
A General Approach to Connected-Component Labeling

for Arbitrary Image Representations

MICHAEL B. DILLENCOURT

uniL’ersi~ of California, Inine California

HANNAN SAMET

Uniuersiv of Ma@and, College Park, Maryland

AND

MARKKU TAMMINEN

Helsinki Unilersi~ of Technology, Espooj Finland

Abstract. An improved and general approach to connected-component labeling of images is
presented. The algorithm presented in this paper processes images in predeterttuned order, which
means that the processing order depends only on the image representation scheme and not on
specific properties of the image. The algorithm handles a wide variety of image representation
schemes (rasters, run lengths, quadtrees, bintrees, etc.). How to adapt the standard UNION–FIND
algorithm to permit reuse of tempora~ labels is shown. This is done using a technique called age
balancing, in which, when two labels are merged, the older label becomes the father of the
younger label. This technique can be made to coexist with the more conventional rule of wetghf
balancing, in which the label with more descendants becomes the father of the label with fewer
descendants. Various image scanning orders are examined and classified. It is also shown that
when the algorithm is specialized to a pixel array scanned in raster order, the total processing
time is linear in the number of pixels. The linear-time processing time follows from a special
property of the UNION–FINDalgorithm, which maybe of independent interest. This property states
that under certain restrictions on the input, UNION–FINDruns in time linear in the number of FIND
and UNIONoperations. Under these restrictions, linear-time performance can be achieved without
resorting to the more complicated Gabow–Tarj an algorithm for disjoint set union.

1. Introduction

Connected-component labeling [10] is a fundamental task common to virtually

all image processing applications in two and three dimensions. For a binary

image, represented as an array of d-dimensional pixels or image elements,

connected component labeling is the process of assigning labels to the BLACK

Prior to publication of this paper, Dr. Markku Tamminen passed away. At the time this research
was conducted, Dr. Tamminen was associated with the Laboratory for Information Processing
Science, Helsinki University of Technology, Espoo, Finland.

Authors’ addresses: M. B. Dillencourt, Department of Information and Computer Science,
University of California, Irvine, CA 92717; H. Samet, Center for Automation Research, Univer-
sity of Maryland, College Park, MD 20742-3411.
Permission to copy without fee all or part of this material is granted provided that the copies are
not made or distributed for direct commercial advantage, the ACM copyright notice and the title
of the publication and Its date appear, and not]ce is given that copying N by permission of the
Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or
specific permission.
O 1992 ACM 0004-5411/92/0400-0253 $01.50

Journal of the As\ocmtmn for Computmg MdchmeIy, Vol 39, No. 2, April 1992, pp 253-280

254 M. B. DILLENCOURT ET AL.

image elements in such a way that adjacent BLACK image elements are assigned

the same label [8, 10]. Here, “adjacent” may mean 4-adjacent or 8-adjacent [9].

Connected-component labeling can be characterized [7] as a transformation of

a binary input image, B, into a symbolic image, S, such that

(1) All image elements that have value WHITE will remain so in S; and,

(2) Every maximal connected subset of BLACK image elements in ~ is labeled
by a distinct positive integer in S.

This definition can be extended to other representations of images (e.g.,

quadtrees, octrees, and bintrees) [11, 12] in an obvious way. In these represen-

tations, the image elements are the portions of the image corresponding to leaf

nodes. Throughout this paper we assume that in all representations considered,

image elements correspond to rectangular areas of the image, and the length

and width of each image element is an integral multiple of the length of a pixel.

A binary image defines a graph, in which the nodes are the BLACK image

elements and the edges correspond to pairs of adjacent BLACK image elements.

If the image fits in memory, and if the representation of the image does not

constrain the order in which edges may be visited, then the components of the

image may be efficiently labeled using a depth-first component-labeling strategy

[5]. However, in some image representation schemes,this strategy may not be

appropriate. For example, in large pixel arrays stored in raster order, or in

pointerless quadtree representations [18], random access into the image can

produce large numbers of page faults, so it is preferable to process the image

in sequential order. In this paper, we address the problem of labeling the

components of an image that is to be processed in a predetermined order—that

is, in an order that is determined by the image representation scheme rather

than by the specific characteristics of the image.

A typical implementation of predetermined-order component labeling con-

sists of two passes. In the first pass, each pair of adjacent BLACK image

elements is examined in succession, and a set of equivalence classes is main-

tained. Each BLACK image element is initially assigned a temporary label, and

the temporary label is placed in its own equivalence class. For each pair of

adjacent BLACK image elements, the equivalence classes containing the tempo-

rary labels assigned to the two image elements are merged. When the first pass

is complete, the equivalence classes correspond to components (i.e., two image

elements belong to the same component if and only if their temporary labels

are in the same equivalence class). In the second pass, each equivalence class is

assigned a unique permanent label, and each image element is assigned the

label of the equivalence class to which its temporary label belongs. In both

passes, the process of keeping track of the equivalence classes is facilitated by
the use of a disjoint set-union algorithm. Although several such algorithms are

known, the UNION–FIND algorithm [1] is the simplest and the most commonly

used. This algorithm maintains each set as a tree, and uses path compression

and weight balancing to yield almost linear behavior.

The contributions of this paper are fourfold. First, we present a unified

single algorithm for predetermined-order connected-component labeling, The

algorithm handles a wide variety of image representation schemes, including

arrays, quadtrees, bintrees, and their multidimensional generalizations [13].

Second, we show how to adapt the UNION–FIND algorithm to permit the reuse

of temporary labels, by introducing the notion of age-balancing, and we show

Connected-Component Labeling for Arbitra~ Image 255

how to simultaneously implement age-balancing and weight-balancing. Third,

we give several criteria for “good” scanning orders, and we introduce the

notion of admissible and weakly admissible scanning orders. Finally, we show

that when our algorithm is specialized to 2-dimensional pixel arrays using a

raster scanning order,l we obtain an algorithm that runs in time linear in the

image size. The linear-time bound is based on the observation that geometric

constraints that apply in the case of 2-dimensional pixel arrays lead to an order

of operations for which the UNION–FIND algorithm, using path compression but

not necessarily using weight balancing, performs in linear time. Our linear-time

bound does not require the more complicated Gabow-Tarjan algorithm [3].

The basic assumption of the Gabow–Tarjan algorithm, namely that we know

the set into which an element will ultimately be merged when we create the

element, does not appear to apply in the application discussed here.

Section 2 contains basic facts about the UNION–FIND algorithm. Section 3 dis-

cusses image scanning orders and the fundamental concepts underlying our

algorithm. Section 4 is a general formulation of an algorithm for predeter-

mined-order connected-component labeling that satisfies the twin goals of

running efficiently and reducing storage requirements. Section 5 presents a

correctness proof, and Section 6 contains an analysis of the algorithm’s running

time. In Section 7, we show how to adapt the general algorithm to the case of a

two-dimensional array representation of an image, and we analyze the storage

and execution-time requirements of the specialized algorithm. Section 8 con-

tains some final remarks.

Connected-component labeling is a problem that has received much atten-

tion in the literature [4, 6, 7, 10, 11, 15]. Recently, Schwartz, et al. [17] have

independently reported a linear-time algorithm for labeling raster-scanned 2-

dimensional binary arrays. Their algorithm makes use of deeper properties of

raster-scanned images, and it is not clear how to generalize their approach to

other image representations. For a comparison with our approach, see [14].

2. The UNION–FIND Algorithm

The UNION–FIND algorithm is a general algorithm for keeping track of disjoint

sets of elements. This algorithm makes use of a tree to represent each set. The

trees are represented using only father links. Typically, the root of the tree

representing a set contains a pointer to application data relevant to all

elements of the set. The UNION–FIND algorithm supports three basic opera-

tions:

(1) MAKESET(A) creates a new set containing the single element A.
(2) FIND(A) finds the root of the tree that contains the element A.

(3) TJNION(A, B) combines the two sets whose roots are at A and 11 by making

one of the root elements the father of the other. The root of the combined

tree is sometimes called the szmiuor.

The UNION–FIND algorithm can be made to run quite fast provided two

optimizations are performed:

Path-compression. On each FIND(A) operation, all nodes encountered along

the path from A to the root of the tree containing A (including A, but not

1Throughout this paper, raster scanning order means that the rows are processed from top to
bottom and. within each row. pixels are processed from left to right.

256 M. B. DILLENCOURT ET AL.

including the root) have their father pointers reset to point to the root of

the tree.

Weigh t-B&ricing. When a UNION operation is performed, the smaller tree is

made a subtree of the larger tree (i.e., the root with more nodes is the

survivor).

With these two optimizations, any set of m FIND and UNION operations can

be performed in time O(m a(m)), where a is the inverse of Ackerman’s

function and grows extremely slowly. See [19] for more details on the exact

formulation, and see [20] for some related results. In most practical cases

a(m) s 5. It is worth noting that both optimizations must be used to obtain

the 0(m a (m)) time bound. If only one of the optimizations is used (i.e., either

path-compression or weight-balancing but not both), then the worst-case bound

is Q(m log m). If neither of the optimizations is used, then the worst-case

bound is Q(ml).

