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ABSTRACT 
Motion planning is studied in a time-varying 

environment. Each obstacle is a convex polygon that moves 
in a fixed direction at a constant speed. The robot is 
a convex polygon that is subject to a speed bound. A 
method is presented to determine whether or not there is 
a translational collision-free motion for a polygonal robot 
from an initial position to a final position, and to plan such 
a motion, if it exists. Our method makes use of the concepts 
of configuration spaces and accessibility. An algorithm is 
given for motion planning in such an environment and its 
time complexity is analyzed. 
Keywords and Phrases: time-varying environments, 
configuration spaces, accessibility, finite-sized robots, and 
motion planning. 

TIME-VARYING ENVIRONMENTS 
We consider the problem of motion planning in a 2- 

dimensional time-varying environment. The environment 
contains a number of moving polygonal obstacles whose 
motions are known. Each obstacle is a convex polygon 
that moves in a fixed direction at a constant speed. We 
treat edges constituting polygons as the basic units for 
our discussion, and we use the term m o v e m e n t  to denote 
the straight motion of an edge. We assume that the 
environment is known completely (i.e., the shapes and 
trajectories of the obstacles are given a priori) and that the 
robot is subject only to a maximum speed that is greater 
than any of the obstacles’ speeds. We would like to know 
whether there exists a colllision-free translational motion 
for a polygonal robot from an initial position to a final 
position, and if there is, we would like to find a motion 
that takes the robot to the final destination in the shortest 
time. 

Many studies on motion planning concern the following 
two aspects of the problem: 
(1) decide whether or not there exists a motion given an 

environment, and find a path if there is one, and 
(2) optimize a motion in terms of some criterion (e.g., path 

length, number of turns, etc). 
Note that time plays a crucial role in a time-varying 

environment. As an example, suppose that a robot is 
located inside a room that contains a number of moving 
and stationary obstacles. The room also has a door that is 
open for a certain period of time and the robot must pass 
through the door before it closes. The arrangement of the 
obstacles inside the room may be contrived in such a way 
that the robot can move to the door in time only if it makes 
a time-minimal motion to reach the door. 
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In this paper, we show how to find a translational 
time-minimal motion for a convex polygonal robot in an 
environment that contains moving obstacles. We assume 
that the robot can move faster than any of the obstacles. 
Section 2 reviews some prior research that serves as a basis 
for our approach. Section 3 describes motion planning 
among moving obstacles. Section 4 presents our algorithm 
as well as analyzes its execution time. Section 5 compares 
our work with some previous work, and Section 6 contains 
a few concluding remarks. 

BACKGROUND 
In this section, we review the concepts of a 

They are used in configuration space and accessibility. 
Sections 3 and 4. 

Overview of the Configuration Space 
One formulation for motion planning a.mong stationary 

obstacles has been to use the configuration space [Upud76, 
Lo2a791. This is a transformation from a physical space 
in which the robot is a polygon (or a polyhedron in 
3-dimensions) into another space in which the robot is 
treated as a point. Intuitively, the configuration space is 
obtained by shrinking the robot to a point, while growing 
the obstacles by the size of the robot. Formally, the 
configuration space is described as follows. The position 
and orientation of a rigid object, say A ,  in the plane (or 
physical space) can be specified by a 3-tuple (z, y, e) in a 
3-dimensional space, called the configuration space of the 
objcct and denoted by CspaceA. Here (z, y) represents the 
position of a reference poin t  of A in physical space, and 0 
reliresents the angle made by a reference angle of A relative 
to the z-axis. When the orientation of the object is fixed, 
its configuration space is 2-dimensional because the pair 
(z,y) is sufficient to specify the location of A in physical 
space. 

In CspaceA, some points correspond to placements of 
A in which A overlaps other objects in physical space. 
Such poink in CspaceA are called illegal, while points in 
CspaceA that correspond to placements of A where A does 
not, overlap with any of the other objects in the physical 
space are called legal. 

More spccifically, the set of points in C s p a c e ~  that 
correspond to the placements of A where A overlaps with 
object B in physical space is called a Cspace obstacle f o r  A 
due i o  B and denoted by COA(B) .  ,The problem of motion 
planning for A in physical space is transformed into the 
problem of finding a path for the point in the configuration 
space such that every point on the path is legal. 
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Figure 1 illustrates the concept of configuration space 
in a 2-dimensional space. In Fig. la, P and Q are fixed 
objects in physical space, and R is the robot to be moved. 
We assume that the orientation of R in the physical space 
is fixed. Figure I b  represents R's configuration space or 
CspaceA. The two objects delineated by thick lines are 
COR(P) and COR(Q) with respect to the reference point 
of R in Fig. la. 

U 
t reference point 

(a) physical space 

(b) configuration space 

Fig. 1. Physical space and its configuration space. 
Obstacles delineated by thick lines represent configuration 
space obstacles corresponding to the shaded obstacles with 
respect to the reference point in R. 

As in our problem, when the orientation of the robot, 
say A,  is fixed, CspaceA is 2-dimensional. Also? when both 
A and B are convex polygons, CspaceA(B)  is a convex 
poly on and the shape is given by taking the convex hull of 
wer-trB) - wert((A)o). Here wert(X) is the set of vertices of 
thepo1ygonX;X-Y = {z-ylz in X and y inY}; 
and ( X ) ,  is the polygon X in its initial configuration, where 
its reference vertex is at the origin [Loza83 . For an n-sided 
polygon A and an m-sided polygon B ,  C d A ( B )  is at most 
(n + m)-sided (Kede851. 

