at the higher levels of -

the tree.

One important feature of the R-tree is that it is not
unigue. Its structure depends heavily on the order in which
the individual objects were inserted into, and/or deleted
from, the tree. Moreover, there is some freedom in decid-
ing into which leaf node a newly added object gets inserted.
The R*-tree [5] is a variant of the R-tree that makes use
of this latter feature and has a sophisticated node insertion
algorithm that helps reduce the area of overlap smong the

enclosing rectangles.

2.2 The Window Intersection Operation

Window intersection is a central operation in spatial data-
bases. A window can be in the form of & rectangle or a
polygon. This operstion serves as a building block for a
number of queries, Usually, spatial features tpan a wide
feature space. However, users are more interested in view.
ing or querying only portions of the feature space instead
of the whole space. Extracting parts of the space to work
with in subsequent operations is done by the window in.
tersection operation. Given a window w, some examples of
queries that involve window inclusion are: report all fea-
turea inside w, intersect feature £ with feature b only inside
w, determine if feature f exists in w, ete. For example, Fig-
ure 2 shows s spatial database tepresenting the road map
of the city of Falls Church, where roads are the objects of
the database. Figure 3 shows the roads in the city that are

61

contained in window ¥ (with corner values (100,100) and
(300,300), respectively). More details about the window in-
tersection operations and tlgorithms for implementing them
can be found in 1],

Figure 2: Part cf & map sheet of the city of Falls Church,
Virginia.

Figure 3: Roads of the city of Falls Church that are coa-
tained in window w. The origin of the space is at the lower-
left corner.

23 The Spatial Join Operation

Spatial join is » fundamental operatioa for answering queries
that involve spatial predicates. It is commonly used in an-
swering queries involving spatial data sets, where it com-
bines entities from two spatial databases into single entities
whenever the combination satisfies the spatial join condition
(e.g., if they overlap in space). For example, Figure 4c shows
the result of joining a simple landuse databage (Figure 4a)

B with a simple road-network datsbase {Figure 4b). The query

in this case is to find the regions of the landuse database that
intersect the ronds of the road-network database. For exam-
Ple, the join condition may be landuss.region intersects
road.coords where region and coords store the spatial rep-
resentation of the landuse tegions sad the rond-network line
segments, respectively.

As pointed out in [6], both the CPU and the disk read
costs of the spatial join operation are very significant. As
a result, extensive research has been conducted on alter-
native ways of procesting the spatial join efficiently (e.g.,
sce 3, 4, 6, 9, 18, 20]). Becker [4], and Becker, Hinrichs,

Routs ¥ Roule 3
Routs 2
indusirisl /
wetland
Routs §
\
T e , A

com !

‘mn Routs | RAouts 2

% \ Route 4
(&) (b)
land,usags road.rams

industrial Routs 1
com . Route 1
airpost RAoete 2
airpon. Routs 4

(e}

Figure 4: {a) A simple landuse database, (b) a simple road-
network database, {c) the landuse/road pairs that intersect
each other.

and Finke [3] propose an algorithm for the efficient evalua-
tion of spatial join for databases of multidimensional point
objects. Giinther {9] presents a hierarchical spatial join al-
gorithm that applies efficiently for s family of tree-based
data structures, termed the generalisation tree. Brinkhoff,
Kriegel, and Seeger [6] apply s similar idea in the context of
the R-tree [10]. In addition, they present several techniques
that reduce both the disk read and CPU costs of the spatial
join significantly. Rotem [20], and later, Lu and Han [14],
suggest precomputing the spatial object pairs satisfying s
certain spatial relationship and storing them in spatial join
indices in order to speed up the spatial join at query rua-
time. Orenstein and Manola [18] present two algorithms for
spatial join where the underlying representation of spatial
data is the Z-Order (19). '

3 Seiectivity Estimation

We use the following parameters to estimate the selectivity
factors and the cost of the spatial join and window intersec-
- tion operation.

e NOg: the number of objects in the database.

