
Connected-Component Labeling for Arbitrary Image 271

Hence, the first record pertaining to component C to be processed in Pass 2

was the record (’EQUIVALENCE’, Lz,0 ), so Lz is the temporary label with the

correct LABEL field. This proves (a).

Assertion (b) follows from the age-balancing performed during Pass 1 and

the fact that the intermediate file is read in reverse order in Pass 2. In more

detail, the argument is as follows. For the purposes of this proof, let image

element k be the kth image element processed during Pass 1. Suppose that L ~

and Lz are two temporary labels in Pass 2, with Lz the father of L ~, and let C

be the common component with which they are associated. This particular use

of L ~ corresponds to an incarnation of the temporary label L ~ in Pass 1;

suppose the incarnation began when image element k, was being processed.

Similarly, suppose the particular use of L2 corresponds to a (Pass 1) incarna-

tion that began when image element Kz was being processed. Since L2 is the

father of L1 in Pass 2, either (1) there was a record (’EQUIVALENCE’,L ,,L2 )

written during Pass 1, or (2) Lz is the root of the tree containing L ~. (Notice

that either or both of these conditions may hold.) In either case, it follows from

the age-balancing rule that kz < kl. In Pass 2, Lz will not be reused until after

image element k. is processed. This occurs after image element lZI is pro-

cessed, at which t~me L, becomes eligible for reuse. ❑

We summarize the results of this section in the following theorem, which

follows from Proposition 5.2, Proposition 5.3, and the remarks at the start of

the section.

THEOREM 5.4. The algorithm of Section 4 correctly labels the connected

components of an image.

6. Analysis of the Algorithm

The time-complexity of the algorithm is determined by the following quantities:

the cost of processing the image elements, the cost of examining all the active

neighbors of all image elements, and the cost of the UNION–FIND operations.

Let 1 be the total number of image elements, and let E be the number of all

adjacent pairs of image elements.

The main procedures in both Pass 1 and Pass 2 (PROCESS—ELEMENT—PASS

_ 1 and PROCESS—ELEMENT—PASS—.-2, respectively) are each executed 1 times.

If the scanning order is admissible, each pair of adjacent nodes is examined at

most twice in Pass 1–once to find the neighbors of an image element and once

to consider them for possible removal from the ACTIVE set. In the absence of

admissibility, each adjacency pair may be examined four times. In Pass 1, each

image element induces at most one UNION operation, and each adjacency pair

induces at most one FIND operation. The total time required by all UNION and

FIND operations in Pass 1 is thus O(Ea( E)), since the UNION–FIND implemen-

tation in Pass 1 combines weight-balancing and path-compression. It is then

straightforward to verify that the total time required by Pass 1 is O(ECY ( E)).

The only possible point of difficulty is REMOVE—ACTIVE—TEMP. -LABELS, and
it is not hard to show that the total time required by all calls to REMOVE—AC-

TIVE_TEMP—LABELS is O(E). This last statement follows from two easily

verified facts: (1) the total number of calls to REMOVE—ACTIVE—TEMP —LABELS

in all of Pass 1 is at most 2E (at most 13 if the scanning order is admissible),



272 M. B. DILLENCOURT ET AL.

and (2) each tempora~ label in INACTIVE is at depth at most 2, so each call to

REMOVE—ACTIVE—TEMP—LABELS requires at most three iterations of the

while loop.

In Pass 2, each image element induces at most one UNION (corresponding to

an EQUIVALENCE record) and at most one FIND operation. It follows from

Proposition 5.3(a) that the Stable Tree Property holds in Pass 2, so Lemma 2.1

can be applied, and we get a bound of 0(1) for the total cost of the

UNION–FIND operations in Pass 2. This last observation justifies the statement,

made in Section 4, that weight-balancing is not necessary in Pass 2.

It follows from the preceding paragraphs that the worst-case time-complexity

is 0(1 + Ea ( E )). For almost any representation of an image, and certainly for

all the ones considered here (hint rees, quadtrees, arrays, etc.), E = 0(1), so

the worst-case time-complexity reduces to 0( Ia ( 1)) in these important cases.

