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Abstract 

Window operations serve as the basis of a number of 
queries that can be posed in a spatial database. Ex- 
amples of these window-based queries include the exist 
query (i.e., determining whether or not, a spatial feature 
exists inside a window) and the report query, (i.e., re- 
porting the identity of all the features that exist inside a 
window). Algorithms are described for answering win- 
dow queries in O(nloglogT) time for a window of size 
nxn in a feature space (e.g., an image) of size TxT (e.g., 
pixel elements). The significance of this result is that 
even though the window contains n2 pixel elements, the 
worst-case time complexity of the algorithms is almost 
linearly proportional (and not, quadratic) to the window 
diameter, and does not depend on other factors. The 
above complexity bounds are achieved via the introduc- 
tion of the incomplete pyramid data structure (a variant 
of the pyramid data structure) as the underlying repre- 
sentation to store spatial features and to answer queries 
on them. 

1 Introduction 

Today, many applications benefit from having a spa- 

tial processor in conjunction with a database manage- 
ment system in the same environment. The function 
of the spatial processor is to maintain and operate on 
spatial features efficiently. Maintenance includes stor- 

ing, adding, or deleting features. Operations include 
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Boolean set operations (e.g., intersection, union, dif- 
ference, negation, etc.), windowing, arithmetic opera- 
tions (e.g., area, perimeter, centroid, etc.), and proxim- 
ity operations (e.g., left, north, nearest, farthest, within 
a given zone, etc.). Having the spatial processor per- 
form these functions efficiently (while utilizing powerful 
spatial architectures) enriches the query power of the 
database environment for application programs and end 
users. 

One key operation that we consider here is the win- 
dow operation. A window is the region specified by the 
cross-product of two closed intervals over the integers. 
For example, 

W = {t&Y) I (Z,Y) E bl : 221 x Iv1 : Y21 

where I, y, cl, 22, ~1, and yz are integers} 

is a window that represents all the internal points inside 
the horizontal interval [ZI : 24 and the vertical interval 
[Yl : Y21. 

Window operations serve as the building block for 
a number of queries and as a composite operation to 
many other queries. Usually spatial features span over 
a wide feature space. However, users are more inter- 
ested in viewing or querying only portions of the fea- 
ture space instead of the whole space. Extracting parts 
of the space to work with in the next operations is done 
through windowing. Given a window w, some examples 
of window-based queries are: report all features inside 
w, intersect feature f with feature b only inside w, does 
feature f exist in w, etc. 

In this paper, we concentrate on the efficient imple- 
mentation of window operations. We describe a bottom- 
up algorithm for handling these operations. The main 
idea behind this algorithm is to decompose the oper- 
ation over the whole window into sub-operations over 
smaller window partitions. Within this algorithm, spa- 
tial features are organized in a pyramid-like data struc- 



ture. We demonstrate that our algorithm is better than 
several other approaches. Using this algorithm as a 
building block, we show how to perform window-based 
queries efficiently. 

The paper proceeds as follows. In Section 2, we review 
the pyramid data structure and its main characteristics. 
In Section 3, we present all the techniques we apply in 
order to perform the window operation efficiently. Sec- 
tion 3.1 demonstrates how spatial features are encoded 
into the pyramid data structure. In Section 3.2, we show 
how we can access pyramid nodes directly. This enables 
us to extract the features stored in a given pyramid 
node in constant time. The feature retrieval algorithm 
is given in the same section. Section 3.3 contains a new 
mechanism for decomposing windows. In Section 4, we 
describe several window-based queries and algorithms to 
answer them efficiently utilizing the window operation 
and the window decomposition mechanism. Section 5 
analyzes the worst-case complexity of these algorithms 
in terms of the complexity of the decomposition pro- 
cess, along with a brief comparison with related work. 
Section 6 contains concluding remarks. 

