
Efficient Processing of Window Queries in The Pyramid Data Structure*

Walid G. Aref
Hanan Samet

Computer Science Department and
Center for Automation Research and

Institute for Advanced Computer Studies
The University of Maryland

College Park, Maryland 20742

Abstract

Window operations serve as the basis of a number of
queries that can be posed in a spatial database. Ex-
amples of these window-based queries include the exist
query (i.e., determining whether or not, a spatial feature
exists inside a window) and the report query, (i.e., re-
porting the identity of all the features that exist inside a
window). Algorithms are described for answering win-
dow queries in O(nloglogT) time for a window of size
nxn in a feature space (e.g., an image) of size TxT (e.g.,
pixel elements). The significance of this result is that
even though the window contains n2 pixel elements, the
worst-case time complexity of the algorithms is almost
linearly proportional (and not, quadratic) to the window
diameter, and does not depend on other factors. The
above complexity bounds are achieved via the introduc-
tion of the incomplete pyramid data structure (a variant
of the pyramid data structure) as the underlying repre-
sentation to store spatial features and to answer queries
on them.

1 Introduction

Today, many applications benefit from having a spa-

tial processor in conjunction with a database manage-
ment system in the same environment. The function
of the spatial processor is to maintain and operate on
spatial features efficiently. Maintenance includes stor-

ing, adding, or deleting features. Operations include

*The support of the National Science Foundation under Grant
IRI-88-02457 is gratefully acknowledged.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy other-
wise, or to republish, requires a fee and/or specific permission.

0 1990 ACM 089791-352-3/90/0004/0265 $1.50 265

Boolean set operations (e.g., intersection, union, dif-
ference, negation, etc.), windowing, arithmetic opera-
tions (e.g., area, perimeter, centroid, etc.), and proxim-
ity operations (e.g., left, north, nearest, farthest, within
a given zone, etc.). Having the spatial processor per-
form these functions efficiently (while utilizing powerful
spatial architectures) enriches the query power of the
database environment for application programs and end
users.

One key operation that we consider here is the win-
dow operation. A window is the region specified by the
cross-product of two closed intervals over the integers.
For example,

W = {t&Y) I (Z,Y) E bl : 221 x Iv1 : Y21

where I, y, cl, 22, ~1, and yz are integers}

is a window that represents all the internal points inside
the horizontal interval [ZI : 24 and the vertical interval
[Yl : Y21.

Window operations serve as the building block for
a number of queries and as a composite operation to
many other queries. Usually spatial features span over
a wide feature space. However, users are more inter-
ested in viewing or querying only portions of the fea-
ture space instead of the whole space. Extracting parts
of the space to work with in the next operations is done
through windowing. Given a window w, some examples
of window-based queries are: report all features inside
w, intersect feature f with feature b only inside w, does
feature f exist in w, etc.

In this paper, we concentrate on the efficient imple-
mentation of window operations. We describe a bottom-
up algorithm for handling these operations. The main
idea behind this algorithm is to decompose the oper-
ation over the whole window into sub-operations over
smaller window partitions. Within this algorithm, spa-
tial features are organized in a pyramid-like data struc-

ture. We demonstrate that our algorithm is better than
several other approaches. Using this algorithm as a
building block, we show how to perform window-based
queries efficiently.

The paper proceeds as follows. In Section 2, we review
the pyramid data structure and its main characteristics.
In Section 3, we present all the techniques we apply in
order to perform the window operation efficiently. Sec-
tion 3.1 demonstrates how spatial features are encoded
into the pyramid data structure. In Section 3.2, we show
how we can access pyramid nodes directly. This enables
us to extract the features stored in a given pyramid
node in constant time. The feature retrieval algorithm
is given in the same section. Section 3.3 contains a new
mechanism for decomposing windows. In Section 4, we
describe several window-based queries and algorithms to
answer them efficiently utilizing the window operation
and the window decomposition mechanism. Section 5
analyzes the worst-case complexity of these algorithms
in terms of the complexity of the decomposition pro-
cess, along with a brief comparison with related work.
Section 6 contains concluding remarks.