This statement remains true for d-dimensional extensions of these representa-

tions if d is treated as a constant. The complexity is actually O(d “ Ia ( I )) for

4-ddjacent labeling and 0(3~ ~la(l)) for 8-adjacent labeling.

7. Component Labeling in a Pixel Array Using Raster-Scanning Order

The algorithm described in Section 4 is formulated in a general manner that is

independent of the representation of the image and of the scanning order. In

this section, we show how to adapt it for the array representation of a two-

dimensional image, processed in raster-scanning order. The resulting algorithm

runs in time linear in the number of pixels, which is optimal. Rather than give

a detailed description of the raster-scan algorithm, we show how the general

algorithm can be simplified to obtain it. A detailed description of the algo-

rithm, and some empirical results, can be found in [15].

Assume an N X N image such that the origin is at the upper left corner of

the image so that rows and columns are numbered from 1 to N. A pixel at

position (i, j) is in row i and column j. When we process a pixel at position

(i, j), the set of active image elements consists of the pixels at positions (i, p)

such that 0 < p < j and (i – 1,p) such that j s p s N. The active border

elements are the southern sides of the active image elements and the eastern

side of the active image element at position (z, j – 1). For simplicity we assume

that all pixels of (the fictitious) row O and column O are WHITE.

It is easy to see that the set of active elements can be represented as a

one-dimensional array. The array representation, coupled with the raster

scanning order. is useful for two important reasons. First, when collecting the

temporary labels of the 4-adjacent neighbors of an active image element in

PROCESS—ELEMENT—PASS— 1 and COLLECT—ADJACENT we need not perform
a search –a single array access suffices. For a pixel at position (i, j), the

4-adjacent active image elements are found at positions (i, j – 1) and (i – 1, j),

which correspond to positions j – 1 and j in the array. Determining the

tempora~ labels associated with these pixels only requires one FIND operation

for the temporary label associated with of (i – 1,j).The temporary label

associated with (i, j – 1) is current since this was the most recent pixel

processed. Second, there is no need to have an NBORDERS counter associated

with an active pixel. This is because, once an image element’s eastern neighbor

has been processed, only one active border element remains (the southern

side), and when this border element ceases to be active, so does the pixel.



Connected-Component Labeling for Arbitrary Image 273

The raster-scanning algorithm and the representation of the active elements

can be further simplified by making use of the observation that active image

elements become inactive in the same relative order that they became active.

This observation facilitates keeping track of temporary labels that have been

merged. It also simplifies the process of removing elements that are no longer

active from the set of active elements. In particular, there is no need for the

100p in REMOVE—ACTIVE—TEMP—LABELS (See [15]).

We now show that the specialized algorithm runs in linear time. More

precisely, we show that the total number of links that must be traversed is

bounded by 9B, where B is the number of black pixels. Our proof is based on

showing that Lemma 2.1 applies. This means that weight balancing is not

needed, so the surrogate and temporary label records described in Section 4

may be combined into a single record structure and the COUNT field is

unnecessa~. These observations simplify considerably the data structures

required. The following lemma captures the intuitive notion that an older

component cannot be “surrounded” by a younger component.

LEMMA 7.1. Let L and M be two active temporaiy labels that are the roots of

UNION-FIND trees, with M younger than L. Let P be an actil)e pixel that is labeled

with a label L’ that is a descendant of L. Then all actil~e pixels that are labeled with

M or its descendants are on the same side (left/right) of P.

PROOF. Let Q be the oldest pixel labeled with L (i.e., the first pixel to

receive this label in the current incarnation of the label L). Suppose that X

and Y are two active pixels labeled with descendants of M, one on either side

of P, as illustrated in Figure 10. There are disjoint 4-connected paths np~ and

HXY, each consisting of black pixels that have already been processed, connect-

ing X to Y and P to Q, respectively. It follows that II,YY must contain some

pixel above Q. But then the temporary label 114 is older than L, which is a

contradiction. ❑

PROPOSITION 7.2. Pass 1 requires at most 5B links to be accessed, where B is

the number of black pixels processed.