2 The Complete Pyramid 

The pyramid [lo] is a multiresolution data structure. 
Given a 2d x 2d image array, say A(d), a pyramid is a 
sequence (or stack) of arrays A(i) such that A(i - 1) 
is a version of A(i) at half the scale of A(i). A(0) is 
a single cell. It is called the root of the pyramid. We 
say that array A(i) 1 ies at level i in the pyramid, and 
that the entire feature database is stored at the bottom 
level. For a T x T image, where T = 2d, the pyramid 
has resolution d which is the maximum depth or the 
number of levels in the pyramid. 

In this context, we view the pyramid as the space 
reserved for a complete recursive decomposition of the 
image space into quadrants down to the pixel level. This 
representation has an overhead of one third extra stor- 
age because of the need to store intermediate nodes. In 
other words, for a T x T image where T = 2d, the en- 
tire pyramid requires 4 x (T x T - 1)/3 nodes. This 
is the same amount of storage necessary for a complete 
quadtree [7] where every node of the quadtree has been 
expanded down to the pixel level. This structure is 
called a complete pyramid in contrast to the incomplete 
pyramid that we define later. 

In this paper, we do not use the term pyramid in its 
classic sense as a multiresolution stack of arrays. In- 
stead, we make use of a variant of the pyramid that 
enables us to represent a collection of different features 
of interest in the underlying image. The same approach 

was adopted by Shaffer and Samet [9]. Note that fea- 
tures can overlap, e.g., rivers, bridges, roads, and coun- 
ties. 

Although the pyramid is implemented by an array 
structure as is shown below, it is more convenient to de- 
fine a pyramid in the form of a tree. Again, assuming a 
2d x 2d image, a recursive decomposition into quadrants 
is performed just as in quadtree construction, except 
that we keep subdividing until we reach the individual 
pixels. The leaf nodes of the resulting tree represent 
the pixels while the nodes immediately above the leaf 
nodes correspond to the array A(d - l), which is of size 
2d-1 x 2d-1. The non-leaf nodes are assigned a value 
that is a function of the nodes immediately below them 
(i.e., their four sons) such as the average gray level. For 
our purposes, this function is the Boolean OR set oper- 
ation. In other words, we say that a certain feature is 
present in the parent node when this feature is available 
in any of its four sons. 

The pyramid is implemented by a linear array in a 
heap-like fashion [12]. Each pyramid node is represented 
by an array entry. Given a parent node p with relative 
index i at level i, we can access the kth son of p (where 
k = 0, 1,2, or 3) by the following formula: 

The number of array elements at levels 0 (the root level) 
through i - 1 is (4’ - 1)/3. 

Also, there is a correspondence between the pyramid 
nodes and the spatial database blocks. Assume a coor- 
dinate system such the origin is at the upper-left corner 
and x increases to the right and y increases downwards. 
A block of size 2’ x 2’ (0 5 i 5 d), having (P, c) as the 
coordinates of its upper-left corner (0 5 r, c 5 T - 1) 
such that T mod 2’ = c mod 2’ = 0 corresponds to 
the pyramid node at level d - i whose relative index 
within the array A(d - i) (also at level d - i) is equal 
to (biLinterleave(r, c)) 2 (2 x i), where > is the shift- 
right operation. Thus y > x means that y is shifted to 
the right by x bit positions. 

Pyramid nodes have the following internal structure: 
each node has a fixed number m of feature bit slots, 
and summarizing variables that summarize information 
about the descendents of the node. For now, we are 
interested in the feature bits. Each bit slot corresponds 
to a feature stored in the pyramid. 

3 Techniques 

In this section, we define the necessary data structures 
and techniques to perform the window operation ef- 
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ficiently. First, we describe how spatial features are 
stored in the pyramid. Then, we show how we can 
directly access any pyramid node, whether external or 
internal, in constant time. Next, we demonstrate an ef- 
ficient method to decompose the window into smaller 
units, each of which serves as the basis of a separate 
query to the pyramid. The discussion of how these 
structures and techniques are combined to compose an- 
swers to window-based queries is deferred to the next 
section. 