In this paper, we use a modified version of the UN1ON–FIND algorithm. We

add a fourth operation, RECYCLE(A), which removes an element A from the

set to which it belongs and makes it eligible for reuse, prolided A is not the

father of another entry. It is the responsibility of the surrounding application to

ensure that this constraint on A is satisfied. Clearly, the RECYCLE operation

can be executed in constant time. We refer to the interval of time between the

creation of an element (via MAKESET) and its return (via RECYC’LE) as an

incarnation of the element.

Our algorithm for component labeling uses a concept called age-balancing.

In essence, age-balancing says that when we merge two components, the

younger tree (the tree whose root began its current incarnation more recently)

is made a subtree of the older one. We show that age-balancing permits us to

use the RECYCLE operation, thereby lowering our space requirement signifi-

cantly. We also show how to make age-balancing and weight-balancing coexist,

so that the O(}n a(m)) bound on the UN1ON–FIND algorithm is maintained.

It is shown in [19] that the UNION–FIND algorithm exhibits superlinear

worst-case behavior. Lemma 2.1, below, shows that under certain restrictions,

the UNION-FIND algorithm is linear. Define a chain ~om the root to be a
sequence of elements A,l, Al, A ~ such that A ~ is the root of the tree

containing AL and such that A,_, is the father of A, for i = 1, ..., k. We say

that a sequence of UNION and FIND operations obeys the Stable Tree Proper~ if.

whenever A(,, A1, A ~ is a chain from the root with k >2, then once the

command FIND(AL) is issued, A ~ remains the root of the tree until all the

elements Al, AL have been recycled (see Figure 1). Define the depth of

the root node in a tree to be O, and the depth of a nonroot node to be onc
more than the depth of its father.

LEMMA 2.1. Suppose that in the execution of the UNION–FIND algorithm, the

Stuble Tree Property holds. Then, dze UN1ON–FIND algorithm, using path com-

pression, nuts i~l time linear in the number of operations, eL1en without weight-

balancing. More precisely, for any sequence of UNION and FIND operations, the

total number of links trauersed is at most 2F + 3U, where F and U are the total

number of FIND and UNION operations, respectiLJely.

PROOF. We first show that the Stable Tree Property implies that the

following two properties hold: (1) For each incarnation of an element A, A

Connected -Conlponent Labeling for Arbitrary Image 257

~

*O

--A
*o

Al

A2

I Al A2 Ak

I ‘k-1

‘k

FIG. 1. The Stable Tree Property: If Ao, A,,..., Ah is a chain and k z 2, then once the
command FIND(AL) is issued, AO remains the root of the tree until all the elements A 1,..., AL
have been recycled.

participates in at most one FIND operation in which A is at a depth exceeding

1. (2) In a chain from the root A(,, Al,..., A~ with k >2, for each i >1 (but

not necessarily for i = 1), there must have been a previous UNION(A1. ~, A,)

operation.

Let B be A’s father after the first FIND operation in which A participates

and in which A has a depth exceeding 1. After this operation, A’s depth is 1.

Because of path compression, B is the root of the tree to which A belongs. By

the Stable Tree Property, B cannot acquire a father for the remainder of A’s

incarnation, so A’s depth remains 1. This proves (l). To prove (2), observe that

A ,_ ~ can become the father of A, in one of only two ways. One way is through

a UNION(AL _ ~, A,) operation. The second possibility is through a FIND opera-

tion in which Al_ ~ is the root and the depth of A, is at least 2. But if A,_ ~ had

become the father of A, through a FIND operation in which the depth of At

exceeded 1, the Stable Tree Property would imply that A,_ Z could not then

have become the father of A,_ ~ before A, was recycled. Thus, the second

possibility cannot have occurred, which proves (2).

To prove the time bound asserted in the lemma, we “charge” each link

traversed in each UNION and FIND operation as follows. Each UNION operation

requires setting one father link, which we charge to the UNION operation. If a

FIND operation is performed on an entry at depth O or 1, at most two links must

be examined to verify that fact (in this case, no links must be modified), and we

charge those 2 links to the FIND operation. If a FIND operation is performed at

depth k >2, then k + 1 links must be examined (to determine the root), and

k – 1 links must be modified (to implement path compression), for a total cost

of 2k. Assume the command is FIND(A~), and let AL, Ah. 1, ..., A,] be the

path from AL to the root. Charge to links to each of the k – 1 commands

UNION(Ytt, A,_l) for i = 2,. . ., k. (By (2), we know each of these UNION

commands occurred previously.) By (1), each element A, participates in at

most one FIND command that results in charging some UNION command.
Hence, each UNION command gets charged by at most one FIND command. It

follows that the total number of links traversed is at most 2F + 3U, where F is

the number of FIND commands and ~ is the number of UNION commands. ❑

It is instructive to briefly compare Lemma 2.1 with the Gabow–Tarjan

linear-time algorithm for a special case of set union [3]. Essentially, the

258 M. B. DILLENCOURT ET AL.

Gabow–Tarjan algorithm requires the structure of the unions to be known in

advance. Although this is a valid assumption in many applications, it is not true

in the case of the component-labeling problem discussed in this paper. More-

over, the Gabow–Tarjan algorithm is more complicated to implement than

UNION–FIND, although its performance is apparently roughly comparable in

practice. Lemma 2.1 says that the standard UNION–FIND algorithm, using

path-compression (but not necessarily using weight-balancing), runs in linear

time under certain restrictions on the sequence of input commands.

3. Actile Elements, Lille Labels, and Scanning Orders

A scanning order defines the order in which image elements are processed, or

scanned. Given a d-dimensional image, each image element has neighbors in at

most 2. d directions. In two dimensions, this property is known as 4-

aajacency [9].Z An image element and each of its neighbors are adjacent to each

other along a horder of the image element. These directions are grouped into

d pairs of opposite directions.

A preprocessing phase initializes the boundaries of the image to WHITE and

hence the neighbors in these directions are considered to have been scanned

initially. At any instant during the scan, the image is partitioned into three

subsets:

(1) Inactil’e image elements. Scanned image elements whose 2 ~d borders are

all shared with image elements that have already been scanned (or with the

image bounda~). These image elements do not have unscanned neighbors.

(2) Actice image elements. Scanned image elements that have no more than

2 “ d – 1 of their borders shared with image elements that have already

been scanned (or with the image boundary). These image elements have at

least one unscanned neighbor. Borders between scanned image elements

and unscanned image elements are called actil)e borders. Note that any

scanned image element that is adjacent to an active border element is

necessarily active.

(3) Unscanned image elements. Image elements that have not yet been

scanned.

These three subsets are illustrated in Figure 2 for a raster scanning order.

Each image element has associate with it a label (this is a temporary label in

the first pass and a permanent label in the second pass). Two labels are

equiL alent if two image elements associated with those labels are known to be

in the same component because of adjacency information that has already
been processed. We refer to labels that are associated with at least one active

image element (or equivalent to such a label) as aliLe (or lile), and we say that

a label associated only with inactive image elements is dead. Only active image

elements can cause distinct components to subsequent merge. Thus, a dead

label will never be referenced again (on the current pass over the image), and

storage used to represent a dead label can be recycled and subsequently

reused. The algorithm that we present in the next section is based on exploiting

this observation.

1The methods of this paper can also be adapted to X-adjacency, in which each image element has
neighbors m 3d – 1 directions.

Connected-Component Labeling for Arbitray Image 259

I-4
Inactive

Active FIG. 2. Image partition after scanning pixel P in raster

Active P scanning order.

I Unscanned I

The definitions of this section, and the algorithm presented in the next

section, are applicable to any scanning order. Nevertheless, as a practical

matter, some scanning orders are better than others. For the purposes of the

algorithm discussed in this paper, a good scanning order is one that limits the

maximum number of labels that can be simultaneously alive.

A scanning order is said to be weakly admissible if each image element is

processed once, and when processing any image element P, all of the P’s

neighbors in at least one direction of every direction pair either do not exist or

have been scanned already. If there is a set of distinguished directions, one

from each direction pair, such that whenever an image element is encountered

its neighbor in each of the distinguished directions has already been processed

(provided it exists), the scanning order is admissible. (The difference between

being admissible and weakly admissible is whether the choice of directions

depends on the particular image element.) Any admissible order is weakly

admissible. A scanning order that is not weakly admissible is called inadmissi-

ble. There are many scanning orders that are admissible (e.g., left to right and

top to bottom for a 2. d array; NW, NE, SW, SE for a quadtree [12]; left, right for

a bintree [16]; etc.). Three 2” d examples of scanning orders that are weakly

admissible but not admissible are shown in Figure 3(a)–(c). The “zigzag” order

of Figure 3(a) fails to be admissible because when Pixel 1 is visited its EAST

neighbor has not been scanned while when Pixel 9 is visited its WEST neighbor

has not been scanned. Similar reasoning shows that the “spiral” order of

Figure 3(b) and the scanning order of Figure 3(c), which grows inward from the

corners of the image, are not admissible, although these three examples are all

weakly admissible. An inadmissible scanning order for a quadtree is NW, NE, SE,

SW. This is illustrated in Figure 3(d). In this example, when Node 3 is scanned,

neither its west neighbor nor its east neighbor has been scanned. Other

e;amples of inadmissible scanning orders are the “alternating-row” order of

Figure 3(e) and the “longest-diagonal-first” order of Figure 3(f). When the

alternating-row scanning order is used for an ~ x lV image, the number of

simultaneously active image elements can be as high as lV 2/4.