PROOF. Each BLACK pixel induces one call to UNION and one call to FIND.

The key to the proof is establishing that Lemma 2.1 applies. We first establish

the following claim.

Claim 1. Suppose that when a pixel P is processed, with pixel V immedi-

ately above P and TLABEL( V) = A k, the call FIND(TLABEL( v)) causes the chain

A~,.. ., AO to be collapsed due to path compression. Then, all active pixels

labeled with A,, 1 s j < k, are to the right of V.

Suppose the claim is false, and let m be the smallest value of j for which it is

false. Then there is some pixel Q to the left of P such that Q is active and

labeled with A,. when P is processed. Let R be the pixel that caused the

temporary label Am to be merged with Am_ ~. R must be to the right of Q
(since otherwise Q would not be labeled with Am) and to the left of P (since

by the time P is encountered, Am, _ ~ is a descendant of AO ). Let L and T be,

respectively, the pixels to the left of and above R. Then R, L, and T must be

BLACK, and R must be labeled with A,,, _ ~ (see Figure 11). If m > 1, this

contradicts the definition of m, so we may assume that m = 1.



M. B. DILLENCOURT ET AL.

Id

YI

x P

FIG. 10, Illustration of the proof of Lemma 7.1.

FIG. 11 Illustration of the proof of Cl~im 1

of Proposition 7.2

Now consider the situation immediately before R is processed. P’ is labeled

with A,<, Q is labeled with #11, and either L or T is labeled with AO (if L = Q,

T is labeled with A,,). ,4 ~ is in the tree rooted at A ~, which is disjoint from

(and younger than) the tree rooted at AO. Lemma 7.1 then implies that P’ and

Q must be on the same side of R, which is a contradiction of our initial

assumption. This contradiction establishes Claim 1.

Claim 2. Suppose that when a pixel P is processed, with V the pixel

immediately above P and TLABEL( V ) = AL, the call FIND(TLABEL( V)) causes

the chain Ak, ..., /10 to be collapsed. Then, the labels AL,..., Al will all

become dead before a pixel labeled with a temporary label whose root is older

than A” is encountered.

Suppose Claim 2 is false. Then some pixel Q, encountered after pixel P, is

associated with a temporary label (say A*) that is older than A., and when Q

is encountered, some pixel R labeled with A, is still active. By Claim 1, R is to

the right of V. Since R is still active when Q is encountered, Q is to the right

of P, and R must be to the right of the pixel above Q (see Figure 12). Since AO

is younger than A*, and pixels P and R are on opposite sides of Q, this is a

violation of Lemma 7.1. Claim 2 follows by contradiction.

Claim 2 implies that the Stable Tree Property holds, so we can apply Lemma

2.1. Hence. the total number of links traversed in Pass 1 is no more than
2F+3U=2B+3B=5B. ❑

Pass 2 requires at most 4. B links to be accessed. This is because we do a

FIND on a new tempora~ label immediately after encountering it, so age-

balancing implies that no temporary label is ever at a depth greater than 2 in
the UNION–FIND structure. Thus no FIND operation requires accessing more

than three links or resetting more than one, and there is at most one FIND per

black pixel.

The storage requirement is the storage for IV the active image elements plus

the storage for the live temporary labels. At any one time, there can be no



Connected-Component Labeling for Arbitra~ Image 275

~

FIG, 12. Illustration of the proof of Claim 2
of Proposition 7.2.

A B c D E

F A G B H c I D J E

FIG. 13. The number of simultaneously live labels in a raster-scanned N X N pixel array can be

as high as 12N/3].

more than ~2~/31 live nodes, where [” 1 denotes the ceiling function. This

follows from the (easily verified) fact that at any moment during Pass 1, of any

three consecutive active pixels, either one is white or at least two have the

same temporary label. Figure 13 shows that the bound of [21V/31 is tight. In

the figure, IV = 14, blank pixels are white, and the letters indicate labels.

The results of this section are summarized in the following theorem.