3.1 Feature Encoding 

Each feature is encoded into its bit slot through the 
whole pyramid independent of the features in the other 
bit slots. Below we describe how one feature is encoded 
using this coding technique. The same technique is ap- 
plied to the remaining features. In this discussion, we 
use the term node to denote one bit slot. Features are 
stored in the pyramid using the GL method devised by 
Shaffer and Samet [9]. It is a quadtree-like encoding of 
regions for the pyramid data structure. 

Nodes in a region quadtree are either leaf or gray. 
Leaf nodes correspond to those blocks that are either 
entirely inside the feature region in the image (labeled 
black) or are entirely outside (labeled white). Each non- 
leaf node is said to be gray (i.e., its corresponding block 
is neither entirely inside nor entirely outside the feature 
region). The parent of a leaf node is a gray node (i.e., 
leaf nodes are maximal). 

The GL method works as follows. If an intermediate 
node is gray, then its bit slot value is 1. If an interme- 
diate node is a leaf node, then its bit slot value is 0. 
Since it is necessary to determine the actual value of a 
leaf node (i.e., black or white), this value is stored in 
all of the descendents of the leaf node down to the pixel 
level (i.e., 1 and 0, respectively). If a bottom-level node 
is a leaf node, then its value is stored in the node itself 
since it has no descendents. Clearly, a gray node cannot 
appear in the bottom level. 

3.2 Pyramidal Direct Access 

The physical location of any node in the pyramid can 
be directly accessed in constant time [ll]. The pyramid 
is implemented as an array with the root at location 0, 
nodes at level 1 in locations 1 - 4, followed by the nodes 
at level 2 through d (the maximum level). Given z and 
y, the values of the coordinates of the upper-left corner, 
and the size 2’ x 2’, of a block in the image, we can com- 
pute the pyramid address of the ‘corresponding’ node, 
say Q, as follows: 

pyraddress(i, z, y) = (4’ - 1)/3 + 

(bit-interleawe(z, y) > 29 

Procedure features, given below, shows how features 
stored in & can be retrieved from the pyramid struc- 
ture in constant time. & can be at an intermediate or 
bottom level in the pyramid. 

set_offeatures procedure features(i, x, y); 
begin 

value integer i, x, y; 
set -f-features a; 
global integer d; 
if(i = d) then /* bottom level*/ 

s c contents(pyr-address(d, x, y)) 
else/* features in the node or in one of its sons */ 

s + contents(pyr-address(i, x, y)) 
U contents(pyr-address(i+l, x, y)); 

return (b); 
end; 

3.3 Decomposing Windows 

A window is stored implicitly in a region quadtree [5,7]. 
The nodes inside the window are colored black while 
those outside are colored white. Note that we do not 
need to store the window explicitly in a quadtree struc- 
ture since we can generate all the maximal quadtree 
blocks inside the window without building the quadtree. 
The generation process only requires that the window 
be specified. It works for an arbitrary rectangular win- 
dow (i.e., it need not be square). We refer to it as 
window-gen. 

Achieving a low execution time bound for window-gen 
is non-trivial. In particular, we want to visit each max- 
imal block only once. Otherwise, the execution time 
could be as bad as 0(n2) for an n x n window. If this 
were not the case, then, for example, block A in Fig- 
ures la and lb would be visited once for each row and 
column, respectively, in the image. 

The idea behind the window block-generator proce- 
dure is to scan the window row-by-row (in the block 
domain rather than in the pixel domain). During this 
process maximal blocks are generated and the columns 
of the row that lie within the block are skipped. This 
is illustrated in Figure 2, where 6 scans are needed to 
cover the 6 x 6 window with maximal blocks. The blocks 
are labeled with numbers that correspond to the order 
in which they have been visited. The first scan visits 
blocks 1, 2 and 3; the second scan visits blocks 4, 5, 
6, and 7; the remaining scans visit blocks 8 and 9; 10 
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Figure 1: In (a) and (b), maximal block A is accessed more than 

once by the smaller blocks to its left and top, respectively. 

