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Abstract

Many spatial data structures {e.g., the quadtree, the cell tree, the R+-tree)
represent an object by partitioning it into more than one piece, each of which is
stored separately inside the data structure. Frequently, it is required to report
the objects stored in a particular subset (spatially defined} of the database. It can
be achieved by a simple traversal of the spatial data siructure. This may result
in reporting each cbject as many times as the number of partitions of this object
inside the data structure. An operation, termed Report_Unique, is defined which
reports each object in the data structure just once, irrespective of the multiplic-
ity of the partitions of the object. Example algorithms are presented to perform
Report _Unigque for a guadiree. A clas:
sented and it
operation.

cation of spatial ohjecls is also pre-
shown Lo affect Lthe complexity of performing the Report_Unigue

I Introduction

There are several ways of representing a spatial object inside a data struc—

ture {Kriegel, et al., 1991]. Some data structures (e.g., the R-tree [Guttman, 1984),
the Grid file [Nicvergelt, et al., 1984]) represent a spatial object by just one
entity inside the data structure (e.g., by the object’s bounding rectangle in
the case of the R-tree}. . On the other hand, another group of data struc-
tures (e.g., the quadtree [Klinger, 1971], the cell tree [Giinther, 1989], the
Rt-tree [Faloutsos, et al., 1987]) represent a spatial object by partitiening it into
more than one piece, each of wlhich is stored separately inside the data structure.

_In this paper, we focus on the latter group of data structures.

One of the most important functions of a spatial database system is to report the

spatial objects in a given portion of the database (e.g., the objects inside a query’

window). One way to do this is to traverse the underlying data structure and to
report each object encountered. However, this simple traversal of the spatial dala
structure may result in reporting each object as many times as the number of par-
titions of this object inside the data structure. When a spatial object is represented
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by mare than one piece inside the data structure, this poses a problem since the ob-
ject will be reported more than once. In this paper we define an operation, termed
Report_Unique, which reports each object in the data structure just ance, regardless
of the multiplicity of the partitions of the object inside the spatial data structure.

The Report_Unique operation has many applications. For example, suppose we
want to report Lhe spatial objects that lie inside a window, say w. Although several
partitions of the same object, say o, may lic inside w, it is preferable to report the
identity of o just once. This is especially true if the identifier of o is to participate
in further processing, e.g., if the identifier of o serves as the argument to another
procedure, say p {e.g., for computing the area or perimeter of the object). In this
case, if the identifier of o is reported more than once, then o will be processed by p
redundantly. Given the data structure holding the spatial objects that lic inside the
window, Report_Unique ignores the mulitiplicity of the object partitions inside the
data structure and passes each object in the data structure to p just once.

As an example of another application of Report.Unique, suppose we want to count
the number of spatial ohjects in the given data structure. In this case, we need to
count each object only once regardless of the numnber of partitions of the object.

The rest of the paper proceeds as follows. In Section 2 we outline a straightfor-
ward algoritinn to solve the Report_Unique problein and analyze its worsl-case space
and time complexities. The straightforward approach requires O(n) space where n
is the number of spatial objects in the database.” This may he unacceptable for
ibases. Section 3 deseribes another algor

im that. eliminates ¢he space re-
quirernents of the algorithm of Section 2. Section 4 points out that supporting the
Report.Unigue operation for a realistic variety of objects requires classilying spatial
objecls into calegories of different complexity, and uses line segment objecis as an
example. Section 5 shows how Uhese classes affecl the performance and correciness
of the alternative approaches to Reporl_Unique for line segiment ‘objects. Section 6
contains concluding remarks.

14 is importaut to note thal in this paper we do not attempt Lo conipare the
efficiency of different data siructures in performing Report. Unigue nor do we present
efficient algorithms for each case. lnstead, onr emphasis is on demonstrating the
importance of Repart_tnique when considering new data structures, and the need
for efficient algorithms, especially when dealing with large spatial dalabases,

2 The Test-And-Set Algorithm

A straightforward algorithm for Report_Unique is the test-and-set algorithm {or Re-
port_Uniquel). I works for almost all data structures Lhat partition a spatial object
inlo smaller |

ces, provided that each spatial abject has a unique identification num-
ber that is stored in the data structure along with cach piece of the object. "The
algorithm makes use of an array of bits. There is one bit for each object which is
initially false. The algorithm proceeds as follows:
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1. Traverse the data structure, and for each sub-object encountered test the object’s
corresponding bit in the array.