® Agpace' the area of the underlying space fér the eatire
spatial dstabase.

o Cgy: the data coverage which is the ratio between the
sum of the aress of each object in the database and
the area of the underlying space for the entire spatial
database (Aspacs)-

¢ X4uy: the average width of the minimum bounding
rectangies of the objects in the database.

o Yaug: the average height of the minimum bounding
rectangles of the objects in the database.

62

o AOayp: the average ares of an object in the databaze.
This parameter can be computed as follows:

C,
AOpyy = —g:-;As,.,..
s Ay: the area of the query window

o Cy: the data coverage of the query window, i.e.,

Av
Cu= .
h ASput

¢ Ng: the number of nodes in the R-tree.

3.1 Seiectivity of Window Interséction

We start by estimating the selectivity factors of the intersec-
tion of just one rectangular object with the spatial database.
Let NOyy be the number of objects in the underlying spatial
database. Then, the selectivity for the window intersection
operation, denoted OSy, is defined as the ratio between the
number of objects in the underlying apatial database that
intersect a given window and NQOy;. Assume that we are
given s window, say w, with total ares A.; of width and
height X, and Y,,, respectively; and a spatial database db
of NO g4, objects, each of type rectangle, that lie in & space
of area, say Aspace. Given one object o € db, with total ares
Ao, and width and height X, and Y, respectively, then the
probability that w intersects o is computed by (refer to Fig-
ure 5):

(Xu + Xo)(Yo + ¥o)

AS’RI

Probability (w intersects 0) =

Notice that if w is a point, then X, = ¥, = 4, = 1.

Figure 5: The rectangles w and o intersect if and only if
the upper-left corner of w (point p) lies anywhere inside the
shaded rectangle whose sides are Xy + Xo and Yu + Yo.

The above probability formuls holds for all objects in the
database db. Summing for all objects in db,

1 2 {(Xw + Xo) (Yo + Yo)

Now <4

085. =

AS’“O
1 ,Z Aw Ao
(T i+ T g
NO‘} ecdb A;’“- ocdh A.Fmt
Xw

Z Yo Z
e Y, 4+ —— X.)
As’a“ ocdh As‘pua ocdb

= _1__(N0dbcu + th +

NO 4
XuNOasYavy + YwNOthAu,)
As,::n As’ycu
YWXAug + X Yaug

Cas
NO.{[As;mn

= Cu+ +

where Cy = gAu—, and Xquy and Yjuy are the average
L4

width and height, respectively, of all the objects in the un-
derlying spatial database,
Observe that, if X4ug = Xu 8nd Yuuy = Yo, then

Cay

3Cu + NO g

0§, =

This formula is spplicable if the size of the query window is
of the same order as the average dimensions of the objects
in the database.

3.2 Selectivity of Spatial Join

In joining two sets of objects using an intersection predicate,
the selectivity denoted OSj, is defined as the ratio between
the number of intersecting pairs of objects from the two un-
derlying spatial databases and the size of the cross product
between the two databases, i.e., NO@I X NOdgz. One way
to compute the spatial join selectivity factor 05; is to con-
sider one of the two input streams of the spatial join ss the
underlying database and to consider the other input stream
as a source for query windows {i.e., the inner component of
the spatial join is the underlying spatial database and the
outer component is a set of query windows). This enables
us to utilise the selectivity formula for the window inter.
section operation described in Section 3.1, and to sum over
all the windows w in the ocuter input stream. This results
in the following {as in Section 3.1, we assume that the ob-
jects in the underlying spatial database are approximated
by their enclosing rectangles resulting in a spatial database
of rectangles):

1 Z Z (Xu + X)Yu + ¥a)

/ NO db, Nodge Aspace

wEdd, ocdb,y
Aw +

1
= yoo (X X
NOuw, NOu, wedby odbs Aspace
> xs
o€dbd,

Ao Xu
Z Z: A.?pcn + Z AS’Gu
weddy

wedb, oedd;