M il .H 
Figure 2: The decomposition of a 6 x 6 window into maximal 

blocks. 

and 11; 12 and 13; and 14 and 15. Notice that once 
blocks 5 and 6 have been visited their columns (i.e., 
2-5) have been completely processed. For each block 
that is generated, say B, window-gen also generates B’s 
southern neighboring blocks for processing on the next 
scan. These blocks are stored in a linked list. 

Observe that we are always generating maximal 
neighboring blocks, or at least a bounded number of 
non-maximal neighboring blocks. An example of this 
situation is illustrated by the 10 x 10 window in Fig- 
ure 3 when processing blocks A-J in the first row. Each 
of blocks B, C, D, F, G, H, and J can generate at most 
one non-maximal neighboring block. Even though these 
non-maximal blocks are generated, they are skipped by 
the next scan since they are subsumed (i.e., contained) 
in the previously processed maximal block in the scan. 
For example, when scanning block K, blocks L, M, and 
N are skipped since they are contained in it. This is easy 
to detect because for each block we know the coordinate 
values of its upper-left corner and its size. 

Generating a maximal block is straight-forward. 
Given a window, say w, and the values of the row and 
column coordinates of a point, say (row, co/), inside w , 

ABCDEFGH I 

L 

Figure 3: The neighboring blocks to the south of blocks A-J in a 

10 x 10 window. Blocks L, M, N, P, Q, R, and T are non-maximal 

while blocks K, 0, and S are maximal. 

we want the largest block, say B, inside w for which 
(row,col) is the upper-leftmost pixel. B is of size S = 2” 
where s is the maximum value of i (0 < i 5 1ogT) such 
that row mod 2’ = co1 mod 2’ = 0 and the point (row 
+2’, co1 +2’) lies inside 20. 

Generating the southern neighbors of a block, say B, 
is done as follows. Check whether or not the southern 
boundary of B (denoted by sb(B)) is tangent to the 
southern boundary of window w. Notice that sb(B) is 
either tangent to sb(w) or is inside w. It cannot be out- 
side w since by definition B is a maximal block inside w. 
If sb(B) is tangent to sb(w), then no more blocks to the 
south of B need to be generated (e.g., after processing 
blocks 5 and 6 in the second scan of the window in Fig- 
ure 2). If sb(B) is inside w, then maximal blocks to the 
south of B are generated. Notice that all the southern 
neighbors that are generated are blocks that lie entirely 
inside the window (e.g., blocks 5 and 6 after processing 
block 2 in the first scan of the window in Figure 2). 

The algorithm terminates whenever during a scan no 
new southern blocks are added to the list. At this time 
all the maximal blocks inside the window have been gen- 
erated. 

4 Window-based Queries 

We consider the following window-based queries: 

l The Exist Query: Determine whether or not a certain 
feature f exists inside (i.e., overlaps) window w. 

l The Report Query: Report the identity of all the fea- 
tures that exist inside (i.e., overlaps) window w. 

l The Select Query: Determine the locations of all oc- 
currences of feature f inside window w. 
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In the rest of this section we show how to answer 
these queries using the window decomposition algorithm 
presented in Section 3.3. Our approach to answering 
these queries can be classified as bottom-up, in contrast 
to top-down algorithms that start at the pyramid’s root 
and proceed downwards. 

4.1 The Exist Query 

The main idea behind the algorithm to answer this 
query is to decompose the query over a window into 
a sequence of smaller queries. In particular, we use pro- 
cedure window-gen of Section 3.3 to decompose the win- 
dow into the maximal quadtree blocks inside it. Each 
of these square blocks will serve as a query unit. Note 
that coordinate values of the upper-left corner and size 
of every block generated are known (from the generation 
procedure itself). Section 3.2 also shows how to extract 
features from a pyramid node given the specification 
of the node’s corresponding block. Combining these 
two techniques yields the following algorithm. Generate 
the maximal quadtree blocks inside the queried window. 
For each one of these blocks, query the pyramid to re- 
trieve the features inside this block (i.e., hence inside the 
window). If the feature we are looking for exists in any 
of these blocks, then the algorithm halts and outputs 
YES. If the algorithm does not find the feature in any 
internal block after generating all of them and querying 
the pyramid for each one, then the algorithm halts and 
outputs NO. 