2 The Complete Pyramid

The pyramid [lo] is a multiresolution data structure.
Given a 2d x 2d image array, say A(d), a pyramid is a
sequence (or stack) of arrays A(i) such that A(i - 1)
is a version of A(i) at half the scale of A(i). A(0) is
a single cell. It is called the root of the pyramid. We
say that array A(i) 1 ies at level i in the pyramid, and
that the entire feature database is stored at the bottom
level. For a T x T image, where T = 2d, the pyramid
has resolution d which is the maximum depth or the
number of levels in the pyramid.

In this context, we view the pyramid as the space
reserved for a complete recursive decomposition of the
image space into quadrants down to the pixel level. This
representation has an overhead of one third extra stor-
age because of the need to store intermediate nodes. In
other words, for a T x T image where T = 2d, the en-
tire pyramid requires 4 x (T x T - 1)/3 nodes. This
is the same amount of storage necessary for a complete
quadtree [7] where every node of the quadtree has been
expanded down to the pixel level. This structure is
called a complete pyramid in contrast to the incomplete
pyramid that we define later.

In this paper, we do not use the term pyramid in its
classic sense as a multiresolution stack of arrays. In-
stead, we make use of a variant of the pyramid that
enables us to represent a collection of different features
of interest in the underlying image. The same approach

was adopted by Shaffer and Samet [9]. Note that fea-
tures can overlap, e.g., rivers, bridges, roads, and coun-
ties.

Although the pyramid is implemented by an array
structure as is shown below, it is more convenient to de-
fine a pyramid in the form of a tree. Again, assuming a
2d x 2d image, a recursive decomposition into quadrants
is performed just as in quadtree construction, except
that we keep subdividing until we reach the individual
pixels. The leaf nodes of the resulting tree represent
the pixels while the nodes immediately above the leaf
nodes correspond to the array A(d - l), which is of size
2d-1 x 2d-1. The non-leaf nodes are assigned a value
that is a function of the nodes immediately below them
(i.e., their four sons) such as the average gray level. For
our purposes, this function is the Boolean OR set oper-
ation. In other words, we say that a certain feature is
present in the parent node when this feature is available
in any of its four sons.

The pyramid is implemented by a linear array in a
heap-like fashion [12]. Each pyramid node is represented
by an array entry. Given a parent node p with relative
index i at level i, we can access the kth son of p (where
k = 0, 1,2, or 3) by the following formula:

The number of array elements at levels 0 (the root level)
through i - 1 is (4’ - 1)/3.

Also, there is a correspondence between the pyramid
nodes and the spatial database blocks. Assume a coor-
dinate system such the origin is at the upper-left corner
and x increases to the right and y increases downwards.
A block of size 2’ x 2’ (0 5 i 5 d), having (P, c) as the
coordinates of its upper-left corner (0 5 r, c 5 T - 1)
such that T mod 2’ = c mod 2’ = 0 corresponds to
the pyramid node at level d - i whose relative index
within the array A(d - i) (also at level d - i) is equal
to (biLinterleave(r, c)) 2 (2 x i), where > is the shift-
right operation. Thus y > x means that y is shifted to
the right by x bit positions.

Pyramid nodes have the following internal structure:
each node has a fixed number m of feature bit slots,
and summarizing variables that summarize information
about the descendents of the node. For now, we are
interested in the feature bits. Each bit slot corresponds
to a feature stored in the pyramid.

3 Techniques

In this section, we define the necessary data structures
and techniques to perform the window operation ef-

266

ficiently. First, we describe how spatial features are
stored in the pyramid. Then, we show how we can
directly access any pyramid node, whether external or
internal, in constant time. Next, we demonstrate an ef-
ficient method to decompose the window into smaller
units, each of which serves as the basis of a separate
query to the pyramid. The discussion of how these
structures and techniques are combined to compose an-
swers to window-based queries is deferred to the next
section.

3.1 Feature Encoding

Each feature is encoded into its bit slot through the
whole pyramid independent of the features in the other
bit slots. Below we describe how one feature is encoded
using this coding technique. The same technique is ap-
plied to the remaining features. In this discussion, we
use the term node to denote one bit slot. Features are
stored in the pyramid using the GL method devised by
Shaffer and Samet [9]. It is a quadtree-like encoding of
regions for the pyramid data structure.