2. If the bit is false, then set it to true and retrieve the object using the object’s
identifier and report it.

3. If the bit is true, then dor’t report this object.

Assume that there are n spatial objects stored in the data structure and that on
the average each object is partitioned into & pieces inside the data structure.? Assume
further that the number of data structure elements visited during the traversal is m
(e.g., m quadtree nodes). Then, the test-and-set algorithm takes n bits for storing the
bit array, performs &n tests and n object retrievals (possibly from secondary storage).
Therefore, the total cost of the algorithm is Cp, + knClpy +nCio, where C,, is the cost
of traversing the m elements of the a,maw.m:;n_b:nm_ Copw is the cost of testing a bit,
and Cj, is the cost of retrieving the spatial object {e.g.,-the coordinate values of a line
segment, the polygon boundary, etc.). Since all the algorithms that we present are
based on traversal, we will omit the term C,, from the comparison. Therefore, the
cost of the algorithm is knClp, +nC;,. This component of the cost cannot be ignored
for algorithms that are not based on traversal of the data structure {e.g., direct access
of data structure elements).

In order to improve the execution time or space requirements of Report_Uniquel
we observe that the Report_Unique operation requires a test function, say ¢, such
that given a spatial object, say o, with k pieces, p1, pa, --., P&, t has a value of false
for only one of the pieces, say p; of 0. Application of t to the rest of the pieces yield
the value of true. Any function ¢ that satisfies this criterion can be used as a way
of suppressing ali pieces of o other than p; from reporting o’s object identifier, and
hence can be adopted by the Report_Unique operation.

For example, in the case of the test-and-set algorithm, {; is defined as follows (a
is the bit array and oid{p;} is the identifier of the object that piece p; belongs to):

bip) = retvalue — afoid{p)]);
if(not afoid(p:)]) then
afoid(p;)] — true;

return ret_value;

3 Avoiding the Extra Space

As an example data structure, consider the PMR quadtree [Nelson and Samet, 1986].
In this data structure, 2 line segment is divided into several pieces, where each piece

is associated with the quadtree block that it intersects. Figure 1 shows one example.

of the PMR quadtree. Each block stores the object identifiers of the lines passing

?Notice that the value of k varies from one data structure to another.
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Figure 1: An example of a PMR quadtree.

through it, On the other hand, the full description of the line segments (e.g., the
start and end coordinate values of the points) is slored in what is called the feature
table, The index of line ! in the feature table is I's object identifier. Notice that we
cannot simply traverse the feature table and report the lines that we find since not
all the lines in the feature table have to belong to the data structure in n:wwzo:.

Our first attempt as improving on the test-and-set algorithm is to get rid of
the O(n} space requirements of the algorithm. This gives rise to algorithm Re-
port_Unique2 described below. It traverses the blocks of the PMR quadtree, and
for each block, say B, it lollows the following actions: .

1. For each object identifer i stored in B (thai corresponds to piece p;), retrieve
the line description, say {;, from the feature table, and

2. perform the following lesting function t;

t2(l;, BY = if(stari_point(l;) in B) then reiurn (true)
else return (false) .

3. 1f ta(4;, B) is true, report Jine £,

The algorithm is illusirated in Figure 2. Notice that for each line, say I, the testing

5§ & 5

figure 2: Line !is stored in blocks By, ffy, and B3 where only block 2, causes the point-in-block
test to succeed since the starting point p of ! lies inside B, only but not in By or in I.

function t; will be true only when the biock noimmisw the.starting point of ! is
processed. All blocks containing pieces of ! other than the starting point of I will
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evaluate to false as the result of applying ¢y to them (25 s referred to ‘as the point-in-
block test).