4.2 The Report Query 

The report query algorithm is implemented in an iden- 
tical manner as the exist query algorithm, except that 
features are extracted from each block and accumulated 
in a set, say S. After all blocks are examined, the entire 
set S is returned as the set of features that overlap the 
window. 

4.3 The Select Query 

The output of the select query is a list of all blocks inside 
the query window that feature f covers entirely. This 
list may be thought of as a linear (pointer-less) quadtree 
[S] with the white nodes being omitted. 

One crucial problem with the GL coding technique 
described earlier is that if a pyramid node is accessed di- 
rectly and found to have a value of 1 for a particular bit 
slot, then there is no easy way (i.e., O(1)) of determin- 
ing whether this node is gray (non-leaf) or black (leaf). 
The problem is that if its four sons are coded with a 1, 

Figure 4: Example of GL coding. 

then the node can be both gray or black, and we have 
to check its grandsons again. This process may possibly 
not terminate until we reach the nodes at the bottom 
level of the tree. As an example, consider Figure 4. 
Node A is a gray node while node C is in the subtree of 
leaf node B. Directly accessing node A, we cannot say 
whether it is gray or black (in constant time). The same 
applies for node C. The bottom-up select algorithm that 
we use (described below) depends on the efficiency of 
the process of making such a distinction between gray 
and black nodes. Thus the GL coding technique for the 
pyramid has to be modified slightly in order to support 
efficient select window queries. This leads us to use an 
incomplete pyramid as defined below. These modifica- 
tions do not adversely affect the complexity of the other 
window queries. 

4.3.1 The Incomplete Pyramid 

The difference between the normal GL coding scheme 
and the modified scheme is that in the modified scheme 
when a leaf node (a 0 value) appears at an intermediate 
level, then all its descendents have a 0 value except for 
those nodes at the bottom level which are assigned the 
values 1 or 0 depending on whether they are black or 
white, respectively. If a leaf node appears at the bottom 
level then it is assigned the value 1 or 0 depending on 
whether it is black or white, respectively. Notice that 
using this coding scheme, we are able to overcome the 
deficiency that arises with normal GL coding. In par- 
ticular, when nodes are accessed directly, we can dis- 
tinguish between gray and leaf nodes. As an example, 
consider Figure 5. When node A is accessed directly, we 
know it is a gray node since its value is 1, while node 
B is a leaf node since its value is 0. To determine if 
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Figure 5: Example of modified GL coding. 

node B is black or white, we access node C directly at 
the bottom level of the pyramid which tells us that B’s 
value is black (since C has a value of 1). 

Using the modified GL coding, procedure features 
is modified slightly as described below. In particular, 
when a leaf node is encountered at an intermediate level 
(i.e., a value 0 was encountered), the corresponding fea- 
tures stored in this leaf node are retrieved from the bot- 
tom level of the pyramid instead of from the node’s sons 
as in the normal GL coding scheme. Procedure features 
still runs in constant time. 

setaffeatures procedure features(i, x, y); 
begin 

value integer i, x, y; 
set -of-features s; 
global integer d; 
if(i = d) then /* bottom level*/ 

s t contents(pyr-address(d, x, y)) 
else /* features in the node or in one of its sons */ 

s c contents(pyr-address(i, x, y)) 
U contents(pyr-address(d, x, y)); 

return (s); 
end; 

4.3.2 Window Queries 

The procedures for answering the exist and report 
queries are unchanged for the modified GL coding. Of 
course, they make use of the modified features procedure 
routine described above. The select query algorithm 
proceeds in the following manner. First, generate the 
maximal black blocks that comprise the window. Next, 
for each block, test the corresponding pyramid node. If 

it is white, then do nothing. If it is black, then report 
this block in the output. If it is gray, then traverse the 
pyramid subtree corresponding to this node and report 
in the output all the black blocks descending from it. 