Yo
Z ASpece ZX")

pac

wedb, o€db,
1 Ao
= —-———(NO;;, Z +
NOau, NOa, e, Aspace
Xo
Z Caby + NOdsyYauge Z oot
wedd, wedd, “pace
Y
NOgpp X
dbz Avg? “ezdb‘ AS’;Q(
=
= m(”Odszdgl +N0451C¢§’ +

XAug! YAug,!-+

. N’O‘ul NO“z Aspace

63

X Y,
NOg NOu, _.:‘.;!’_“&)

Space
= Ca, Cavy Xaugs Yavge + XaugsYavgs
Nodb; Nodb! ASpul !
or equivn.léntly,
- AoAugl AoAugl + XAU;I YAugz + XAvg! YAvgl
ASpaer ASpa:c ASp-u

Notice that the roles of db; and dbg sre symmetric in the
above formula. Also notice that the last formula indicates
that the selectivity factor for the apatial join depends only
on the average ares (or the extent) of the objects in the
underlying spatial database.

3.3 Self Join

In many circumstances we may need to join a stream with
itself (which we term & self join). For exsmple, finding the
pairs of intersecting rectangles in a given databuse requires
a self join operation. Since in addition to intersecting some
other rectangles in the stresm, each rectangle intersects it-
self, the formulas given in Section 3.2 for estimating the
selectivity factors of the spatial join will not be accurate in
the case of the self join. We need to compensate for the fact
that each rectangle intersects itself. This results in some
additional output pairs of the spatial join that are equal to
the total number of objects in the database. Therefore, we
add a corrective factor equal to the number of objects in the
stream to the formulas given in Section 3.2 (the same is also
true for the blocks in the stream). This results in the follow-
ing formuia for the selectivity of the self join, OS5 «j- Notice
that in order to include the corrective factor in the formula
of the selectivity factor, we divide the corrective factor by
the term NO 4 x NOg4, which is the sise of the output of
the spatial join in the worst case.

05, = 08;+ ﬁbl;:;
Ca XAU; YAv; 1
= 2 +2
NO4 Aspace NOy4y
_ 2CHu +1 XAv’YAvg .
= Noxn Aspers or equivalently,
= 2 Aodv: +2 XAvg YA-, 1
Asgece ASp-el NOy
= 2 Ao‘u, + XaugYavy + 1
ASpul NO 1]

4 Execution Cost

In the following, we present an estimate of the cost of each of
the two operations in the absence and presence of an R-tree
index. The total cost of an operation is a combination of
both the CPU and 1/0 costs (C.py and Ci,, respectively).

We use & weighting factor w between the CPU and the
disk I/O costs. In other words, the total cost for an opera-
tion is estimated by: '

Capce.ﬁm.unl = Cmfuim.io+ﬁ‘cc’¢vnlimpu

4.1 The Execution Cost of Window Intersection

In the absence of an index, to answer s query that involves
s window intersection predicate, we need to scan the input

relation and test whether each of the objects in the rela-
tion intersects the query window or not. The CPU cost of
intersecting two rectangles involves four comparisons. As
a result, in the absence of an index, the total cost of the
window intersection operstion can be estimated by:

Cio + qu
Np +4wNOy

Cuin.imnuei

where Np is the number of disk pages of the entire spatial
database.

In the presence of an R-Tree index, according to
Faloutsos and Kamel [11], the average cost of disk reads,
Cindemed_win.ia) i8 given by:

= total.ares + Ng query.cres + Yulas +
Xuwly

Cindessd-win_io

where totaiares, Ls, and Ly, are the sum of the aress,
widths, and heights of all bounding boxes of the nodes of
the R-Tree, respectively, guery.area is the ares of the query
window, and Ng is the number of nodes in the R-tzee, and
hence Cindemsd_win_io ¢an be computed as follows:

Cindsnedwinio = cdbASpﬂcu + NrAus +
NO db(waAvg + XUYA-g)

We also include the CPU cost Cindenedwincpu t0 the above
formula, where Cindesed-win_cpu 18 derived in exactly the
same way 88 the Cindesed_win.io, but with a different cost
factor. Since an intersection of two rectangles takes four
comparisons, therefore .