Admissible scanning orders are of interest for three reasons. First, the fact

that a scanning order is admissible imposes an upper bound on the maximum
number of image elements that may be simultaneously active (Proposition

3.l(a), below). This limits the number of labels that may be alive simultane-

ously, and hence limits the storage required by the algorithm of Section 4.

Second, admissibility implies that the region formed by those image elements

that have been scanned is orthogonally cormex, which means that the intersec-

260

1 2 3 4 5 6 7 8

16 15 14 13 12 11 10 9

17 18 19 20 21 22 23 24

32 31 30 29 28 27 26 25

33 34 35 36 37 38 39 40

48 47 46 45 44 43 42 41

49 50 51 52 53 54 55 56

64 63 62 61 60 59 58 57

(a)

1 5 17 21 42 34 10 2

9 13 25 29 46 38 14 6

33 37 49 57 54 50 26 18

41 45 53 61 62 58 30 22

24 32 60 64 63 55 47 43

20 28 52 56 59 51 39 35

8 16 40 48 31 27 15 11

4 12 36 44 23 19 7 3

(c)

1 2 3 4 5 6 7 8

33 34 35 36 37 38 39 40

9 10 11 12 13 14 15 16

41 42 43 44 45 46 47 48

17 18 19 20 21 22 23 24

49 50 51 52 53 54 55 56

25 26 27 28 29 30 31 32

57 58 59 60 61 62 63 64

(e)

M. B. DILLENCOURT ET AL.

1 2 3 4 5 6 7 8

28 29 30 31 32 33 34 9

27 48 49 50 51 52 35 10

26 47 60 61 62 53 36 11

25 46 59 64 63 54 37 12

24 45 58 57 56 55 38 13

23 44 43 42 41 40 39 14

22 21 20 19 18 17 16 15

(b)

7
1 2 5 6 17 18 21 22

4 3 8 7 20 19 24 23

13 14 9 10 29 30 25 26

16 15 12 11 32 31 28 27

49 50 53 54 33 34 37 38

52 51 56 55 36 35 40 39

61 62 57 58 45 46 41 42

64 63 60 59 48 47 44 43

(d)

1 9 23 35 45 53 59 63

16 2 10 24 36 46 54 60

29 17 3 11 25 37 47 55

40 30 18 4 12 26 38 48

49 41 31 19 5 13 27 39

56 50 42 32 20 6 14 28

61 57 51 43 33 21 7 15

64 62 58 52 44 34 22 8

(0

FIG. 3. Examples of weak adm]ssibdity and inadmissibility. (a)–(c) are weakly admissible but not
admissible, while (d)–(f) are inadmissible. (a) A pixel array, in which rows are alternately scmmecl
left-to-right and right-to-left (“zigzag order”). (b) A pixel array scanned in “spiral order.” (c) A
pixel array which is scanned inward in four waves emanating from the corners of the image. (d) A
quadtree scanned in NW, NE, SE, sw order. (e) A pixel array scanned in a “alternating row” order.
(f) A pixel array scanned in “longest diagonal first” order.

Connected-Component Labeling for Arbitrary Image 261

(a) (b) (c)

FIG. 4. Illustration of the proof of Proposition 3.1. The inactive image elements are shaded. (a)
A staircase with no convex bends. (b) A staircase with one convex bend. (c) A staircase with two
convex bends.

tion of any line parallel to one of the axes and the region either is empty or

consists of a single interval. Orthogonal convexity in turn implies that the

region formed by the scanned image elements is simply connected, which (in

two dimensions) means that it is connected and has no holes. Although simple

connectedness is not of great importance for connected-component labeling, it

is crucial for other operations, such as boundary extraction (see [2]). Third, if a

scanning order is known to be admissible, then it is only necessary to look at

each adjacency once. For example, if a quadtree is scanned using a NW, NE, SW,

SE scanning order, then a component labeling algorithm need only examine the

NORTH and WEST neighbors of the image element being scanned. These

properties are summarized in the following proposition:

PROPOSITION 3.1. If a scanning order is admissible, then

(a) For an N x N 2-d image, the number of image elements that may be actile
simultaneously is at most 2N – 2.

(b) For an image of any dimension, at any time during the scan, the region formed
by those image elements that have already been scanned is an orthogonally

conuex set. In particula~ it is simply connected.

PROOF. Assume without loss of generality, that the north and west neigh-

bors of each image element have already been scanned when the image

element is scanned. The active image elements, as well as the active borders,

form a “staircase” from southwest to northeast. A convex bend is an image

element that has active borders both to the south and east. If there are no

convex bends, then either the active image elements form a straight horizontal

or vertical run, or the staircase runs north from the south border of the image,

takes one right turn, and then continues to the east border of the image as

illustrated in Figure 4(a). In the former case, there are at most N active image

elements. In the latter case, there are at most 21V – 2 active image elements,
with equality holding if and only if the image element labeled P is the pixel at

the northwest corner of the image. Each convex bend reduces the upper bound

on the number of active image elements by one. For example, if there is just

one convex bend, then the maximum number of active image elements is

262 M. B. DILLENCOURT ET AL.

FIG. 5. In a weakly admissible scanning order, the
number of active image elements may be as high as
4N – 7.

1 2 3 38 37 36 35

4 5 6 42 41 40 39

7 8 9 46 45 44 43

51 50 49 48 47

22 23 24 25

18 19 20 21 34 33 32

14 15 16 17 31 30 29

10 11 12 13 28 27 26

2N – 3 as shown in Figure 4(b), while two convex bends reduce the maximum

number of active image elements to 2 N – 4 as shown in Figure 4(c).

The proof of (b) is a simple inductive argument. ❑

Proposition 3.l(b) becomes false if “’admissible” is replaced by “weakly

admissible,” as illustrated by Figure 3(b). In fact, Figure 3(c) shows that the

scanned region need not be connected when a weakly admissible scanning

order is applied. Figure 3(f) shows that the converse of Proposition 3. l(b) fails,

even when “admissible” is replaced by “weakly admissible. ” Figure 5 shows

that if “admissible” is replaced by “weakly admissible” in Proposition 3.l(a),

the bound can be as high as 4N – 7 (the case N = 8 is illustrated). We

conjecture that this is indeed the upper bound.

4. A General Algorithm for Comzected-Component Labeling

It should be clear from the discussion in Section 3 that by reusing labels

appropriately, we can devise an algorithm for connected-component labeling

that reduces the amount of storage needed for labels. The algorithm, which

appears as an appendix of this paper, is executed in two passes. The first pass

writes out an intermediate file consisting of image elements and temporary

labels. The second pass processes this file in reverse order (the file can be

conceptualized as a stack) and assigns final labels to each image element as the

end result is output. Thus, the requirement that the whole image not be kept in

internal memory is satisfied. The first pass processes each image element 1 in

turn, according to some predetermined scanning order. If 1 is BLACK, then the

temporary labels of all scanned BLACK image elements that are 4-adjacent to Z

are collected and an appropriate temporary label is associated with 1. Regard-
less of the color of 1, the set of active image elements is then updated to

reflect the fact that some image elements may have become inactive when 1

was processed. This may cause temporary labels to become dead, in which case

they may be eligible for reuse.

In this section, the algorithm is presented in the form of a skeleton which is

applicable to images of arbitrary dimensionalities, as well as to array, run-

length, quadtree, bintree, etc., representations of these images. For this reason,

we leave the precise implementation details of the data structures (e.g., the set

of active image elements) unspecified. The choice of data structure would

depend on factors such as the image representation and the scanning order.

Connected-Component Labeling for Arbitraiy Image 263

These factors affect the final formulation of the algorithm as some of the steps

may become trivial or even unnecessary. In Section 7, we describe a very

efficient implementation for a two-dimensional array representation of an

image. A discussion of how the algorithm can be used for a bintree representa-

tion of an image of arbitrary dimensionality appears in [16].

Before presenting the algorithm, we first discuss how to effectively keep

track of the active image elements and the equivalence relations among labels

in Pass 1. An active image element ceases to be active (and is removed from

the set of active image elements) when all 2 “ d of its borders are adjacent in

their entirety to image elements that have already been scanned or to the

image boundary. This situation is detected by keeping track of how many

borders of each active image element are active. We use the term, actiue border

element, to refer to elements of these borders.

A slight complication arises when using hierarchical image representations

such as quadtrees, as some borders of active image elements may be only

partially active. For example, consider the quadtree in Figure 6 whose BLACK

boxes are labeled A–G and whose WHITE blocks are labeled 1–6. Assume that

it is scanned in the order NW, NE, SW, SE. After processing the block labeled 5,

blocks A, 3, B, 4, and 5 are active. Block A is active because part of its

southern border is adjacent to the unscanned block C. A situation of this type

is detected by use of procedure PARTIALLY—ACTIVE.