5 Complexity Analysis 

In this section we first derive the worst-case execu- 
tion time complexity of the window decomposition al- 
gorithm. Next, we use this result to compute the worst- 
case execution time for the window-based query answer- 
ing algorithms. Our analysis assumes that the window 
is square. 

5.1 Analysis of the Window Decompo- 
sition Algorithm 

Dyer [3] and Shaffer [8] prove that in the worst-case, 
the number of maximal quadtree blocks inside a square 
window of size n x n is N = 3(2n - log n) - 5. What 
remains to be done is to compute the cost of determin- 
ing the maximal blocks comprising the window. This 
consists of the work, say Tm, to generate a maximal 
block, say B, and the work that is wasted, say T, in 
generating southern neighboring blocks of B that are 
non-maximal. Therefore, the total execution time of 
the window decomposition algorithm is N . (T, + T,). 

Given a point (z,y) in a T x T space, there can be at 
most log T + 1 different blocks of size 2’ (0 < i 5 log T) 
with (2,~) as their upper-left corner. We use binary 
search through this set of blocks to determine the max- 
imal block inside the window. Thus T, is O(loglogT). 

It can be shown [2] that each block can generate at 
most one non-maximal neighboring southern block (re- 
call the discussion of Figure 3 in Section 3.3). Thus T, 
is O(loglogT). Combining T, and T, implies that the 
worst-case execution time for the window decomposition 
algorithm is O(n 1oglogT). 

5.2 The Exist Query 

This query can be answered in O(n log 1ogT) time. The 
exist query algorithm described in Section 4.1 queries 
the pyramid for each maximal window block generated. 
It stops running when the feature exists in any of the 
blocks or when it exhausts all the blocks without find- 
ing the feature in any of them. As we already know, 
each maximal block requires at most two pyramid di- 
rect accesses to be answered, and each such access takes 
constant time as shown earlier. The number of maxi- 
mal blocks inside the window is O(n), and each takes 
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O(log log T) to generate. Direct pyramid access takes 
O(1) time. This leads to an O(n 1oglogT) cost for the 
whole procedure. 

5.3 The Report Query 

The analysis for the exist query also applies to the report 
query algorithm described in Section 4.2. The only dif- 
ference is that it always runs in the same amount of time 
since it has to examine all the maximal blocks before re- 
porting the feature. Thus, its cost is O(n 1oglogT). 

5.4 The Select Query 

The worst-case time complexity of the select query pro- 
cedure described in Section 4.3 depends on the distri- 
bution of the feature in space. In that sense, a feature 
forming a checkerboard in the pyramid bottom level will 
have the worst time complexity since all nodes are gray 
down to the pixel level. Such an image does not take ad- 
vantage of the compression provided by the GL coding 
technique. In such a case, the running time is propor- 
tional to 4n2/3 + log n + 513. 

This dependence on n2 and log n is derived as follows. 
We make use of the fact that the number of maximal 
blocks inside a square window of width n is bounded by 
(2n - 1) + Czi’ n/2’-’ - 3 where m = log n [3]. More- 
over, a 2’ x 2’ block in the pyramid has (4’+’ - 1)/3 
descendants. The select query causes the pyramid to be 
accessed once for each maximal block, say B, in the win- 
dow. In the worst case, the pyramid node corresponding 
to B is gray and all of its descendents (to the pixel level) 
are also gray. In such a case, our implementation will 
visit 4n2/3 + log n + 5/3 nodes. 

Notice that on the average many of the maximal 
blocks inside the window correspond to leaf nodes in the 
pyramid. Also, not all the descendents of gray nodes in 
the pyramid are gray. Thus from a practical point of 
view, we can usually get better performance in the av- 
erage case (since more compaction takes place). 