THEOREM 7.3. The total number of links processed in connected-

component labeling of an N x N image represented as an array and processed in

raster-scan order, using the methods of this section, is bounded by 9B, where B is

the number of black pixels. Hence, the total time requirement is O(N). The storage

requirement is also O(N).

8. Concluding Remarks

We have presented an efficient algorithm for connected-component labeling of

images for arbitrarily specified scanning orders. We have proposed a criterion

for good scanning orders, namely admissibility. We have shown that our

algorithm, when specialized to a 2-dimensional pixel array processed in raster-

scan order, runs in time linear in the number of pixels. This analysis is based

on the observation that the UNION–FIND algorithm runs in linear time provided

the sequence of input operations satisfies the Stable Tree Property, a fact that

may be of interest in other situations as well.

We leave as an open problem a detailed worst-case analysis of the storage

and time requirement of the approach of Section 4 for other representations

such as quadtrees and 3D-pixel arrays. We conclude with an example showing

that the Stable Tree Property does not necessarily hold for the UNION–FIND

structures that arise in arbitrary admissible scanning orders. The quadtree of

Figure 14 is scanned in NW, NE, SW, SE order. Cells marked with letters are

BLACK, and cells marked with numbers are WHITE. The letters in some of the

cells are the tempora~ labels associated with them. The nodes marked X, Y,

and Z respectively cause D to become the father of E, C the father of D, and B

the father of C. The node marked U causes path compression to occur alon~

the path E–D–C–B. When node V is subsequently encountered, it causes label

A to become the father of label B, even though labels C, D, and E are still

alive. This shows that the Stable Tree Property does not necessarily hold for

quadtrees.



276 M. B. DILLENCOURT ET AL.

1

A

2

3

4 B

6 c

8 D

A

FIG. 14. The Stable Tree Property does not necessarily hold for quadtrees scanned in an
admissible order.

Appendix. A General Algorithm for Connected-Component Labeling

procedure PROCESS—ELEMENT_ PASSl(I, ACTIVE);

/’ Add image element I to the set of active image elements during the first pass of
connected-component labeling of an image and output appropriate records to the
intermediate file pointed at by INTERMEDIATE for the second pass. The contents of
these records are specif]ed within angle brackets “/

begin
VdUf3 pOhItW iIUage-ELEMENT I;

referenCe f)Ointer irUfige-ELEMENT SET ACTIVE;
global integer MAXSTAMP, MAXLABEL; /“ initially O at start of PASS1 “/
global pointer file INTERMEDIATE;
pOinter teUIP_LABEL SET TLABELSET,INACTIVE;
POinter iUlage_ELEMENT A;
if COLOR(I) = GRAY then

begin /’ this case handles quadtrees, octrees, bintrees, etc. “/
OutPut(INTERMEDIATE, (’GRAY’));

DECOMPOSE—AND—RECUR(1, PROCESS_ ELEMENT_ PASSl);
end

else
begin



Connected-Component Labeling for Arbitra~ Image 277

addtoset(I,AcTIvE);
NBORDERS(I) +- NUM_ACTIVE(I);

/“ NUM—ACTIVE indicates how many of I’s borders are ACTIVE “/
if COLOR(I) = WHITE then output(INTERMEDIATE, (’ WHITE’))

ehe \* I iS BLACK */

begin
TLABELSET + eUIptY;

foreach A in ACTIVE suchthat FOUR—ADJACENT(A,I) do

COLLECT_ADJACENT(A, TLABELSET);
ASSIGN—TEMP—LABEL(I,TLABELSET);
NACTIVE(TLABEL(I)) + NACTIVE(TLABEL(I)) + 1;

output(INTERMEDIATE, (“BLAcK’, TLABEL(I)))):
end;

INACTIVE ‘+ emptfi
foreach A in ACTIVE suchthat

FOUR—ADJACENT(A,I) and not PARTIALLY_ACTIVE(DSCR(A), DSCR(I)) do

REMOVE—ACTIVE—ELEMENTS( A,ACTIVE,INACTIVE);

foreach L in INACTIVE do

if INUSE(L) then REMOVE_ACTIVE_TEMP_ LABELS(SUR@L));

end;

end;
procedure COLLECT_ ADJACENT(A,TLABELSET);