As we stated in the introduction, the basic strategy behind our algorithm is

to maintain sets of equivalent temporary labels, using UNION–FIND, and to

merge sets whenever an equivalence between two temporary labels is noted. In

order to achieve effective reuse of space, we use the concept of age balancing,

introduced in Section 2, which says that when two trees are merged, the oldest

label becomes the root of the combined tree. This conflicts with the rule of

weight balancing (see Section 2), which says that when two trees are merged,

the root of the tree with the most descendants becomes the root of the

combined tree. The conflict is resolved by representing a temporary label using

two tightly coupled data structures: a surrogate record and a temporary label

record. The correspondence between coupled surrogate and temporary label

records is explicitly represented by pointers. Each active image element con-

tains a pointer to the appropriate tempora~ label record. Each equivalence

class is maintained as a tree of surrogate records. When two equivalence

classes are merged, weight balancing is achieved by making the surrogate

record with more descendants the root of the combined tree. Age balancing is

then achieved by altering the association between the surrogate records and

temporary label records, if necessary, to preserve the invariant that the

tempora~ label record associated with the root of the combined tree is the

oldest temporary label record associated with a surrogate record in the tree.

This is done by exchanging the pointers to a temporary label records in the two

surrogate records, and making the corresponding exchange between the point-

ers to surrogate records stored in the temporary label records.

We can now describe the data structures for our algorithm. Each active

image element, say 1, is represented as a 4-tuple consisting of the fields COLOR,
DSCR, NBORDERS, and TLABEL. COLOR(1) is the color of 1. DSCR(1) contains

information about 1—for example, the length of its side for a quadtree.

NBORDERS(1) indicates how many of the borders of 1 are active. It is initialized

when 1 is added to the set of active image elements. In general the initial value

264 M. B. DILLENCOURT ET AL.

1 2

A

FIG. 6. Example quadtree Nustratmg the concept of par- 3 B

tlally active border elements. BLACKblocks are labeled A-G
and WHITE blocks are labeled 1–6. 5 c

4
D E

G

6 F

must be computed by examining 1’s neighbors to determine which ones have

been scanned. For an admissible scanning order, the initial value is easier to

compute: it is d for a d-dimensional image except when some of the borders

are adjacent to the image boundary in which case it is less than d. The value is

given by the function NUM—ACTIVE. TLABLE(l) points to the temporary label

record of the temporary label associated with 1 when 1 became active. Once

TLABEL(l) is set, it never changes until 1 becomes inactive.

Each surrogate record S is represented by a 3-tuple consisting of the fields

TLABEL, FATHER, and COUNT. TLABEL(S) points to the corresponding temporary

label record. FATHER(S) is used to implement the sets of equivalence classes: it

points to another surrogate corresponding to a temporary label with which the

temporary label corresponding to S has been merged. COUNT(S) contains the

number of surrogate records that are descendants of S in the tree of surrogate

records used to represent equivalence classes of temporary labels. COUNT(S) is

used to implement weight balancing, and also to determine when it is safe to

recycle S.

Each temporary label record T is represented by a 3-tuple consisting of the

fields SURG, STAMP, and NACTIVE, SURG(T) points to the corresponding surro-

gate record. STAMP(T) is a time-stamp, used for the time-comparison between

temporary label records necessary to implement age-balancing. NACTIVE(T)

indicates the number of active image elements whose TLABEL field is T.

The key to effective reuse of temporary labels is the observation that if S

and T are a coupled surrogate record/temporary label record pair represent-

ing a label, the temporary label may be recycled when the following two

conditions are satisfied: (1) the label is no longer associated with any active

image elements (NACTIVE(T) = O), and (2) the surrogate record is not refer-

enced by the surrogate record of a younger temporary label (COUNT(S) = O).

For example, consider the quadtree given in Figure 7. All WHITE areas are
marked with numbers with the order reflecting the time at which they were

visited using a NW, NE, SW, SE scanning order, which is admissible. BLACK areas

are marked with letters, some of which correspond to the temporary labels that

they are assigned as the first pass is executed. Four temporary labels are

needed—A, B, C, and D with A the oldest and D the youngest. The cell

marked with W causes B and C to be merged with B being retained. The cell

marked with X causes A and B to be merged with A being retained. At the

time that the cell marked with Y is processed, four temporary labels are in use.

Processing Y causes path compression so that FATHER(SURG(C)) is set to point

to SURG(A). However, at this time there are no active image elements whose

Connected-Component Labeling for Arbitrary Image 265

2 c
B

1
3 c
4 c

B

A
5 c

6 7
B19 c c
B B w 10

A 8 B 11

A x

17 z
Y

18 19

22

20 21

12 m 23 24

14 15

13

16 D
L [! I

25 26

FIG. 7. Example quadtree illustrating a tempora~ label that becomes dead as a result of path

compression.

TLABEL field is B and since FATHER(SURG(C)) no longer points at B, we find

that both COUNT(SURG(B)) and NACTIVE(B) are zero. Thus, temporaw label B

can be recycled, and reused when block Z is subsequently processed, even

though a younger temporary label, (C in this case) is still active. Notice that if

we did not recycle B at this point, then we would have no easy way to detect

when it could be reused again, since the link from C to B has been removed by

the path compression and there are no active image elements whose TLABEL

fields point to B. Notice also that it is important to perform path compression

on the first FIND(C) operation when node Y is processed. Otherwise, each FIND

operation performed (one for each of the four scanned neighbors) would

require walking the complete path C–B–A instead of the compressed path
C–A.

The first pass of the algorithm traverses the image elements and applies

procedure PROCESS—ELEMENT—PASS—-1 to each image element, say 1. Ini-

tially, there are no active image elements. During this pass an intermediate

output file is constructed. The output file consists of three types of records:

266 M. B. DILLENCOURT ET AL.

WHITE, BLACK, and EQUIVALENCE. Each record contains the field TYPE that

indicates its type. A record of type WHITE corresponds to a WHITE image

element and has no additional fields. A record of type BLACK corresponds to a

BLACK image element and contains a second field, called TLABEL, which

contains the temporary label associated with the image element at the time of

output. The temporary label is specified as an index between 1 and the

maximum number of temporary labels that have been used so far. A record of

type EQUIVALENCE corresponds to a temporary label that becomes dead. A

record of this type has two additional fields: the tempoary label itself, called

TLABEL, and the temporary label that became its father through the surrogate

structure, called FATHER, which may have a value of NULL.

Procedure PROCESS—ELEMENT—PASS—1 makes use of procedures COLLECT

—ADJACENT, ASSIGN—TEMP—LABEL, REMOVE—ACTIVE—ELEMENTS, and RE-

MOVE—ACTIVE—TEMP—LABELS. As each image element is processed, it is

added to ACTIVE, the set of active image elements. If the image element is

WHITE, then a record of type WHITE is output.

For each BLACK image element 1, procedure COLLECT—ADJACENT performs

a FIND operation, with path compression, on (the surrogate record of) the

temporary label of each BLACK image element A that is 4-adjacent to 1. During

the path compression, tempora~ labels that are no longer associated with any

active image elements are made available for reuse (recall the example given in

Figure 7). The set of oldest representatives of equivalence classes containing

temporary labels associated with elements of A is accumulated in TLABELSET.

Procedure ASSIGN—TEMP—LABEL is used to associate a temporary label with

1. If TLABELSET is empty, then a new tempoary label is allocated. Otherwise, the

temporary labels in TLABELSET are merged. Pointers to the surrogate record

with the most descendants and the oldest temporary label record are accumu-

lated in S_ MAXCOUNT and L_ MINSTAMP, respectively. The label L_ MINSTAMP

is retained, pointers are switched if necessary to ensure that S_ MA~COUNT =

SURG(L—MINSTAMP), and weight-balancing is applied to the surrogate struc-

ture. The COUNT field of the surviving surrogate record is updated to reflect the

number of temporary labels that have been merged. After the call to

ASSIGN_ TEMP_LABEL, PROCESS—ELEMENT—PASS— 1 increments the NACTIVE

field of the temporary label record corresponding to the surviving surrogate

record and writes a record of type BLACK to the output file.

Procedure REMOVE—ACTIVE—ELEMENTS updates ACTWE, the set of active

image elements, by removing those image elements that have become inactive.

If a removed image element is BLACK, the NACTIVE fields of the associated tem-

porary label is decremented. If this causes the NACTIVb field of the associated

temporary label to become O, then the label is added to the set INACTIVE, which
is an initially empty list of candidates for recycling. Procedure REMOVE—AC-

TIVE—TEMP—LABELS is called for each surrogate record corresponding to an

element of the set INACTIVE. It checks whether the surrogate record can

be recycled and, if so, recycles it. If the surrogate record is recycled, that

may make its father eligible for recycling, and so on. It is possible that this

recycling up a chain could cause a temporary label in the INACTIVE set to be

recycled before its turn comes up in the loop at the end of PROCESS_ ELEMENT

—PASS— 1. An example of this phenomenon is shown in Figure 8, where the

quadtree is being processed in NW, NE, SW, SE order. When the block marked Y

is processed by procedure REMOVE_ ACTIVE_ TEMP_LABELS, INACTIVE con-

Connected-Component Labeling for Arbitray Image 267

1

3
B

B

5

B

B

B

2 3

A 4

B

Y
6 7

c c
x 8

9 10

11

FIG. & An example illustrating whv the function INUSE is reauired in the loou at the end of.
PROCES5—ELEMENT— PASS— 1.

tains the labels A, B, and C. If C is processed before B, then B will be recycled

before its turn comes up in the loop. For this reason, the primitive INUSE

checks whether the label is still in use (i.e., has not been recycled). This

primitive can be implemented by, for instance, having each temporary label

that has been recycled store a negative value in its NACTIVE field.