Nodes in a region quadtree are either leaf or gray.
Leaf nodes correspond to those blocks that are either
entirely inside the feature region in the image (labeled
black) or are entirely outside (labeled white). Each non-
leaf node is said to be gray (i.e., its corresponding block
is neither entirely inside nor entirely outside the feature
region). The parent of a leaf node is a gray node (i.e.,
leaf nodes are maximal).

The GL method works as follows. If an intermediate
node is gray, then its bit slot value is 1. If an interme-
diate node is a leaf node, then its bit slot value is 0.
Since it is necessary to determine the actual value of a
leaf node (i.e., black or white), this value is stored in
all of the descendents of the leaf node down to the pixel
level (i.e., 1 and 0, respectively). If a bottom-level node
is a leaf node, then its value is stored in the node itself
since it has no descendents. Clearly, a gray node cannot
appear in the bottom level.

3.2 Pyramidal Direct Access

The physical location of any node in the pyramid can
be directly accessed in constant time [ll]. The pyramid
is implemented as an array with the root at location 0,
nodes at level 1 in locations 1 - 4, followed by the nodes
at level 2 through d (the maximum level). Given z and
y, the values of the coordinates of the upper-left corner,
and the size 2’ x 2’, of a block in the image, we can com-
pute the pyramid address of the ‘corresponding’ node,
say Q, as follows:

pyraddress(i, z, y) = (4’ - 1)/3 +

(bit-interleawe(z, y) > 29

Procedure features, given below, shows how features
stored in & can be retrieved from the pyramid struc-
ture in constant time. & can be at an intermediate or
bottom level in the pyramid.

set_offeatures procedure features(i, x, y);
begin

value integer i, x, y;
set -f-features a;
global integer d;
if(i = d) then /* bottom level*/

s c contents(pyr-address(d, x, y))
else/* features in the node or in one of its sons */

s + contents(pyr-address(i, x, y))
U contents(pyr-address(i+l, x, y));

return (b);
end;

3.3 Decomposing Windows

A window is stored implicitly in a region quadtree [5,7].
The nodes inside the window are colored black while
those outside are colored white. Note that we do not
need to store the window explicitly in a quadtree struc-
ture since we can generate all the maximal quadtree
blocks inside the window without building the quadtree.
The generation process only requires that the window
be specified. It works for an arbitrary rectangular win-
dow (i.e., it need not be square). We refer to it as
window-gen.

Achieving a low execution time bound for window-gen
is non-trivial. In particular, we want to visit each max-
imal block only once. Otherwise, the execution time
could be as bad as 0(n2) for an n x n window. If this
were not the case, then, for example, block A in Fig-
ures la and lb would be visited once for each row and
column, respectively, in the image.

The idea behind the window block-generator proce-
dure is to scan the window row-by-row (in the block
domain rather than in the pixel domain). During this
process maximal blocks are generated and the columns
of the row that lie within the block are skipped. This
is illustrated in Figure 2, where 6 scans are needed to
cover the 6 x 6 window with maximal blocks. The blocks
are labeled with numbers that correspond to the order
in which they have been visited. The first scan visits
blocks 1, 2 and 3; the second scan visits blocks 4, 5,
6, and 7; the remaining scans visit blocks 8 and 9; 10

7.67

I-b I I

B El
H

I Illlrllllllllll

A

u
(4 (b)

Figure 1: In (a) and (b), maximal block A is accessed more than

once by the smaller blocks to its left and top, respectively.

M il .H
Figure 2: The decomposition of a 6 x 6 window into maximal

blocks.

and 11; 12 and 13; and 14 and 15. Notice that once
blocks 5 and 6 have been visited their columns (i.e.,
2-5) have been completely processed. For each block
that is generated, say B, window-gen also generates B’s
southern neighboring blocks for processing on the next
scan. These blocks are stored in a linked list.