/“ Collect the temporary labels of BLACK active image elements that are 4-adjacent to L

“/
begin

VdU12 pOhIkT iUlage-ELEMENT A;
referenCe pOinter temp_LABEL SET TLABELSET;

pointer surrogate S, S1, S2;
integer PATHCOUNT + O;

if COLOR(A) = BLACK then

begin
sl - s .+ suRG(TLABEL((A));

while nOt nUli(FATHER(S)) do S - FATHER(S); \* FIND “/

while S1 # s do \* path compression */
begin

s2 & FATHER;

\* PATHCOUNT contains value of COUNT(S1)from before start of path
compression “/

if S2 # s then

begin
COUNT(S2) + COUNT(S2) – PATHCOUNT – 1;
PATHCOUNT - PATHCOUNT + COUNT(S2) + 1; /* old COUNT(S2)*/

end;
if couN’r(sl) = O and NACTIVE(TLABEL(S 1)) = O then

begin

RETURN_TO_AVAIL(TLABEL( Sl));
COUNT(S) = COUNT(S) – 1;

end
else

FATHER(S1) - S;
S1 + Q;

end;

addtOSet(S,TLABELSET~
end;

end;
procedure ASSIGN_TEMP_LABEL(I, TLABELSET);

\*Assign a temporary label to image element I. TLABELSETcontains the temporary labels
of all BLACK image elements that are 4-adjacent to I. If TLABELSETis empty, then
allocate a temporary label and assign it to L Otherwise, determine L_ MINSTAMP,the
oldest temporary label, and S_ MAXCOUNT,the surrogate with the most descendants.
In this case, first achieve age-balancing and weight-balancing by ensuring that



278 M. B. DILLENCOURT ET AL.

S_ MAXCOUNT is the surrogate for L_ MINSTAMP. Next merge the labels in TLABELSET

“/
begin

value pointer iIUage_ELEMENT I;
referenCe pOinter teUIP-LABEL SET TLABELSET;
pOinter teIUp_LABEL L_ MINSTAMP,L;
pointer surrogate s_ MAxcouNT;
pointer global integer MAXLABEL, MAXSTAMP;
if etUP@(TLABELSET) then

begin /“ no BLACK active image elements are 4-adjacent to L “/
L—MINSTANIP + NEW_ TEMP_LABEL( );

/‘ returns pointer to temp—LABEL record properly coupled with a

surrogate record ‘/
NACTIVE(L_MINSTAMP) + COUNT(SURG(L_MINST.AMP)) - O;
FATHER(SURG(L—MINSTAMP)) + NIL;

STAMP(L_MINSTAMP) ~ MAXSTAMP * MAXSTAMP + 1;
end

else
begin

L_ MINSTAMP - ARBITRARY(TLABELSET); /= pick some arbitrary element of
TLABELSET ‘/

S—MAXCOUNT ~ SURG(L—MINSTAMP):
foreach L in TL.ABELSET do

begin
if STAMP(L) < STAMP(L—MINSTAMP) then

L—MINSTAMP ~ L; /% determine oldest temporary label ‘/

if COUNT(SURG(L)) > COUNT(S—MAXCOUNT) then

S_ MAXCOUNT ~ SURG(L); /“ determine surrogate with largest
subtree ‘/

end;
/+ enSUre S_klAXCOUNT iS SUrrOgate fOr L—MINSTAMP ‘/
if S_ MAYCOUNT # SURG(L_MINSTAMP) then

begin
L F TLABEL(S_MAXCOUNT);

TLABEL(S—MAXCOUNT) @ TLABEL(SURG(L_MINSTANIP)):

SURG(L) ~ SURG(L_MINSTAMP);
end;

foreach L in TLABELSET do

begin /“ UNION “/

s + suRfj(L):

if s # S—MAXCOUNT then

begin
FATHER(S) + S—MAXCOUNT;
COUNT((S_MAXCOUNT) + COUNT(S_MAXCOUNT) + COUNT(S) + 1;

end;
end;

end;
TLABEL(l) Y L—MINST,AMP,

end;
procedure REMOVE—ACTIVE—ELEMENTS( A,ACTIVE,INACTIVE);