The second pass processes the intermediate file of records output in the first

pass in reverse order by applying procedure PROCESS—ELEMENT—PASS—2 to
each record. The data structures for the second pass are much simpler than

those for the first pass. There is no need to support weight-balancing in the

implementation of UNION—FIND (this statement is justified in Section 6), so

there is no need for surrogate records. The temporary label records require

two fields: FATHER to support UNION—FIND, and LABEL to hold the permanent

label. These fields may share storage with the fields in the temporary label

records used in Pass 1, so no new storage is necessary for Pass 2.

Recall that there are up to three fields in each record of the intermediate

file, called TYPE, TLABEL, and FATHER. Whenever a record corresponding to an

equivalence relation (‘EQUIVALENCE’ L, NULL) is encountered in the intermedi-

ate file, a unique (permanent) label is generated and associated with L. If a

record (’EQUIVALENCE’~,F) is encountered, L is linked to the temporag’ label

F (i.e., FATHER(L) is set to F). This link is used by a FIND operation (which

includes path compression) to obtain the correct label when a record corre-

sponding to a BLACK node with temporary label L (or its equivalent sons) is
subsequently encountered. WHITE nodes, (and GRAY nodes for certain hierar-

chical representations) do not require any special handling on the second pass,

although they are written to the final output file as “place holders.”

As an example, consider the 7 X 5 image in Figure 9(a), scanned according

to a raster scanning order, where B and W correspond to BLACK and WHITE

268 M. B. DILLENCOURT ET AL.

(a)

(B,l) (B,l) (B,l) (B,l) (w)

(w) (w) (w) (B,l) (w)

(w) (B,2) (w) (B,l) (w)

(w) (W) (E,2,f2) (w) (B,l) (w)

(B,2) (B,2) (B,2) (B,l) (B,l)

(w) (w) (W) (E,2,1) (w) (W) (E,l,Q)

(w) (B,l) (W) (E,l ,Q) (w) (w)

(b)

C2 C2 C2 C2 w

w w w C2 w

w C3 w C2 w

w w w C2 w

i
c2/c21c2]c21c2

I
Iwlwlwlwlwl

w Cl]wlwlw I

(c)

FIG. 9. Illustration of the appl~catlon of the connected-component labeling algorithm to a two-

dimenslonal raster-scanned image representing as an array. (a) A 7 X 5 two-dimensional Image.

(b) The corresponding contents of the intermediate file. (c) The final labeled Image.

pixels, respectively. The output of Pass 1 is shown in Figure 9(b), where the

records of type EQUIVALENCE have been placed in the cell associated with the

pixel which triggered its output. The final output is shown in Figure 9(c), where

the final component labels are generated in the order Cl, C2, C3 (recall that

the second pass scans the intermediate file in reverse order).

5. Proof of Correctness

The algorithm described in Section 4 specifies a method for connected-

component labeling using UNION–FIND, with reuse of temporary labels. The key

Connected-Component Labeling for Arbitrary Image 269

to the correctness of the algorithm is the correctness of the reuse of space in

both passes. Propositions 5.2 and 5.3, below, establish that space is reused

correctly. To give a precise formulation of Proposition 5.2, we need the

following lemma.

LEMMA 5.1. The mapping between temporaty label records and sun-ogate

records given by the TLABEL jield is well-defined. More precisely, during the

execution of the first pass, for each tempora~ label record L, at any given time

there is a unique surrogate record s associated with ~. For each such pair L and S,

SURG(L) = S, TLABEL(S) = L, and L is in use (i. e., has been allocated but not

recycled) if and only if s is in use.

PROOF. When a tempora~ label is created (by the procedure NEW—TEMP

—LABEL), a surrogate record is also created and linked to it. These links

survive deallocation (recycling) of temporary labels (by RETURN—TO—AVAIL)

and reallocation (by NEW—TEMP—LABEL). The links are only altered at one

place in the code, namely in ASSIGN—TEMP—LABEL, and it is easily verified

that if there was a well-defined association before the links are swapped then

there is also a well-defined association afterwards. Since the conclusion of the

lemma is vacuously true at the start of Pass 1, it follows by induction that it can

never become false. ❑

Lemma 5.1 provides the justification for certain shorthand terminology used

in the previous section and the current section. For example, if L1 and L2 are

temporary labels, the statement that “L2 is the father of Ll” is equivalent to

the more formal statement “SURG(L2) = FATHER(SUR@Ll)).” Of course, it must

be understood that relationships of this kind can change in two ways: When

FATHER links in the forest of surrogate records are changed, and when the

associa-

tion between temporary label records and surrogate records changes in ASSIGN

—.-TEMP-LABEL. Similarly, the statement that “label 2 is recycled” is a short-

hand way of saying “the temporary label record used to represent label 2 (and

the associated surrogate record) are recycled.”

We can now state precisely what it means for tempora~ labels to be reused

correctly in Pass 1.

PROPOSITION 5.2. The following properties hold throughout Pass 1. (a) No

temporary label is recycled as long as it is the father of a temporary label. (b) NO

tempora~ label is recycled as long as it is associated with an actile image element.

PROOF. The key observations are that the COUNT field of a surrogate record

represents its total number of descendants, and that the NACTIVE field of a

tempora~ label record always represents the number of active image elements

to which the corresponding tempora~ label has been assigned. Parts (a) and

(b) then follow from observing that a temporary label is recycled only when it
has the value O in its NACTIVE field and the COUNT field of its associated

surrogate record also has the value O. It remains to show that these two fields
are correctly maintained.

The COUNT field of a surrogate record is initialized to zero when the

associated label record is allocated in ASSIGN—TEMP—LABEL. It is altered in

three places.

270 M. B. DILLENCOURT ET AL.

(1) In COLLECT—ADJACENT, when path compression occurs along a chain from
the root LO, LI, ..., Lk because of a FIND operation on L~, the COUNT

fields are updated according to the following two rules: (i) for 1 s i < k,

COUNT(L~) is decreased by the old value of COUNT(L~ + ~) + 1, and (ii)

COUNT(LO) is decreased by the number of labels that are recycled. These

rules reflect the fact that if 1 s i < k, L ~+ ~ and its descendants quit being

descendants of L~ irrespective of whether they are recycled, but the only

labels that quit being descendants of LO are the labels that are recycled.

(2) In ASSIGN—TEMP—LABEL, when trees are merged, the COUNT field of the

new root is increased appropriately.

(3) ln REMOVE—ACTIVE—TEMP—LABELS, the number of nodes that have been
deleted along the current path are accumulated in the variable

DELETED—COUNT and this value is subtracted from each node.

Place (1) ensures that the COUNT field is handled correctly as path compres-

sion and node recycling occur during a FIND operation. Places (2) and (3)

guarantee that the COUNT field is updated properly during UNION operations

and during RECYCLE operations that stem from image elements becoming

inactive, respectively. Thus, the COUNT field is correctly maintained.

The NACTIVE field is only updated in two places–in PROCESS—ELE-

MENT—PASS— 1 when an image element is assigned a temporary label, and in

REMOVE—ACTIVE—ELEMENTS when the image element becomes inactive. By

inspecting the code, we see that it is maintained correctly. ❑

Recall that in Pass 1, when several temporary labels are merged, the oldest

of the labels is kept. This strategy, which is called age bala~zci}zg, is supported

by the use of the STAMP field in the temporary label. In Pass 2, a permanent

label is assigned to each BLACK image element as it is encountered. This is

done by first performing a FIND on the image element’s temporazy label, say

Ll, to find the temporazy label L2 that is the root of the tree to which L1

belongs. The image element is then assigned the permanent label LABEL(LZ).

To establish the correctness of Pass 2, we have to show that when an

intermediate record corresponding to a BLACK image element with associated

temporary label L1 is encountered, L2 has already been assigned the appropri-

ate LABEL field and has not been subsequently reused. This follows from the

following proposition.

PROPOSITION 5.3. The following properties hold throughout Pass 2. (a) When a

tempoz-a~ label is encountered as the TLABEL field of a BLACK record in the

INTERMEDIATE file tlzen it is in a tree whose root has the comeet permanent label in
its LABEL field. (b) No temporary label is reused while it is still rhe father of an

?ZOWt?LlS6?dtenzpo?my label.

PROOF. Let L, and L2 be two temporary labels encountered during Pass 2.

Suppose that Lz is the temporary label returned by a FIND on L, during the

processing of an image element belonging to component C. It is easy to show,

by induction on the total number of UNION operations performed while

processing C, that L ~ was the first (and hence, by age-balancing, the

last) temporary label to be associated with C during Pass 1. This means that

the last record pertaining to C that was written during Pass 1 was (’ EQUIV-

ALENCE’, LQ, Q). Moreover, a record of this type is written for each component.

Connected-Component Labeling for Arbitrary Image 271

Hence, the first record pertaining to component C to be processed in Pass 2

was the record (’EQUIVALENCE’, Lz,0), so Lz is the temporary label with the

correct LABEL field. This proves (a).