Observe that we are always generating maximal
neighboring blocks, or at least a bounded number of
non-maximal neighboring blocks. An example of this
situation is illustrated by the 10 x 10 window in Fig-
ure 3 when processing blocks A-J in the first row. Each
of blocks B, C, D, F, G, H, and J can generate at most
one non-maximal neighboring block. Even though these
non-maximal blocks are generated, they are skipped by
the next scan since they are subsumed (i.e., contained)
in the previously processed maximal block in the scan.
For example, when scanning block K, blocks L, M, and
N are skipped since they are contained in it. This is easy
to detect because for each block we know the coordinate
values of its upper-left corner and its size.

Generating a maximal block is straight-forward.
Given a window, say w, and the values of the row and
column coordinates of a point, say (row, co/), inside w ,

ABCDEFGH I

L

Figure 3: The neighboring blocks to the south of blocks A-J in a

10 x 10 window. Blocks L, M, N, P, Q, R, and T are non-maximal

while blocks K, 0, and S are maximal.

we want the largest block, say B, inside w for which
(row,col) is the upper-leftmost pixel. B is of size S = 2”
where s is the maximum value of i (0 < i 5 1ogT) such
that row mod 2’ = co1 mod 2’ = 0 and the point (row
+2’, co1 +2’) lies inside 20.

Generating the southern neighbors of a block, say B,
is done as follows. Check whether or not the southern
boundary of B (denoted by sb(B)) is tangent to the
southern boundary of window w. Notice that sb(B) is
either tangent to sb(w) or is inside w. It cannot be out-
side w since by definition B is a maximal block inside w.
If sb(B) is tangent to sb(w), then no more blocks to the
south of B need to be generated (e.g., after processing
blocks 5 and 6 in the second scan of the window in Fig-
ure 2). If sb(B) is inside w, then maximal blocks to the
south of B are generated. Notice that all the southern
neighbors that are generated are blocks that lie entirely
inside the window (e.g., blocks 5 and 6 after processing
block 2 in the first scan of the window in Figure 2).

The algorithm terminates whenever during a scan no
new southern blocks are added to the list. At this time
all the maximal blocks inside the window have been gen-
erated.

4 Window-based Queries

We consider the following window-based queries:

l The Exist Query: Determine whether or not a certain
feature f exists inside (i.e., overlaps) window w.

l The Report Query: Report the identity of all the fea-
tures that exist inside (i.e., overlaps) window w.

l The Select Query: Determine the locations of all oc-
currences of feature f inside window w.

268

In the rest of this section we show how to answer
these queries using the window decomposition algorithm
presented in Section 3.3. Our approach to answering
these queries can be classified as bottom-up, in contrast
to top-down algorithms that start at the pyramid’s root
and proceed downwards.

4.1 The Exist Query

The main idea behind the algorithm to answer this
query is to decompose the query over a window into
a sequence of smaller queries. In particular, we use pro-
cedure window-gen of Section 3.3 to decompose the win-
dow into the maximal quadtree blocks inside it. Each
of these square blocks will serve as a query unit. Note
that coordinate values of the upper-left corner and size
of every block generated are known (from the generation
procedure itself). Section 3.2 also shows how to extract
features from a pyramid node given the specification
of the node’s corresponding block. Combining these
two techniques yields the following algorithm. Generate
the maximal quadtree blocks inside the queried window.
For each one of these blocks, query the pyramid to re-
trieve the features inside this block (i.e., hence inside the
window). If the feature we are looking for exists in any
of these blocks, then the algorithm halts and outputs
YES. If the algorithm does not find the feature in any
internal block after generating all of them and querying
the pyramid for each one, then the algorithm halts and
outputs NO.

4.2 The Report Query

The report query algorithm is implemented in an iden-
tical manner as the exist query algorithm, except that
features are extracted from each block and accumulated
in a set, say S. After all blocks are examined, the entire
set S is returned as the set of features that overlap the
window.

4.3 The Select Query

The output of the select query is a list of all blocks inside
the query window that feature f covers entirely. This
list may be thought of as a linear (pointer-less) quadtree
[S] with the white nodes being omitted.