A 9&3 advantage of this algorithm over the test-and-set algorithm is that it does
uot require any additional space. However, algorithm Report Unique? needs more
time to execute. Note that it applies 2 more complex test per object piece. The
testing function is still performed nk times. However, the point-in-block test requires
four comparisons (each of cost C,.) in contrast to just one comparison in the test-
and-set algorithm. Notice that the point (z,y) is inside block B((bl,, bl,), (ury, ur,)),
where bl and ur denote the boitom left and upper right corners of the window,
respectively, iff bl <z < ur, A bl, <y <ur,.

A more serious drawback of the algorithm is that in order to perform the paint-in-
black test (t;) we must access the feature table (via the object identifier) each time
we encounter a piece of a line. "This is necessary to retrieve the starting point of the
line. Assuming that the cost of retrieving a segment from the feature table is also
Cs, then the execution time of this algorithm is 4knCopy + knC,.

The cost term knC;, involves redundant disk-1/0 requests. Basically, it represents
the cost of retrieving line segments from the feature table (once for every line segment
partition, amounting to k disk requests per line segment). A better algorithm would
perform only n such requests, i.e., one request per line segment in the database instead

- of one request per line segement partition. Thus, we would like an algorithm that
does not need the O(n) extra storage (or at least having an asymptotic storage cost
less then O(n)}, yet still performs only n accesses to the feature table.

In Section 5, a third w.ﬁo%ra (Report_Unique3) is presented that overcomes this
drawback. It uses the concept of an active border {Samet and Tamminen, 1985] to
avoid accessing the feature table each time a piece of the line is encountered.

4 Object Classification

An important factor affecting the performance of the Report_Unique operation is the
shape of the objects stored in the underlying data structure. For example, what is
the effect of restricting the lines to be rectilinear, in contrast to lines with arbitrary
slopes? As another example, suppose that objects are partially clipped as is the
situation after a window operation. Is it more difficult to report these clipped objects
than reporting non-clipped objects?

As an illustration of the second example, note that due to the way the PMR
quadtree is defined, Report_Unique? does not work properly if the line segments are
partly clipped. This is shown in in Figure 3. In particular, when a line is clipped (e.g.,
as a result of a-window operation), the PMR quadtree does not update the starting:
and ending points of the clipped line in the feature table. As a result, if a line, say I,
is clipped 50 that only s remains and if s does not contain s starting point, then s
will not be reported by Report_Unique2. This case does not arise in Report_Uniquel,
and suggests that we have to consider the alternative classes of objects (e.g., clipped
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Figure 3: (a) Line { as stored in a PMR quadtree, {b) The result of clipping line ! by a window
operation in a PMR quadiree. Line ! is partially clipped so that its original starting point in the
feature table is neither in blocks 3 nor Bs. Motice that the feature table still stores point p as part
of the clipped line description.

objects) when developing algorithms for Report.Unique since it affects the correctness
of the algorithm.

Below, we present one way to classify spatial abjects of type line segment. Other
spatial types can be classified in an analogous manner. The different elasses of line
segments are given in Figure 4. The classes do not always impose different complexity

s
(a) . ()] .

a (c)

Figure 4: Classification of Yine segments (a) Class-1: a regular line segment, (b} Class-2: a clipped
line segment, (c) Class-3: 2 broken Yine segment.

requirements on Report_Unique. Example implementations are given in Section 5.

¢ Class-1 segments: a line segment having no clipped or missing pertions as illus-
trated in Figure 4a, and termed a regular line segment.

» Class-2 segments: a line segment where either one or both of its end-points are
missing as illustrated in Figure db, and termed a clipped line segment.

o Class-3 segments: a line segment where several portions (holes) may be missing
as illustrated in Figure 4c, and termed a broken line segment. Although disjeint,
all the portions of the line segment refer to, and represent, just one object of
type line segment.