cindcatd.win.cpu = 4wCindened_win.io

where w is the weighting factor between the disk read cost
and the CPU cost. Therefore, the total cost Cindesrd win_totat
can be estimated as:

(1 + 4W)C|'ndcn¢.wiu.i¢
(1 + 4w)(CarAspace + NpAuw +
Nodb‘(YwXAu' + XuYAtg))

Cindensd_win.total

4.2 The Execution Cost of Spatial Join

There are several new and efficient algorithms for performing
spatial join using R-trees, e.g., 2ee {6, 8]. In this section, we
focus on the simple nested loop join in the presence of an
R-tree index as the inner of the join.

One way to estimste the execution cost of spatial join
Cop_join i8 to consider one of the two input streams of the
spatial join as the underlying database and to consider the
other input stream as s source for query windows (i.e., the
inner stream of the spatial join, dba, is the underlying spatial
database and the outer stream, dby, is & set of query win-
dows). This enables us to utilise the cost formula for the
window intersection operstion described in Section 4.1, and
to sum over all the windows w in the outer input stream.
This zesults in the following formuls for Cyp_join:

E Cindesrdowin_io
wedhy

2 (CdbaASpul. + NR:AU +
wedd, ’

c;p,join.ic

64

Nodl, (YwXA'n + XuYasy,))

NO“I CarzAspaceg + Nr,Ca, As’“‘t +
NOu NOguy(XaveYave + XavesYave)
4w Ctp Jeindie

Cap josn.cpu
Therefore,
(1 + 4“) C.’ _jcl'ﬂ_.l'ﬂ

{1+ 4w)(NOdb, c&:ASncu. +
Nﬁa Ca; ASpncc: +

NO 4 NOgby (XavnYavss + XaegsYaus,))

clp.join-tatci

Notice that the formula for execution cost of spatial join
is not symmetric with respect to db; and dbs. Therefore,
if there are two R-.tree indexes, one for each of the two
databases, then two formulas sre computed in order to de-
cide on whick inner/outer assignment of the two streams
will result is a cheaper execution cost of the spatial join.

5§ Experimental Results

The purpose of our experiments is to verify the significance
of the derived formulas for estimating the selectivity factors
as well as the cost of execution under varying couditions.
The formulas for the execution cost are already those of
Kamel and Faloutsos ([11]), where they conducted many
experiments to verify the formulas. They report that the
cost formulas match the experimental results extremely well.
Therefore, in this paper, we only verify the formulas for
estimating selectivity factors.

The experiments for verifying selectivity factors were
conducted using real as well as synthetic data sets. The real
data sets consisted of the road neiworks in the datas of the
U.S. Bureau of the Census Tiger/Line file [17] for represent-
ing the roads and other geographic features in the U.S. The
synthetic data sets are coliections of rectangles generated at
random.

Data Atea of | Number of
Covera Rectangle | Rectangles
0.01 64
0.10 64 . 409
0.30 64 819
1.00 64 4008
1.50 a4 6144
23.00 54 8183
3.00 64 13288

Table 1: Parameter settings for input data sets with fixed ob-
ject size and varing data coverage.

Data Ares of | Number of
c%! Rmusl_; Rectangles
K 1
1.00 512 813
1.00 1034 k11
1.00 2048 128
1.00 16384 18

Table 2: Parameter settings for input data sets with fixed data
coverage and varying object ares.

(a) Washington D.C.
Figure 6: A Sample of the Tiger/Line spatial databases used in the experiments,

5.1 Experiments with Real Data

We used five Tiger/Line databases (two of the maps are
given in Figures 8a and 6b). For each line segment in the
Tiger/Line database, we constructed the line’s minimum
bounding rectangle. These data sets help verify our esti-
mates for arbitrary distributions of objects in space. .