One crucial problem with the GL coding technique
described earlier is that if a pyramid node is accessed di-
rectly and found to have a value of 1 for a particular bit
slot, then there is no easy way (i.e., O(1)) of determin-
ing whether this node is gray (non-leaf) or black (leaf).
The problem is that if its four sons are coded with a 1,

Figure 4: Example of GL coding.

then the node can be both gray or black, and we have
to check its grandsons again. This process may possibly
not terminate until we reach the nodes at the bottom
level of the tree. As an example, consider Figure 4.
Node A is a gray node while node C is in the subtree of
leaf node B. Directly accessing node A, we cannot say
whether it is gray or black (in constant time). The same
applies for node C. The bottom-up select algorithm that
we use (described below) depends on the efficiency of
the process of making such a distinction between gray
and black nodes. Thus the GL coding technique for the
pyramid has to be modified slightly in order to support
efficient select window queries. This leads us to use an
incomplete pyramid as defined below. These modifica-
tions do not adversely affect the complexity of the other
window queries.

4.3.1 The Incomplete Pyramid

The difference between the normal GL coding scheme
and the modified scheme is that in the modified scheme
when a leaf node (a 0 value) appears at an intermediate
level, then all its descendents have a 0 value except for
those nodes at the bottom level which are assigned the
values 1 or 0 depending on whether they are black or
white, respectively. If a leaf node appears at the bottom
level then it is assigned the value 1 or 0 depending on
whether it is black or white, respectively. Notice that
using this coding scheme, we are able to overcome the
deficiency that arises with normal GL coding. In par-
ticular, when nodes are accessed directly, we can dis-
tinguish between gray and leaf nodes. As an example,
consider Figure 5. When node A is accessed directly, we
know it is a gray node since its value is 1, while node
B is a leaf node since its value is 0. To determine if

269

Figure 5: Example of modified GL coding.

node B is black or white, we access node C directly at
the bottom level of the pyramid which tells us that B’s
value is black (since C has a value of 1).

Using the modified GL coding, procedure features
is modified slightly as described below. In particular,
when a leaf node is encountered at an intermediate level
(i.e., a value 0 was encountered), the corresponding fea-
tures stored in this leaf node are retrieved from the bot-
tom level of the pyramid instead of from the node’s sons
as in the normal GL coding scheme. Procedure features
still runs in constant time.

setaffeatures procedure features(i, x, y);
begin

value integer i, x, y;
set -of-features s;
global integer d;
if(i = d) then /* bottom level*/

s t contents(pyr-address(d, x, y))
else /* features in the node or in one of its sons */

s c contents(pyr-address(i, x, y))
U contents(pyr-address(d, x, y));

return (s);
end;

4.3.2 Window Queries

The procedures for answering the exist and report
queries are unchanged for the modified GL coding. Of
course, they make use of the modified features procedure
routine described above. The select query algorithm
proceeds in the following manner. First, generate the
maximal black blocks that comprise the window. Next,
for each block, test the corresponding pyramid node. If

it is white, then do nothing. If it is black, then report
this block in the output. If it is gray, then traverse the
pyramid subtree corresponding to this node and report
in the output all the black blocks descending from it.

5 Complexity Analysis

In this section we first derive the worst-case execu-
tion time complexity of the window decomposition al-
gorithm. Next, we use this result to compute the worst-
case execution time for the window-based query answer-
ing algorithms. Our analysis assumes that the window
is square.

5.1 Analysis of the Window Decompo-
sition Algorithm

Dyer [3] and Shaffer [8] prove that in the worst-case,
the number of maximal quadtree blocks inside a square
window of size n x n is N = 3(2n - log n) - 5. What
remains to be done is to compute the cost of determin-
ing the maximal blocks comprising the window. This
consists of the work, say Tm, to generate a maximal
block, say B, and the work that is wasted, say T, in
generating southern neighboring blocks of B that are
non-maximal. Therefore, the total execution time of
the window decomposition algorithm is N . (T, + T,).

Given a point (z,y) in a T x T space, there can be at
most log T + 1 different blocks of size 2’ (0 < i 5 log T)
with (2,~) as their upper-left corner. We use binary
search through this set of blocks to determine the max-
imal block inside the window. Thus T, is O(loglogT).