This classification of line segments is of practical use. Class-1 represents regular
line segments (e.g., road segments). Class-2 represents line segments that may result
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from a rectangular window operation (Figure 5a). Class-3 represents line segments

(a) . b

Figure 5: (a) Class-2 line segments result from clipping line segments via a window operation,
(b} Class-3 line segiments result from intersec ng regular line segtients with a: nple polygon.

that may result from intersecling line segments with arbitrary regions (Figure 5b).
Similar classes can be constructed for other spatial ohjects (e.g., polygons),
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Figure 6: Three types of fine segments: (a) line segments parallel 1o the #-axis, (b} rectilinear line
segments, (c) line segments with arbitrary orientation.

We further classify lines of each class into the following types according to their
orientation:

.vam;mmm:am:%” ::mmonﬁ_zou.mm:ﬂmn:m:m mmm:..m:,m-m.o;Em%m_.mﬁmum:m:o;m
x or the y axes but not both (Figure 6a). .

* Type-2 segments: rectilinear line segments - Le., they may be parallel to either
the z or the y axes (Figure 6b).

s Type-3 segments: arbitrary line segments - ie., they have arbitrary orientations
(slopes) (Figure 6c).

5 Algorithms

Below, we present some algorithms that correspond to several class/type combinations
given in Section 4 and see how the complexity of the algorithms are affected. Our
underlying spatial database makes use of a PMR quadtree {0 store the spatial database
objects which are line segments in these examples.
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8.1 Class-1 Type-1 Line Segments

Assume a collection of line segments that are paraltel to the z-axis (Figure 6a). They
may represent time intervals for a group of evenls. The algorithm {raverses the
quadtree block by block and maintains the notion of the ective set of line segments.
A line segment, say /, is added to the active set when [ is first encountered during the
traversal. [ is deleted from the active set once all the quadtree blocks that overlap
with { have been visited during the traversal. The storage necessary is bounded by
the maximun size of the active set during the execution of the algorithm. The size of
the active set shauld be considerably smaller than «, the number of line segments in
the spatial database. ,

It order Lo execute the algorithm efficiently, we need to organize the active set of
line segments. The algorithm performs the following three primitive operations on
an active set, say #A: (1) test if a line segment exists in A (rotice that this is needed
in order to decide whelher a line has already been encountered or if it is its first
encounter in the traversal), (2} insert a line segment into A, and (3) delete & line
segment from A.

Before providing more details about the algorithm, observe that if we are able to
perform each of the above three operations in O(1) time and maintain the underlying
data structure that stores the active sel in O(1} time, then the overall cormnplexity
of the algerithm would be Ofnk) time with O(active set size) space. The size of
the active set in the worst case is O(bT) where b is the maximum number of spatial
objects that can be stored in a quadtree block before it overflows (i.e., the bucket
size) and T is the width of the underlying spatial space. In practice, it is expected
that the size of the active set is considerably smailer than O(bT);

The algorithm visits the blocks of the quadtree in NW, NE, SW, SE scanning order.
It maintains one basic data structure: an ective border [Samet and Tamminen, 1985].
The active border represents the border between those quadires blocks that have
been processed and those that have not. The elements of the active border form a
“staircase” of vertical and borizontal edges, moving from southwest to northeast, as
shown by the heavy line in Figiire 7a. Initially, the active border consists of the north
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Figure 7: Various states of the active border: (a) initial state, (b) afier visiting block A, lines 1
and 2 are reported, line 1 is deleted, {c) after visiting block 8, line 3 is reported, line 2 is deleted,
(d) after visiting block C, lines 4 and 5 are reported.
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and west horders of the image. When the algorithm terminates, the active border
consists of the south and east borders of the entire image. In other words, whenever a
node is visited by the algorithm, the active border is updated accordingly to include
the border of this new block (see Figures 7b and Tc). Each element of the active
border stores in it the set of active line segments that intersect. the portion of the
aclive border corresponding 1o this element. For exansple, in Figure 7d, lines 4 and
5 are associated with portion {element) p of the active border.