/’ Remove image element A from the set ACTIVE if it is no longer active. If the removed
image element is BLACK, decrement the NACTIVE field of the associate temporary
label. If this field becomes O, add the temporary label to INACTIVE ‘/

begin
value pointer iUIage_ELEMENT A;
referenCe pOinter iIUage_ELEMENT SET ACTIVE;
referenCe pOinter teUIP-LABEL SET INACTIVE;

NBORDERS(A) + NBORDERS(A) – 1; /% I can be adjacent to A along only one border */
if NBORDERS(A) = O then

begin /’ image element A is no longer ACTIVE ‘/
REMOVE_ FROM—SET(A,ACTIVE);



Connected-Component Labeling for Arbitmy Image 279

if COLOR(A) = BLACK then

begin
NACTIVE(TLABEL(A)) + NACTIVE(TLABEL(A)) – 1:

if N.ACTIVE(TLABEL( A)) = O then addtoset(TLABEL( A), INACTIVE):

end;

end;

end;

procedure REMOVE_ ACTIVE_ TEMP_LABELS(S);

/+ Recycle the temporary label associated with surrogate records if it is legal to do so. If
s can be reused. then check if its father can also be reused, and so on. Update COUNT
fields all the way up to the root ‘/

begin

value pointer surrogate s;
pointer surrogate S1;
integer C)ELETED_COUNT * O;
while not null(s) do

begin
COUNT(S) + COUNT(S) – DELETED—COUNT;

SI + s;

s + 13ATHER(s):

if NACTIVE(TLABEL( S1)) = (1 and COUNT(S1) = O then

begin /’ temporary label with surrogate s can be reused 4/

DELETED_ COUNT G DELETED—C.OUNT + 1;

OUtpUt(INTERMEDIATE, (' EQUIVALENCE', TLABEL(Sl),TLABEL( S)) ); / ‘
TLABEL(NIL) = NIL! ‘ /

RETURN_ TO_ AVAIL(TLABEL(Sl ));
end:

end;
end;
procedure PROCESS—ELEMENT_PASS2(R);

/’ Assign the final component label to the objcctcorrcsponding to R during the second
pass of connected = component labeling of an image. */

begin
Vdlle INTERMEDIATE—RECORD R;

global integer MAXLABEL; /’ initially O at start of pass2 ‘/
if TYPE(R) = ‘BLACK’ then /* format is (’BLACK’, TLABEL) ‘\

Output(LABEL(FIND(TLABEL(R))))

else if TYPE(R) = ‘EQUIVALENCE’ then /* format is (’EQUIVALENCE’,
TLABE~,~ATHER) 4/
begin

FATHER(TLABEL(R)) - FATHER(R); /“ UNION ‘/
if null( FATHER(R)) then LABEL(TLABEL(R)) ~ MAXLABEL - MAX LABEL + 1;

end

eke OU@t(TYPE(R)); /* WHITE or GRAY node ‘/
end;

pOhkr temp_LABEL PROCEDURE FIND(L);
/“ Find the root of the tree to which L belongs, using path compression ‘ /

begin

Vak pOhI@r temp_LABEL L;

pOhIter temp_LABEL Ll, L?2;

if nUll(FATHER(L)) then retUrn(L);
L1 - L;

while nOt nUll(FATHER(L)) do L + FATHER(L); /’ find rOOt “/
while FATHER(L1) + L do /} path compression */

begin
L2 e FATHER(L1 );

FATHER(L1) + L;
L1 ~ L~;

end;
return(L);

end;



280 M. B. DILLENCOURT ET AL.

ACKNOWLEDGMENTS. We thank John Canning and Azriel Rosenfeld for help-

ful discussions and comments.

REFERENCES

1.

‘3
L,.

3.