It can be shown [2] that each block can generate at
most one non-maximal neighboring southern block (re-
call the discussion of Figure 3 in Section 3.3). Thus T,
is O(loglogT). Combining T, and T, implies that the
worst-case execution time for the window decomposition
algorithm is O(n 1oglogT).

5.2 The Exist Query

This query can be answered in O(n log 1ogT) time. The
exist query algorithm described in Section 4.1 queries
the pyramid for each maximal window block generated.
It stops running when the feature exists in any of the
blocks or when it exhausts all the blocks without find-
ing the feature in any of them. As we already know,
each maximal block requires at most two pyramid di-
rect accesses to be answered, and each such access takes
constant time as shown earlier. The number of maxi-
mal blocks inside the window is O(n), and each takes

270

O(log log T) to generate. Direct pyramid access takes
O(1) time. This leads to an O(n 1oglogT) cost for the
whole procedure.

5.3 The Report Query

The analysis for the exist query also applies to the report
query algorithm described in Section 4.2. The only dif-
ference is that it always runs in the same amount of time
since it has to examine all the maximal blocks before re-
porting the feature. Thus, its cost is O(n 1oglogT).

5.4 The Select Query

The worst-case time complexity of the select query pro-
cedure described in Section 4.3 depends on the distri-
bution of the feature in space. In that sense, a feature
forming a checkerboard in the pyramid bottom level will
have the worst time complexity since all nodes are gray
down to the pixel level. Such an image does not take ad-
vantage of the compression provided by the GL coding
technique. In such a case, the running time is propor-
tional to 4n2/3 + log n + 513.

This dependence on n2 and log n is derived as follows.
We make use of the fact that the number of maximal
blocks inside a square window of width n is bounded by
(2n - 1) + Czi’ n/2’-’ - 3 where m = log n [3]. More-
over, a 2’ x 2’ block in the pyramid has (4’+’ - 1)/3
descendants. The select query causes the pyramid to be
accessed once for each maximal block, say B, in the win-
dow. In the worst case, the pyramid node corresponding
to B is gray and all of its descendents (to the pixel level)
are also gray. In such a case, our implementation will
visit 4n2/3 + log n + 5/3 nodes.

Notice that on the average many of the maximal
blocks inside the window correspond to leaf nodes in the
pyramid. Also, not all the descendents of gray nodes in
the pyramid are gray. Thus from a practical point of
view, we can usually get better performance in the av-
erage case (since more compaction takes place).

At this point, we sketch how to reduce the worst-case
performance to O(n log log T), regardless of the feature
distribution in space, by introducing slot- or feature-
dependencies. For the purpose of this discussion, sup-
pose that spatial feature f is stored in bit slot bi, and
we want to select the part of f that lies inside window
w. Instead of producing a list of all the blocks in w
that contain f, we allocate a new bit slot, say bz, in the
pyramid which will be set to 1 for all maximal blocks
in w that contain it. If these maximal blocks are gray,
then the b2 slots of their sons are not marked. This is a
form of lazy evaluation [4] in the sense that we do not

Table 1: Window query time requirements

Data Query
Structure Exist Report Select

Incomp. Pyr. O(nloglogT) 0 nloglogT) O(nloglogT
Comp. Pyr. O(nlogT O(nlogT) O(nlogT)
Quadtree O(Qr) O(Qf) O(Qf)
Pixel-Based O(n2) O(n2) O(2)

Table 2: Window query space requirements (in bits)

Data Query
Structure Exist Report Select

Incomp. Pyr. 4fT2/3 4fT2/3 4(j + 1)TL/3
Comp. Pyr. 4fT2/3 4fT2/3 4fT2/3
Quadtree 4fQfP 4fQjl3 4fQrl3
Pixel-Based fTL f T’ fT2

copy the subtrees of gray nodes inside w that store f.
Instead, we use an auxiliary table to record that bit slot
b2 is dependent on bl. Thus what we are saving here is
the time to copy the information rooted at a gray node.
Subsequently, when the result of the select query is de-
sired, we simply retrieve the information from bit slot
b2 and if the node is a gray node, then we retrieve the
rest of the information from bit slot b1.