Table 3 gives s characterisation of the real data sets (the
Tiger/Line) files using some of the parameters suggested and
discussed in Section 3. These include the data coverage of all
the objects, the average ares of all the bounding boxes that
include each line segment in the database, and the number
of objects in the entire database. The sise of the underly-
ing space for all the Tiger/Line data sets is normalised to
512 % 512.

Map Name Dats Avg. Arca of | Number of
Coverage | Bouad. Box | Line-segs.

"Falls Shurck (FC) 0.43 193.10 (114
Bedford (BF) 0.34 54.17 1644
Williamsburg (WB) 0.19 23.63 n3
Franklia (FR) 0.35 54.46 1685
Washiagton D.C. (DC) 0.56 7.90 18517

Table 3: Parameter setting for the Tiger data files. The size
of all the maps is normalized to 512 x 512,

In order to conduct our experiments, we spatially join

- each pair of the Tiger/Line files together. Notice that al-

though the Tiger/Line data files that we use refer to non-
overlapping geographicel regions, we normalise the coordi-
nate values of each file so that its upper-left corner has the
coordinate values (0,0). This results in overlapping dats sets
and allows us to perform spatial join using data sets derived
from real sources.

Table 4 gives the relative error in the estimated value of
the selectivity factor of the spatial. join over the measured
value. In the table, a negative percentage indicates that the
measured value was smaller than the estimated value while
a positive percentage indicates that the estimated value was

65

(b) Franklin

smaller. The total number of data set pairs that we spatially
joined together was 15. Figure 7 summarises the above ta-
bles by giving the percentage of the number of spatial joins
whose estimated selectivities lie within s certain relative er-
ror from the actual vulue, ’

In the case of estimating selectivity factors, for the 15
spatial join operations that we conducted, 14 of them (ie.,
over 93% of the joins performed) have their estimated value
of the selectivity factor lie within 30% of the actusl measured
value, and 13 of them (i.e., over 86% of the joins) have their
estimated value lie within 25% of the sctual measured value.

These estimates are certainly good enough to be useful
for query optimisation purposes. The experiments aleo show
that our formulas for estimating the selectivity factor for the
spatial join operation perform quite well for real data sets,
given the non-uniformity in the distribution of the objects
in the underlying space of these data sets.

YT BF T WE T FR BOC
FC 0.24 | -0.03 0.18 0.13 0.28

BPF 0.13 | -0.10 | -0.04 | 0.10
wB 0.39 | 0.08 | -0.22
FR : 032 | 0.14
DC 0.55

Table 4: The relative error in the value of the estimated selec-
tivity factor of the spatial join over the measured value.

5.2 Experiments with Synthetic Data

Tables 1 and 2 describe the synthetic data sets that we used -
in our experiments. The tables use some of the parumeters
given in Section 3. These include the data coverage of all the
objects, the average area, in pixels, of all the objects in the
database, and the number of objects in the entire database.
The sise of the underlying space for all the synthetic data
sets is normalised to 512 x 512.

We conducted the following experiment: for esch entry

‘in ‘Tubles 1 and 2, we generate 10 sets of random rectangles

selectivity factor X 100,000

90
80 }
70t 1
60 b
50
40 -+
or 4) k

10 .
¢ 0.10.20.3 0.4 0.50.60.790.80.9 1
Relative Errorx

Percentage of Joins

Figure 7: The number of spatial joins whose estimates were
within the relstive error given in the z-axis.

satisfying the same parameter setting PS. We call the 10 sets
a master data set, and denote it by MDSps. To measure
the sclectivity factor for spatial join for a pair of parameter
aettings PS; and PSg, we ran the following . experiment:
each set of rectangles in MDSps; is joined with each set
of rectangles in MDSpss using spatial join. The number of
cutput pairs is measured, summed and averaged (by dividing
it by 100, which is the total number of times the spatial join
was executed for this experiment). For our experiments, we
fixed the ares of the underlying space to be always 512 x
512. We verified our estimates with the messured selectivity
factors while vazrying the data coverage of the input streams
as well as the average sise of the rectangles in the underlying
spatial database.