At this point, we sketch how to reduce the worst-case 
performance to O(n log log T), regardless of the feature 
distribution in space, by introducing slot- or feature- 
dependencies. For the purpose of this discussion, sup- 
pose that spatial feature f is stored in bit slot bi, and 
we want to select the part of f that lies inside window 
w. Instead of producing a list of all the blocks in w 
that contain f, we allocate a new bit slot, say bz, in the 
pyramid which will be set to 1 for all maximal blocks 
in w that contain it. If these maximal blocks are gray, 
then the b2 slots of their sons are not marked. This is a 
form of lazy evaluation [4] in the sense that we do not 

Table 1: Window query time requirements 

Data Query 
Structure Exist Report Select 

Incomp. Pyr. O(nloglogT) 0 nloglogT) O(nloglogT 
Comp. Pyr. O(nlogT O(nlogT) O(nlogT) 
Quadtree O(Qr) O(Qf) O(Qf) 
Pixel-Based O(n2) O(n2) O(2) 

Table 2: Window query space requirements (in bits) 

Data Query 
Structure Exist Report Select 

Incomp. Pyr. 4fT2/3 4fT2/3 4( j + 1)TL/3 
Comp. Pyr. 4fT2/3 4fT2/3 4fT2/3 
Quadtree 4fQfP 4fQjl3 4fQrl3 
Pixel-Based fTL f T’ fT2 

copy the subtrees of gray nodes inside w that store f. 
Instead, we use an auxiliary table to record that bit slot 
b2 is dependent on bl. Thus what we are saving here is 
the time to copy the information rooted at a gray node. 
Subsequently, when the result of the select query is de- 
sired, we simply retrieve the information from bit slot 
b2 and if the node is a gray node, then we retrieve the 
rest of the information from bit slot b1. 

Implementing feature-dependencies is straight- 
forward. First, generate the maximal blocks inside w, 
an O(n log log T) process. For each such maximal block, 
say B, directly access B’s corresponding pyramid node, 
say p, and copy the contents of its bl slot into its b2 slot 
(but do not copy the information in B’s descendents). 
This takes O(1) time per block. Once all the maximal 
blocks have been processed, we store the feature depen- 
dency in the table. Next, we propagate the presence of 
feature f in the b2 bit slot to all nodes above p up to 
the pyramid root. In order to avoid repeated access- 
ing of the same nodes we use one of the feature loading 
techniques described in [l]. The cost of the propagation 
step over the entire window is O(n) [l]. 

Thus we see that the use of feature dependencies re- 
duces the cost of the select query to O(n log log T) at 
the cost of an extra bit slot per node in the pyramid. 
This extra bit slot can be reused once we are done with 
the result of the select query. 

Tables 1 and 2 summarize the execution times and 
space requirements for window operations using our 
approach (i.e., the bottom-up pyramid) and compare 
them with other data structures. Qj is the number of 
quadtree nodes for feature f. We assume an n x n win- 
dow in a T x T image. 
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6 Conclusions 

This paper contains two new ideas. The first is the in- 
complete pyramid data structure, and the second is a 
window decomposition algorithm. Together they enable 
us to answer spatial queries efficiently. We have shown 
how to adapt the pyramid data structure to match our 
needs to store and retrieve spatial features. Although 
not mentioned in this paper, the algorithm to load fea- 
tures into the incomplete pyramid is much faster than 
that for the complete pyramid [l]. The speed-up arises 
from the fact that for the incomplete pyramid there is no 
need to fill all the intermediate nodes descending from 
a leaf node. The bottom-up window decomposition al- 
gorithm served as the underlying mechanism on top of 
which query answering algorithms were built. It had to 
run quickly and this requirement influenced our design 
heavily. 

Directions for future work include the development 
of other spatial operations using the incomplete pyra- 
mid data structure. Combining spatial features with 
non-spatial data that describes them, while maintain- 
ing efficient access to both spatial and nonspatial data, 
is a goal of our research. 
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