Assertion (b) follows from the age-balancing performed during Pass 1 and

the fact that the intermediate file is read in reverse order in Pass 2. In more

detail, the argument is as follows. For the purposes of this proof, let image

element k be the kth image element processed during Pass 1. Suppose that L ~

and Lz are two temporary labels in Pass 2, with Lz the father of L ~, and let C

be the common component with which they are associated. This particular use

of L ~ corresponds to an incarnation of the temporary label L ~ in Pass 1;

suppose the incarnation began when image element k, was being processed.

Similarly, suppose the particular use of L2 corresponds to a (Pass 1) incarna-

tion that began when image element Kz was being processed. Since L2 is the

father of L1 in Pass 2, either (1) there was a record (’EQUIVALENCE’,L ,,L2)

written during Pass 1, or (2) Lz is the root of the tree containing L ~. (Notice

that either or both of these conditions may hold.) In either case, it follows from

the age-balancing rule that kz < kl. In Pass 2, Lz will not be reused until after

image element k. is processed. This occurs after image element lZI is pro-

cessed, at which t~me L, becomes eligible for reuse. ❑

We summarize the results of this section in the following theorem, which

follows from Proposition 5.2, Proposition 5.3, and the remarks at the start of

the section.

THEOREM 5.4. The algorithm of Section 4 correctly labels the connected

components of an image.

6. Analysis of the Algorithm

The time-complexity of the algorithm is determined by the following quantities:

the cost of processing the image elements, the cost of examining all the active

neighbors of all image elements, and the cost of the UNION–FIND operations.

Let 1 be the total number of image elements, and let E be the number of all

adjacent pairs of image elements.

The main procedures in both Pass 1 and Pass 2 (PROCESS—ELEMENT—PASS

_ 1 and PROCESS—ELEMENT—PASS—.-2, respectively) are each executed 1 times.

If the scanning order is admissible, each pair of adjacent nodes is examined at

most twice in Pass 1–once to find the neighbors of an image element and once

to consider them for possible removal from the ACTIVE set. In the absence of

admissibility, each adjacency pair may be examined four times. In Pass 1, each

image element induces at most one UNION operation, and each adjacency pair

induces at most one FIND operation. The total time required by all UNION and

FIND operations in Pass 1 is thus O(Ea(E)), since the UNION–FIND implemen-

tation in Pass 1 combines weight-balancing and path-compression. It is then

straightforward to verify that the total time required by Pass 1 is O(ECY (E)).

The only possible point of difficulty is REMOVE—ACTIVE—TEMP. -LABELS, and
it is not hard to show that the total time required by all calls to REMOVE—AC-

TIVE_TEMP—LABELS is O(E). This last statement follows from two easily

verified facts: (1) the total number of calls to REMOVE—ACTIVE—TEMP —LABELS

in all of Pass 1 is at most 2E (at most 13 if the scanning order is admissible),

272 M. B. DILLENCOURT ET AL.

and (2) each tempora~ label in INACTIVE is at depth at most 2, so each call to

REMOVE—ACTIVE—TEMP—LABELS requires at most three iterations of the

while loop.

In Pass 2, each image element induces at most one UNION (corresponding to

an EQUIVALENCE record) and at most one FIND operation. It follows from

Proposition 5.3(a) that the Stable Tree Property holds in Pass 2, so Lemma 2.1

can be applied, and we get a bound of 0(1) for the total cost of the

UNION–FIND operations in Pass 2. This last observation justifies the statement,

made in Section 4, that weight-balancing is not necessary in Pass 2.

It follows from the preceding paragraphs that the worst-case time-complexity

is 0(1 + Ea (E)). For almost any representation of an image, and certainly for

all the ones considered here (hint rees, quadtrees, arrays, etc.), E = 0(1), so

the worst-case time-complexity reduces to 0(Ia (1)) in these important cases.

This statement remains true for d-dimensional extensions of these representa-

tions if d is treated as a constant. The complexity is actually O(d “ Ia (I)) for

4-ddjacent labeling and 0(3~ ~la(l)) for 8-adjacent labeling.

7. Component Labeling in a Pixel Array Using Raster-Scanning Order

The algorithm described in Section 4 is formulated in a general manner that is

independent of the representation of the image and of the scanning order. In

this section, we show how to adapt it for the array representation of a two-

dimensional image, processed in raster-scanning order. The resulting algorithm

runs in time linear in the number of pixels, which is optimal. Rather than give

a detailed description of the raster-scan algorithm, we show how the general

algorithm can be simplified to obtain it. A detailed description of the algo-

rithm, and some empirical results, can be found in [15].

Assume an N X N image such that the origin is at the upper left corner of

the image so that rows and columns are numbered from 1 to N. A pixel at

position (i, j) is in row i and column j. When we process a pixel at position

(i, j), the set of active image elements consists of the pixels at positions (i, p)

such that 0 < p < j and (i – 1,p) such that j s p s N. The active border

elements are the southern sides of the active image elements and the eastern

side of the active image element at position (z, j – 1). For simplicity we assume

that all pixels of (the fictitious) row O and column O are WHITE.

It is easy to see that the set of active elements can be represented as a

one-dimensional array. The array representation, coupled with the raster

scanning order. is useful for two important reasons. First, when collecting the

temporary labels of the 4-adjacent neighbors of an active image element in

PROCESS—ELEMENT—PASS— 1 and COLLECT—ADJACENT we need not perform
a search –a single array access suffices. For a pixel at position (i, j), the

4-adjacent active image elements are found at positions (i, j – 1) and (i – 1, j),

which correspond to positions j – 1 and j in the array. Determining the

tempora~ labels associated with these pixels only requires one FIND operation

for the temporary label associated with of (i – 1,j).The temporary label

associated with (i, j – 1) is current since this was the most recent pixel

processed. Second, there is no need to have an NBORDERS counter associated

with an active pixel. This is because, once an image element’s eastern neighbor

has been processed, only one active border element remains (the southern

side), and when this border element ceases to be active, so does the pixel.

Connected-Component Labeling for Arbitrary Image 273

The raster-scanning algorithm and the representation of the active elements

can be further simplified by making use of the observation that active image

elements become inactive in the same relative order that they became active.

This observation facilitates keeping track of temporary labels that have been

merged. It also simplifies the process of removing elements that are no longer

active from the set of active elements. In particular, there is no need for the

100p in REMOVE—ACTIVE—TEMP—LABELS (See [15]).

We now show that the specialized algorithm runs in linear time. More

precisely, we show that the total number of links that must be traversed is

bounded by 9B, where B is the number of black pixels. Our proof is based on

showing that Lemma 2.1 applies. This means that weight balancing is not

needed, so the surrogate and temporary label records described in Section 4

may be combined into a single record structure and the COUNT field is

unnecessa~. These observations simplify considerably the data structures

required. The following lemma captures the intuitive notion that an older

component cannot be “surrounded” by a younger component.

LEMMA 7.1. Let L and M be two active temporaiy labels that are the roots of

UNION-FIND trees, with M younger than L. Let P be an actil)e pixel that is labeled

with a label L’ that is a descendant of L. Then all actil~e pixels that are labeled with

M or its descendants are on the same side (left/right) of P.

PROOF. Let Q be the oldest pixel labeled with L (i.e., the first pixel to

receive this label in the current incarnation of the label L). Suppose that X

and Y are two active pixels labeled with descendants of M, one on either side

of P, as illustrated in Figure 10. There are disjoint 4-connected paths np~ and

HXY, each consisting of black pixels that have already been processed, connect-

ing X to Y and P to Q, respectively. It follows that II,YY must contain some

pixel above Q. But then the temporary label 114 is older than L, which is a

contradiction. ❑

PROPOSITION 7.2. Pass 1 requires at most 5B links to be accessed, where B is

the number of black pixels processed.

PROOF. Each BLACK pixel induces one call to UNION and one call to FIND.

The key to the proof is establishing that Lemma 2.1 applies. We first establish

the following claim.

Claim 1. Suppose that when a pixel P is processed, with pixel V immedi-

ately above P and TLABEL(V) = A k, the call FIND(TLABEL(v)) causes the chain

A~,.. ., AO to be collapsed due to path compression. Then, all active pixels

labeled with A,, 1 s j < k, are to the right of V.

Suppose the claim is false, and let m be the smallest value of j for which it is

false. Then there is some pixel Q to the left of P such that Q is active and

labeled with A,. when P is processed. Let R be the pixel that caused the

temporary label Am to be merged with Am_ ~. R must be to the right of Q
(since otherwise Q would not be labeled with Am) and to the left of P (since

by the time P is encountered, Am, _ ~ is a descendant of AO). Let L and T be,

respectively, the pixels to the left of and above R. Then R, L, and T must be

BLACK, and R must be labeled with A,,, _ ~ (see Figure 11). If m > 1, this

contradicts the definition of m, so we may assume that m = 1.

M. B. DILLENCOURT ET AL.

Id

YI

x P

FIG. 10, Illustration of the proof of Lemma 7.1.