When a leaf block is processed, the portion of the active border that is adjacent to
the block must be located. In [Dillencourt and Samet, 1991], a technique is developed
where blocks can be located in the active border in constant tirme. This is achieved by
traversing (and updating) the active border along with the quadtree traversal while
passing and stacking pointers to guarantee that the exact location in the active border
is available (O(1) time) whenever needed, so that searching in the active border is
entirely avoided. The reader is referred to [Dillencourt and Samet, 1991] for Turther
details. Once the appropriate active border element is lacated, tesling for existence,
insertion, and deletion of a line segment into this element takes O(b) time which is
really a constant or 0(1).3

We define an active line segment as a line segment that s partially processsed, i.e.,
at least one of the quadtree blocks overlapping with this line has not been processed
yet. A line is inactive if either all of its overlapping blocks have been processed by
the Lraversal algorithm or if all of them are yel to be processed. Notice that a line
segment is reporied once it is first inserted in the active border, and is deleted once
its identifier does not appear in the neighboring quadiree of an active horder portion
that contains the line’s identifier. For example, when block B is processed in the
quadtree of Figure Tc, line 2 is deleted since it is entirely covered by the processed
blocks A and B. )

5.2 Line Segments of Classes 2 and 3

The algorithm of Section 5.1 can be extended easily to support Class-2 and Class-3
objects. In fact, for Class-2 Type-2 objects, the same algorithm applies correcily
without any changes. For Class-3, a portion of a line segment can be hidden so that
its absence from a neighboring block to the active border does not imply that this
line segment has been processed in its entirety, and hence it cannot be deleted from
the active border (sce Figure 8), For this reason, the deletion mechanism of a line in
the algorithm of Section 5.1 does not work properly. In fact, if used, it may result in
a line segment being reported several times since it was deleted erroneously.

In arder to avoid this problem, additional information must be stored in the active
border for each active line segment. When the identifier of a line segment, say I, is
enceuntered for the first time diiring the traversal, I's coordinates are retrieved from

3In same applications where the bucket size & is large, performing a linear search in O(b) time
tends to be too slow. In such a case, the objects inside each bucket can be sorted among themselves
to achieve better search time {e.g., O(log b}) within the bucket.
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Figure 8 Example illustrating the difficuity with Class-3 Type-2 line segments. (a) initial mﬂwr.w,
(b) I is reported when block A is processed, {¢) { is deleted when block B is processed, (d) ! is
reported again when block E is processed.

‘the feature table. The end-point, say p, of ! thal is not covered yel by the traversal

is stored in the active border along with P’s identifier. Now, il a neighboriag quadtree
block, say B, is visited, where B is a neighbor of the portion of the active border that
contains ['s identifier, then we need to check whether p lies inside B or not, If yes,
then £is deleted from Lhe active border (f is entirely processed by now). 1 not, then
s identilier is propagated into the portions of the active border that represent block
B. This process is illustrated in TFigure 9.
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Figure 9: Class-3 Type-2 line segiments, () initial state, (b) Lis reported when block A is processed,
(c) ! is still considered active when block B is processed (although it does not overlap with B), {d) !
is not reported when block E is processed, and is deleted from E afterwards since I’s end-point p
lies inside £.

5.3 Class-1 Type-3 Line Segments

The algorithm of Section 5.2 does not work for Type-3 objects. For example, consider
Figure 10. This algorithm would report line segment ! more than once, i.e., once for
each of the visits of blocks &, D, and F. Tn additien, line segment s is also reported
more than once - i.e., onee lor each of the visits of blocks & and £, The problem is
worse for line segments of Classes 2 and 3.

This problem can be overcome by using a variant of the algorithm described
in [Dillencourt and Samet, 1991}, That algorithm computes the boundaries of re-
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6 Conclusion and Future Research

Talle 1 represents a summary of our results. It shows the dilferent complexities of :.
algorithms developed for the class/Lype object combinalions explored here, As we nbam :
sce, Report_Unique is a challenging problem. Future work involves: developing bettes
algorithms for other class/type combinations, classifying spatial objects besides ling}

segments in an analogous matter and developing algorithms for them as well’ and?

t %

considering spatial data structures that partition objects in addition to the PMRU:
quadtree. ...
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