98

78 , A . R " . . .
6 6.2 0.40.60.8 3 1.2 1.4 1.51.8 2
Data coverage of the second stream

Estimated selectivity factor -+
0.01 data coverage for the first stream ——
0.10 data coverage for the first stream —«—
1.00 data coverage for the first stream ——
2.00 data coverage for the first stream —=+—

Figure 8: A comparison of the messured va. the estimated
selectivity for the spatial join operation as s function of the
data coverage of the second stream.

Figure 8 compares the estimated value of the selectiv-

- 66

11 * .
-] 10 b Estimated -o—
=4 9 Measured
b
z |
] Tr 1
2
o 6 J
3 5t ;
®
1 4r E
ol ‘
™ 2F T
A
[w} 1 .I- P
0

ity factor for the spatial join against the measured value
for different data coverages (we tse data sets from Table 1
for both input streams). The dats coverage of the first in-
put stream was fixed at 0.01, 0.1, 1.0, and 2.0, respectively,
while the data coverage of the second input stzeam varied
from 0.01-2.0. In the figure, the estimated value for the se-
lectivity factor of the spatial join is constant (spproximately,
95 x 10~*). This is because the estimates for the selectivity
factor that we developed in Section 3.2 do not depend on
the the dats coverage. They depend only on the average
siges of the objects in each stream. The figure also shows
the measured values of the selectivity factor that resulted
from the experiments. It is found that they are relatively
constant and are within 20% of the estimated value.

Figure 9 performs the same comparison while varying
the average areas of the objects in the second input stream
(we use data sets from Tables 2 for both input streams).
The average ares of each object in the first input stream
in Figure 9 is 1024. Since the total azea of the space is
512 x 512, 1024 accounts for about 0.4% of the whole space
ares, respectively. The relative error of the estimated values
for the selectivity factor of the spatial join is within 10% of
the measured values.

6 7 8 9 10 11 12 13 i4
log(Object Size} of the seccnd stream

Figure 9: A comparison of the measured vs. the estimated
selectivity for the spatial join operation as a function of dif-
ferent average object aress. The data coverage of both input
streams of the join is 100%. The average sres of the objects
in the first stream is 1024. The zaxis corresponds to the
average ares of the objects of the second stream.

From the figures we can see that our estimates form sn
upper bound on the messured values. The maximum errer
between the two values is less than 25%, although in most
cases it is much less.

6 Concluding Remarks

The formulas in Sections 3 and 4 make use of several param-
eters that characterise the underlying spatisl database and
their R-tree index. These parameters are simple to compute
and easy to maintain as the spatial database evoives, How-
ever, it would be interesting to study ways of estimating the
selectivity and cost of the spatial operations discussed in this
paper by statistical methods based on sampling. We also
plan to consider other important spatial operaticns, e.g.,
nearest-neighbor and window inclusion, spatial dstabases

- that involve non-rectanguiar spatial objects, ¢.g., polygons,
and other spatial access methods.

7 . Acknowledgements

The first author conducted most of this research while at
" The University of Maryland, College Park. The support of
the National Science Foundation under Grant IRI $216970
is gratefully acknowledged.

References

{11 W. G. Aref and H. Samet. Efficient processing
of window queries in the pyramid data structure.
In Proceedings of the 9th. ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems
{PODS), pages 265-272, Nashville, TN, April 1890,

{2] W. G. Aref and E. Samet. Query sise estimation of
spatial join. Technical Report 78, Matsushits Infor-
mation Technology Laboratory, Princeton, NY, 08540,
December 1993.