FIG. 11 Illustration of the proof of Cl~im 1

of Proposition 7.2

Now consider the situation immediately before R is processed. P’ is labeled

with A,<, Q is labeled with #11, and either L or T is labeled with AO (if L = Q,

T is labeled with A,,). ,4 ~ is in the tree rooted at A ~, which is disjoint from

(and younger than) the tree rooted at AO. Lemma 7.1 then implies that P’ and

Q must be on the same side of R, which is a contradiction of our initial

assumption. This contradiction establishes Claim 1.

Claim 2. Suppose that when a pixel P is processed, with V the pixel

immediately above P and TLABEL(V) = AL, the call FIND(TLABEL(V)) causes

the chain Ak, ..., /10 to be collapsed. Then, the labels AL,..., Al will all

become dead before a pixel labeled with a temporary label whose root is older

than A” is encountered.

Suppose Claim 2 is false. Then some pixel Q, encountered after pixel P, is

associated with a temporary label (say A*) that is older than A., and when Q

is encountered, some pixel R labeled with A, is still active. By Claim 1, R is to

the right of V. Since R is still active when Q is encountered, Q is to the right

of P, and R must be to the right of the pixel above Q (see Figure 12). Since AO

is younger than A*, and pixels P and R are on opposite sides of Q, this is a

violation of Lemma 7.1. Claim 2 follows by contradiction.

Claim 2 implies that the Stable Tree Property holds, so we can apply Lemma

2.1. Hence. the total number of links traversed in Pass 1 is no more than
2F+3U=2B+3B=5B. ❑

Pass 2 requires at most 4. B links to be accessed. This is because we do a

FIND on a new tempora~ label immediately after encountering it, so age-

balancing implies that no temporary label is ever at a depth greater than 2 in
the UNION–FIND structure. Thus no FIND operation requires accessing more

than three links or resetting more than one, and there is at most one FIND per

black pixel.

The storage requirement is the storage for IV the active image elements plus

the storage for the live temporary labels. At any one time, there can be no

Connected-Component Labeling for Arbitra~ Image 275

~

FIG, 12. Illustration of the proof of Claim 2
of Proposition 7.2.

A B c D E

F A G B H c I D J E

FIG. 13. The number of simultaneously live labels in a raster-scanned N X N pixel array can be

as high as 12N/3].

more than ~2~/31 live nodes, where [” 1 denotes the ceiling function. This

follows from the (easily verified) fact that at any moment during Pass 1, of any

three consecutive active pixels, either one is white or at least two have the

same temporary label. Figure 13 shows that the bound of [21V/31 is tight. In

the figure, IV = 14, blank pixels are white, and the letters indicate labels.

The results of this section are summarized in the following theorem.

THEOREM 7.3. The total number of links processed in connected-

component labeling of an N x N image represented as an array and processed in

raster-scan order, using the methods of this section, is bounded by 9B, where B is

the number of black pixels. Hence, the total time requirement is O(N). The storage

requirement is also O(N).

8. Concluding Remarks

We have presented an efficient algorithm for connected-component labeling of

images for arbitrarily specified scanning orders. We have proposed a criterion

for good scanning orders, namely admissibility. We have shown that our

algorithm, when specialized to a 2-dimensional pixel array processed in raster-

scan order, runs in time linear in the number of pixels. This analysis is based

on the observation that the UNION–FIND algorithm runs in linear time provided

the sequence of input operations satisfies the Stable Tree Property, a fact that

may be of interest in other situations as well.

We leave as an open problem a detailed worst-case analysis of the storage

and time requirement of the approach of Section 4 for other representations

such as quadtrees and 3D-pixel arrays. We conclude with an example showing

that the Stable Tree Property does not necessarily hold for the UNION–FIND

structures that arise in arbitrary admissible scanning orders. The quadtree of

Figure 14 is scanned in NW, NE, SW, SE order. Cells marked with letters are

BLACK, and cells marked with numbers are WHITE. The letters in some of the

cells are the tempora~ labels associated with them. The nodes marked X, Y,

and Z respectively cause D to become the father of E, C the father of D, and B

the father of C. The node marked U causes path compression to occur alon~

the path E–D–C–B. When node V is subsequently encountered, it causes label

A to become the father of label B, even though labels C, D, and E are still

alive. This shows that the Stable Tree Property does not necessarily hold for

quadtrees.

276 M. B. DILLENCOURT ET AL.

1

A

2

3

4 B

6 c

8 D

A

FIG. 14. The Stable Tree Property does not necessarily hold for quadtrees scanned in an
admissible order.

Appendix. A General Algorithm for Connected-Component Labeling

procedure PROCESS—ELEMENT_ PASSl(I, ACTIVE);

/’ Add image element I to the set of active image elements during the first pass of
connected-component labeling of an image and output appropriate records to the
intermediate file pointed at by INTERMEDIATE for the second pass. The contents of
these records are specif]ed within angle brackets “/

begin
VdUf3 pOhItW iIUage-ELEMENT I;

referenCe f)Ointer irUfige-ELEMENT SET ACTIVE;
global integer MAXSTAMP, MAXLABEL; /“ initially O at start of PASS1 “/
global pointer file INTERMEDIATE;
pOinter teUIP_LABEL SET TLABELSET,INACTIVE;
POinter iUlage_ELEMENT A;
if COLOR(I) = GRAY then

begin /’ this case handles quadtrees, octrees, bintrees, etc. “/
OutPut(INTERMEDIATE, (’GRAY’));

DECOMPOSE—AND—RECUR(1, PROCESS_ ELEMENT_ PASSl);
end

else
begin

Connected-Component Labeling for Arbitra~ Image 277

addtoset(I,AcTIvE);
NBORDERS(I) +- NUM_ACTIVE(I);

/“ NUM—ACTIVE indicates how many of I’s borders are ACTIVE “/
if COLOR(I) = WHITE then output(INTERMEDIATE, (’ WHITE’))

ehe * I iS BLACK */

begin
TLABELSET + eUIptY;

foreach A in ACTIVE suchthat FOUR—ADJACENT(A,I) do

COLLECT_ADJACENT(A, TLABELSET);
ASSIGN—TEMP—LABEL(I,TLABELSET);
NACTIVE(TLABEL(I)) + NACTIVE(TLABEL(I)) + 1;

output(INTERMEDIATE, (“BLAcK’, TLABEL(I)))):
end;

INACTIVE ‘+ emptfi
foreach A in ACTIVE suchthat

FOUR—ADJACENT(A,I) and not PARTIALLY_ACTIVE(DSCR(A), DSCR(I)) do

REMOVE—ACTIVE—ELEMENTS(A,ACTIVE,INACTIVE);

foreach L in INACTIVE do

if INUSE(L) then REMOVE_ACTIVE_TEMP_ LABELS(SUR@L));

end;

end;
procedure COLLECT_ ADJACENT(A,TLABELSET);

/“ Collect the temporary labels of BLACK active image elements that are 4-adjacent to L

“/
begin

VdU12 pOhIkT iUlage-ELEMENT A;
referenCe pOinter temp_LABEL SET TLABELSET;

pointer surrogate S, S1, S2;
integer PATHCOUNT + O;

if COLOR(A) = BLACK then

begin
sl - s .+ suRG(TLABEL((A));

while nOt nUli(FATHER(S)) do S - FATHER(S); * FIND “/

while S1 # s do * path compression */
begin

s2 & FATHER;

* PATHCOUNT contains value of COUNT(S1)from before start of path
compression “/

if S2 # s then

begin
COUNT(S2) + COUNT(S2) – PATHCOUNT – 1;
PATHCOUNT - PATHCOUNT + COUNT(S2) + 1; /* old COUNT(S2)*/

end;
if couN’r(sl) = O and NACTIVE(TLABEL(S 1)) = O then

begin

RETURN_TO_AVAIL(TLABEL(Sl));
COUNT(S) = COUNT(S) – 1;

end
else

FATHER(S1) - S;
S1 + Q;

end;

addtOSet(S,TLABELSET~
end;

end;
procedure ASSIGN_TEMP_LABEL(I, TLABELSET);

*Assign a temporary label to image element I. TLABELSETcontains the temporary labels
of all BLACK image elements that are 4-adjacent to I. If TLABELSETis empty, then
allocate a temporary label and assign it to L Otherwise, determine L_ MINSTAMP,the
oldest temporary label, and S_ MAXCOUNT,the surrogate with the most descendants.
In this case, first achieve age-balancing and weight-balancing by ensuring that

278 M. B. DILLENCOURT ET AL.

S_ MAXCOUNT is the surrogate for L_ MINSTAMP. Next merge the labels in TLABELSET

“/
begin

value pointer iIUage_ELEMENT I;
referenCe pOinter teUIP-LABEL SET TLABELSET;
pOinter teIUp_LABEL L_ MINSTAMP,L;
pointer surrogate s_ MAxcouNT;
pointer global integer MAXLABEL, MAXSTAMP;
if etUP@(TLABELSET) then

begin /“ no BLACK active image elements are 4-adjacent to L “/
L—MINSTANIP + NEW_ TEMP_LABEL();

/‘ returns pointer to temp—LABEL record properly coupled with a

surrogate record ‘/
NACTIVE(L_MINSTAMP) + COUNT(SURG(L_MINST.AMP)) - O;
FATHER(SURG(L—MINSTAMP)) + NIL;