Implementing feature-dependencies is straight-
forward. First, generate the maximal blocks inside w,
an O(n log log T) process. For each such maximal block,
say B, directly access B’s corresponding pyramid node,
say p, and copy the contents of its bl slot into its b2 slot
(but do not copy the information in B’s descendents).
This takes O(1) time per block. Once all the maximal
blocks have been processed, we store the feature depen-
dency in the table. Next, we propagate the presence of
feature f in the b2 bit slot to all nodes above p up to
the pyramid root. In order to avoid repeated access-
ing of the same nodes we use one of the feature loading
techniques described in [l]. The cost of the propagation
step over the entire window is O(n) [l].

Thus we see that the use of feature dependencies re-
duces the cost of the select query to O(n log log T) at
the cost of an extra bit slot per node in the pyramid.
This extra bit slot can be reused once we are done with
the result of the select query.

Tables 1 and 2 summarize the execution times and
space requirements for window operations using our
approach (i.e., the bottom-up pyramid) and compare
them with other data structures. Qj is the number of
quadtree nodes for feature f. We assume an n x n win-
dow in a T x T image.

271

6 Conclusions

This paper contains two new ideas. The first is the in-
complete pyramid data structure, and the second is a
window decomposition algorithm. Together they enable
us to answer spatial queries efficiently. We have shown
how to adapt the pyramid data structure to match our
needs to store and retrieve spatial features. Although
not mentioned in this paper, the algorithm to load fea-
tures into the incomplete pyramid is much faster than
that for the complete pyramid [l]. The speed-up arises
from the fact that for the incomplete pyramid there is no
need to fill all the intermediate nodes descending from
a leaf node. The bottom-up window decomposition al-
gorithm served as the underlying mechanism on top of
which query answering algorithms were built. It had to
run quickly and this requirement influenced our design
heavily.

Directions for future work include the development
of other spatial operations using the incomplete pyra-
mid data structure. Combining spatial features with
non-spatial data that describes them, while maintain-
ing efficient access to both spatial and nonspatial data,
is a goal of our research.

References

[l] W. G. Aref and H. Samet. Efficient techniques for
the check-out operation in spatial databases. Sub-
mitted for publication, 1990.

[2] W. G. Aref and H. Samet. Window queries in spa-
tial databases. In preparation, 1990.

[3] C. R. Dyer. The space efficiency of quadtrees. Com-
puter Graphics and Image Processing, 19(4):335-
348, August 1982.

[4] P. Henderson. Functional Programming: Appli-
cation and Implementation. Prentice-Hall, Engle-
wood Cliffs, NJ, 1980.

[5] A Klinger. Patterns and search statistics. In J. S.
Rustagi, editor, Optimizing Melhods in Slalislics,
pages 303-337. Academic Press, New York, 1971.

[6] H. Samet. Applica2ions of Spatial Data Slruclures:
Computer Graphics, Image Processing, and GIS.
Addison-Wesley, Reading, MA, 1990.

[7] H. Samet. The Design and Analysis of Spatial Data
Sbuclures. Addison-Wesley, Reading, MA, 1990.

[8] C. A. Shaffer. A formula for computing the number
of quadtree node fragments created by a shift. Pal-
tern Recognition Letters, 7(1):45-49, January 1988.

PI

WI

[ill

P21

C. A. Shaffer and H. Samet. An in-core hierar-
chical data structure organization for a geographic
database. Technical Report Computer Science TR
1886, University of Maryland, College Park, MD,
July 1987.

S. Tanimoto and T. Pavlidis. A hierarchical data
structure for picture processing. Computer Graph-
ics and Image Processing, 4(2):104-119, June 1975.

L. Tucker. Compuler Vision Using Quadtree Re-
finement. PhD thesis, Polytechnic Institute of New
York, Brooklyn, May 1984.

J. W. J. Williams. Algorithm 232: Heapsort. Com-
munications of the ACM, 7(6):347-348, June 1964.