[3] L. Becker, K. Hinrichs, and U. Finke. A new algorithm
for computing joins with grid files. In Proceedings of
the $th International Conference on Data Engineering,
pages 190-187, Vienna, Austris, April 1993,

{4] L. A. Becker. A New Algorithm and a Cost Model for
Join Processing with Grid Files. PhD theasis, University
of Siegen, July 1992,

(5] N. Beckmann, H. P. Kriegel, R. Schneider, and
B. Seeger. The r’-tree: An efficient and robust ac-
cess method for points and rectangles. In Proceedings
of the 1990 ACM SIGMQD International Conference
on Management of Data, volume 19, pages 322-331,
Atlantic City, NJ, June 1990,

(6] T. Brinkhoff, H. P. Kriegel, and B. Seeger. Efficient
processing of spatial joins using R-trees. In Proceedings
of the 1993 ACM SIGMOD International Conference
on Management of Data, pages 237-246, Washington,
DC, May 1993, ’

[7] C. Faloutscs, T. Sellis, and N. Roussopoulos. - Analysis
of object oriented spatial sccess methods. In Procesd-
ings of the 1987 ACM SIGMOD International Confer-
ence on Management of Data, pages 426439, San Fran-
cisco, May 1987.

[8] O. Giinther. The design of the cell tree: an object-
oriented index structure for geometric databases. In
Proceedings of the Fifth [EEE Iniernational Confer-
ence on Daia Engineering, pages 598-605, Los Angeles,
February 1989. :

O. Giinther. Efficient computation of spatial joins.
In Proceedings of the 9th International Conference on
Data Engineering, pages 50-59, Vienna, Austria, April
1993,

o

[

[10] A. Guitman. R-trees: A dynsmic index structure for
spatial searching. In Proceedings of the 198{ ACM
SIGMOD International Conference on Management of
Data, pages 47-57, Boston, June 1984.

67

{11] Tbrahim Kamel and Christos Faloutsos. On packing R-
trees. In Second Int. Conf. on Information and Knowl-
edge Management (CIKM), pages 490499, Washing-
ton, DC, November 1993.

(12] A Klinger. Patterns and search statistics. In J. S.
Rustagi, editor, Optimizing Methods in Statistics, pages
303-337. Academic Press, New York, 1971.

{13] H. P. Kriegel, P. Heep, S. Heep, M. Schiwiets, and
R. Schneider. An access method based query pro-
cessor for spatial database systems. In G. Gambosi,
M. Scholl, and H.-W. Six, editors, Geographic Database
Management Systems. Workshop Proceedings, Capri,
Italy, May 1991, pages 194-211, Beriin, 1892. Springer-
Verlag.

(14] W. Lu and J. Han. A new algorithm for computing
joins with grid files. In Proceedings of the 8th Interna-
tional Conference on Data Engineering, pages 284-292,
Tempe, Arisons, February 1992.

[15] Abha Moitra. Spatio-temporal data management using
R-Trees. In Niki Pissinou, editor, Proceedings of the
ACM Workshop on Advances in Geographic Infomation
Systems, pages 28-33, Arlington, Virginia, November
1993.

{16] H. Nievergelt, H. Hinterberger, and K. C. Sevcik. The
grid file: an adaptable, symmetric multikey file struc-
ture. ACM Transactions on Database Systems, 9(1):38-
71, March 1984.

f17] Bureau of the Census: 1990 techaical documentation.
Tiger/line precensus files. Technical report, US Burean
of Census, Washington, DC, 1989,

[18] J. A. Orenstein and F. A. Manols. PROBE spatial data
modeling and query processing in an image database
application. IEEE Transactions on Software Engineer-
ing, 14(5):611-629, May 1988.

{18] 1. A. Orenstein snd T.H. Merrett. A class of data struc-
tures for associstive searching. In Proceedings of the 3rd
ACM SIGACT-SIGMOD Symposium on Principles of
Database Systems (PODS), pages 181-190, Waterloo,
Canada, April 1984,

{20] Doron Rotem. Spatial join indices. In Proceedings of
the 5th International Conference on Data Engineering,
pages 500~-509, Kobe, Japan, April 1991.

[21] T. Sellis, N. Roussopoules, and C. Faloutsos. The
rt-tree: a dynamic index for multi-dimensional ob-
jects. In Proceedings of the 13th International Confer-
ence on Very Large Databases (VLDB), pages 507-518,
Brighton, England, September 1987, ‘