STAMP(L_MINSTAMP) ~ MAXSTAMP * MAXSTAMP + 1;
end

else
begin

L_ MINSTAMP - ARBITRARY(TLABELSET); /= pick some arbitrary element of
TLABELSET ‘/

S—MAXCOUNT ~ SURG(L—MINSTAMP):
foreach L in TL.ABELSET do

begin
if STAMP(L) < STAMP(L—MINSTAMP) then

L—MINSTAMP ~ L; /% determine oldest temporary label ‘/

if COUNT(SURG(L)) > COUNT(S—MAXCOUNT) then

S_ MAXCOUNT ~ SURG(L); /“ determine surrogate with largest
subtree ‘/

end;
/+ enSUre S_klAXCOUNT iS SUrrOgate fOr L—MINSTAMP ‘/
if S_ MAYCOUNT # SURG(L_MINSTAMP) then

begin
L F TLABEL(S_MAXCOUNT);

TLABEL(S—MAXCOUNT) @ TLABEL(SURG(L_MINSTANIP)):

SURG(L) ~ SURG(L_MINSTAMP);
end;

foreach L in TLABELSET do

begin /“ UNION “/

s + suRfj(L):

if s # S—MAXCOUNT then

begin
FATHER(S) + S—MAXCOUNT;
COUNT((S_MAXCOUNT) + COUNT(S_MAXCOUNT) + COUNT(S) + 1;

end;
end;

end;
TLABEL(l) Y L—MINST,AMP,

end;
procedure REMOVE—ACTIVE—ELEMENTS(A,ACTIVE,INACTIVE);

/’ Remove image element A from the set ACTIVE if it is no longer active. If the removed
image element is BLACK, decrement the NACTIVE field of the associate temporary
label. If this field becomes O, add the temporary label to INACTIVE ‘/

begin
value pointer iUIage_ELEMENT A;
referenCe pOinter iIUage_ELEMENT SET ACTIVE;
referenCe pOinter teUIP-LABEL SET INACTIVE;

NBORDERS(A) + NBORDERS(A) – 1; /% I can be adjacent to A along only one border */
if NBORDERS(A) = O then

begin /’ image element A is no longer ACTIVE ‘/
REMOVE_ FROM—SET(A,ACTIVE);

Connected-Component Labeling for Arbitmy Image 279

if COLOR(A) = BLACK then

begin
NACTIVE(TLABEL(A)) + NACTIVE(TLABEL(A)) – 1:

if N.ACTIVE(TLABEL(A)) = O then addtoset(TLABEL(A), INACTIVE):

end;

end;

end;

procedure REMOVE_ ACTIVE_ TEMP_LABELS(S);

/+ Recycle the temporary label associated with surrogate records if it is legal to do so. If
s can be reused. then check if its father can also be reused, and so on. Update COUNT
fields all the way up to the root ‘/

begin

value pointer surrogate s;
pointer surrogate S1;
integer C)ELETED_COUNT * O;
while not null(s) do

begin
COUNT(S) + COUNT(S) – DELETED—COUNT;

SI + s;

s + 13ATHER(s):

if NACTIVE(TLABEL(S1)) = (1 and COUNT(S1) = O then

begin /’ temporary label with surrogate s can be reused 4/

DELETED_ COUNT G DELETED—C.OUNT + 1;

OUtpUt(INTERMEDIATE, (' EQUIVALENCE', TLABEL(Sl),TLABEL(S))); / ‘
TLABEL(NIL) = NIL! ‘ /

RETURN_ TO_ AVAIL(TLABEL(Sl));
end:

end;
end;
procedure PROCESS—ELEMENT_PASS2(R);

/’ Assign the final component label to the objcctcorrcsponding to R during the second
pass of connected = component labeling of an image. */

begin
Vdlle INTERMEDIATE—RECORD R;

global integer MAXLABEL; /’ initially O at start of pass2 ‘/
if TYPE(R) = ‘BLACK’ then /* format is (’BLACK’, TLABEL) ‘\

Output(LABEL(FIND(TLABEL(R))))

else if TYPE(R) = ‘EQUIVALENCE’ then /* format is (’EQUIVALENCE’,
TLABE~,~ATHER) 4/
begin

FATHER(TLABEL(R)) - FATHER(R); /“ UNION ‘/
if null(FATHER(R)) then LABEL(TLABEL(R)) ~ MAXLABEL - MAX LABEL + 1;

end

eke OU@t(TYPE(R)); /* WHITE or GRAY node ‘/
end;

pOhkr temp_LABEL PROCEDURE FIND(L);
/“ Find the root of the tree to which L belongs, using path compression ‘ /

begin

Vak pOhI@r temp_LABEL L;

pOhIter temp_LABEL Ll, L?2;

if nUll(FATHER(L)) then retUrn(L);
L1 - L;

while nOt nUll(FATHER(L)) do L + FATHER(L); /’ find rOOt “/
while FATHER(L1) + L do /} path compression */

begin
L2 e FATHER(L1);

FATHER(L1) + L;
L1 ~ L~;

end;
return(L);

end;

280 M. B. DILLENCOURT ET AL.

ACKNOWLEDGMENTS. We thank John Canning and Azriel Rosenfeld for help-

ful discussions and comments.

REFERENCES

1.

‘3
L,.

3.

4,

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

RE~

AHO, A. V., HOPCROF-I, J. E,, AND ULLMAN, J. D. The Des~gn and Analysts of Cornpafer

Algorztlznzs, Addison-Wesley, Reading, Mass., 1974.
DZLLENCOURT,M. B., AND S.AMET, H Extracting region boundaries from maps stored as
linear quddtrees. In P?oceedmgs of tlze 3tLf Intemallonal Corzfcr’ence on Spatial Data Hundlmg

(Sydney, Austrdha, Aug.) 1988, pages 65-77.
G.ABOW, H, N. AND T.ARJAN, R. E. A hnear-time algorlthm for a special case of disjoint set

union. J. G’ompat. Svst. Scz. 30, 2 (Apr. 1985), 209–?21.
HARALICK. R. M. Some neighborhood operations. In M. Onoe, K. Preston, and A. Rosen-

feld, eds. Real Trnc/Parallel CompzLtmg lma,ge Anulystr. Plenum Press, New York, 1981, pp.
11-35.

HOPCROFT, J., 4ND TARJAN, R. Eff]clent algorithms for graph mampulatlon. CommarL. ACM
16. b (June 1973), 372-378.

LUMIA, R. A new three-dimenslona] connected components algor]thm, Conzput. Graph.,

Vzszon, Image Proc. 23, 2 (Aug. 1983), 207-217.
LUMIA, R., SHAPIRO, L., AND ZUNIGA, O. A new connected components algorithm for wrtual
memory computers. Compat, G~aph., I&on, and Image Proc. 22, 2 (May 1983), 287–300.
PARIC,C. M., AND ROSENFELD, A. Connectivity and genus in three dimensions. Computer

Sc]ence Techmca] Report TR-156. Umv. Maryland, College Park, Md., May 1971.

ROSENFELD, A., AND KAK, A. C. Dlgztal P@zue Procemmg. Academic Press, Orlando, Fla.,

second edition, 1982.
ROSENFELD, A., AND P~ALTZ, J. L. Sequential operations m digital picture processing, J,

ACM 13, 4 (Oct. 1966), 471-494.
SAMET, H. Connected component labeling using quadtree>. J. ACM 28, 3 (July 1981)

487-501,

SAMET, H. The quadtree and related hierarchical data structures. ACJf Compuf. Sar~. 16, 2
(June 1984), 187-260.

S4MET, H. The Desgn and Analy&ls of Spatzal Data Stractares. Addlsm-Wesley, Reading,
Mass., 1990.
SA.MET, H., AND T.AMMINEN, M. A general approach to connected component labeling of
images. Computer Science Technical Report TR-1649. Univ. Maryland, College Park, Md.,
Aug. 1986.

SAMET, H., AND TAMMINEN, M. An lmpro~ed approach to connected component labeling of
images. In Proceedmg~ of Computet VuZon a}~d Pattern Recognztmz 86 (Miami Beach, Fla.,

June) 1986, pp. 312-318.

SAMET, H., AND TAMMINIiN, M. Eff]clent component Iahclmg of images of arbitrary dimen-
sion represented by hnear bmtrees. IEEE Tram. Pattern .4mdys1s and Machine Int. 10, 4 (July
1988), 579-586.

SCHWARTZ, J. T., SHARJR, M., AND SIEGEL, A. An cfflc]ent algorithm for finding connected
components m a binary image. Robotics Research Techmcal Report 38. New York Umv. New
York, Feb. 1985 (Revised July, 1985).
SHAFFER, C, A., SAMET, H., AND NELSON, R. C. QUILT: A geographical mformatlon system
based on quadtrces. Int. J. Geo,qaph. Inf. S’@. 4, 2 (April-June 1990), 103-131.
TARJAN, R. E Efficiency of a good hut not linear set union algorithm J 4CA4 Z, 2 (Apr
1975), 215–225.
T4RJAN, R. E., AND VAN LEEUWEN, J, Worst-case analysls of set union algorithms. J. ACM,

31, 2 (Apr. 1984), 245-281.

EIVED SEPTEMBER 1986; REVISED AUGUST 1989 AND SEP [EMBER 1990. ACCEPTED FEBRUARY

1990