4,

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

RE~

AHO, A. V., HOPCROF-I, J. E,, AND ULLMAN, J. D. The Des~gn and Analysts of Cornpafer

Algorztlznzs, Addison-Wesley, Reading, Mass., 1974.
DZLLENCOURT,M. B., AND S.AMET, H Extracting region boundaries from maps stored as
linear quddtrees. In P?oceedmgs of tlze 3tLf Intemallonal Corzfcr’ence on Spatial Data Hundlmg

(Sydney, Austrdha, Aug.) 1988, pages 65-77.
G.ABOW, H, N. AND T.ARJAN, R. E. A hnear-time algorlthm for a special case of disjoint set

union. J. G’ompat. Svst. Scz. 30, 2 (Apr. 1985), 209–?21.
HARALICK. R. M. Some neighborhood operations. In M. Onoe, K. Preston, and A. Rosen-

feld, eds. Real Trnc/Parallel CompzLtmg lma,ge Anulystr. Plenum Press, New York, 1981, pp.
11-35.

HOPCROFT, J., 4ND TARJAN, R. Eff]clent algorithms for graph mampulatlon. CommarL. ACM
16. b (June 1973), 372-378.

LUMIA, R. A new three-dimenslona] connected components algor]thm, Conzput. Graph.,

Vzszon, Image Proc. 23, 2 (Aug. 1983), 207-217.
LUMIA, R., SHAPIRO, L., AND ZUNIGA, O. A new connected components algorithm for wrtual
memory computers. Compat, G~aph., I&on, and Image Proc. 22, 2 (May 1983), 287–300.
PARIC,C. M., AND ROSENFELD, A. Connectivity and genus in three dimensions. Computer

Sc]ence Techmca] Report TR-156. Umv. Maryland, College Park, Md., May 1971.

ROSENFELD, A., AND KAK, A. C. Dlgztal P@zue Procemmg. Academic Press, Orlando, Fla.,

second edition, 1982.
ROSENFELD, A., AND P~ALTZ, J. L. Sequential operations m digital picture processing, J,

ACM 13, 4 (Oct. 1966), 471-494.
SAMET, H. Connected component labeling using quadtree>. J. ACM 28, 3 (July 1981)

487-501,

SAMET, H. The quadtree and related hierarchical data structures. ACJf Compuf. Sar~. 16, 2
(June 1984), 187-260.

S4MET, H. The Desgn and Analy&ls of Spatzal Data Stractares. Addlsm-Wesley, Reading,
Mass., 1990.
SA.MET, H., AND T.AMMINEN, M. A general approach to connected component labeling of
images. Computer Science Technical Report TR-1649. Univ. Maryland, College Park, Md.,
Aug. 1986.

SAMET, H., AND TAMMINEN, M. An lmpro~ed approach to connected component labeling of
images. In Proceedmg~ of Computet VuZon a}~d Pattern Recognztmz 86 (Miami Beach, Fla.,

June) 1986, pp. 312-318.

SAMET, H., AND TAMMINIiN, M. Eff]clent component Iahclmg of images of arbitrary dimen-
sion represented by hnear bmtrees. IEEE Tram. Pattern .4mdys1s and Machine Int. 10, 4 (July
1988), 579-586.

SCHWARTZ, J. T., SHARJR, M., AND SIEGEL, A. An cfflc]ent algorithm for finding connected
components m a binary image. Robotics Research Techmcal Report 38. New York Umv. New
York, Feb. 1985 (Revised July, 1985).
SHAFFER, C, A., SAMET, H., AND NELSON, R. C. QUILT: A geographical mformatlon system
based on quadtrces. Int. J. Geo,qaph. Inf. S’@. 4, 2 (April-June 1990), 103-131.
TARJAN, R. E Efficiency of a good hut not linear set union algorithm J 4CA4 Z, 2 (Apr
1975), 215–225.
T4RJAN, R. E., AND VAN LEEUWEN, J, Worst-case analysls of set union algorithms. J. ACM,

31, 2 (Apr. 1984), 245-281.

EIVED SEPTEMBER 1986; REVISED AUGUST 1989 AND SEP [ EMBER 1990. ACCEPTED FEBRUARY

1990