As a result of the expansion of obstacles, configuration 
space obstacles may overlap. In a time-varying 
environment, it is possible for two configuration space 
obstacles that do not overlap at their initial positions to 
begin to overlap for a certain period of time, then cease to 
overlap and move away from each other. This happens even 

. when physical obstacles do not overlap at all. This motion 
of two overlapping obstacles can act as a gate-opening for 
a point-robot in configuration space when the robot needs 
to pass through between the two obstacles. 

Alternatively, we can think of a situation in which a 
gate closes (e.g., two obstacles begin to overlap, thereby 
preventing the robot from passing through between them). 
In such a situation, if the robot is to pass through between 
the obstacles, then it must arrive at the gate just as it closes. 
Also, when two obstacles start overlapping, it is possible for 
the robot to be crushed between the obstacles. When the 
robot cannot escape from being crushed, the planner needs 
to report that there is no collision-free motion. 

Overview of the Accessibilitv Avvroach 
Fujimura and Samet [l?uji89b] propose an algorithm to 

produce a time-optimal motion for a point-robot among 
non-overlapping moving obstacles, assuming that the point- 
robot can move faster than the obstacles. This approach 
makes use of the concepts of accessibility and collision front. 
These concepts are used in this paper and are reviewed 
briefly below. 

Accessibility: Let R be a point robot located initially 
at 0 at time to. Suppose that R starts moving at time to 
at a speed w. After R starts moving, it moves in a fixed 
direction. A point V (V is either the destination point or a 
vertex of a polygonal obstacle) is accessible from 0 if there 
exists a direction of the motion of R such that R meets 
V without prior interception by any other movement. We 
say that V and R meet  if there exists a location X through 
which both V and R pass at the same time t ( t o  < t ) .  The 
location X is called an accessible point of V .  The time t 
is called the accessible t ime  of X with respect to V and is 
denoted by t(V).  The accessible point of a vertex varies for 
different values of the speed and the initial location of R. 
Note that the accessible point of a stationary vertex V is 
V itself, if applicable. 

Collision Front: Consider an environment that 
contains one movement of an edge, L. Let V, and vb be the 
two endpoints of L; and let Pa and Pb be accessible points 
corresponding to v, and vb, respectively, with respect to 
R's initial location 0, start time t o ,  and speed w. The set 
of accessible points corresponding to all points in L forms a 
segment. This segment is known to be either a straight line 
or a quadratic curve [Fuji89a]. We will call this segment a 
collision front of L (with respect to 0, t o ,  and U). Figure 2 
contains an example of the collision front. It can be shown 
that Pa and Pb are the two endpoints of the collision front. 
For an environment that contains more than one movement, 
there can be more than one collision front, each of which 
corresponds to some movement. In this case, however, it is 
possible that only a part of an obstacle is accessible. Notice 
that if two moving obstacles (e.g., edges) do not collide, 
then the corresponding collision fronts do not intersect. 

V a  
Fig. 2. Collision front. 

An alternative way of looking at the significance of a 
collision front is as follows. Suppose that R departs 0 at 
time t o  and keeps moving at a constant speed w along a 
ray, say I ,  emanatin at 0. R does not meet any of the 
obstacles in motion ifand only if I does not intersect any of 
the collision fronts. The collision front of a stationary edge 
L is L itself or subsets of L.  

Previously, we demonstrated the following result 
Fuji89bI. Along a time-optimal motion, the point-robot 

!9 rst moves straight from a start point to one of the 
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endpoints of the collision front, say V, at its maximum 
speed. From V, it moves in the direction of another 
endpoint of the collision front generated at V having V as 
the start point while again moving at a maximum speed. 
This process is repeated until the destination point is finally 
reached. 

MOTION PLANNING AMONG MOVING 
OBSTACLES 

From now on, we consider the problem of motion 
planning among moving obstacles in terms of the 
configuration space. In other words, the robot is 
treated as a point, and obstacles may overlap. In the 
following sections, we just use the term ‘obstacle’ to 
mean a configuration space obstacle. In this paper, we 
consider all types of overlaps between polygonal obstacles, 
thereby allowing types of overlaps that are impossible 
for configuration space obstacles. Thus, we are solving 
a slightly more general problem than the one stated in 
Section 1. As mentioned in Section 2, if obstacles do not 
overlap, then the robot only needs to move in the directions 
of vertices of the obstacles at its maximum speed. In an 
environment that contains overlapping obstacles, splits and 
merges of obstacles are critical events. 

We define splits and merges in terms of movements (or 
edges in motion). A m e r g e  of two edges means that two 
disjoint edges begin to cross each other (Fig. 3a). It is 
possible that when a merge takes place, the robot is crushed 
between the two closing obstacles (Fig. 3b). This means 
that no matter what action is taken by the robot, it cannot 
escape from being crushed. In terms of accessibility, the 
event is indicated by crossing collision fronts (Fig. 3c). 

(a) Edge A eventually intersects edge B. When A intersects 
the pathway indicated by the thick arrow disappears. 

I O R  

(b) It is possible that the robot (R in the figure) is crushed 
no matter what action it takes. 

Collision front due to E2 Collision front due to E2 

I 
Collision front due to El  

(c) A case in which the robot (R) cannot escape from being 
crushed. The situation is indicated by crossing collision 
fronts. 

Fig. 3 

A split of two edges, when intersecting edges cease to 
intersect, requires special handling. Such an event should 
not be missed, since a new pathway may be opened. For 
example, suppose that edges E1 and E2 intersect. A split 
occurs when a vertex of El passes E2 (or vice versa). The 
location at which the split takes place is called a split point ,  
and the time at  which it occurs is termed a split time. Note 
that even when a split of two edges occurs, the two obstacles 
having those edges as their sides may still overlap. It is 
important that the robot be at a split point at its split 
time, if it is possible (see [Fujisga]). The question is how 
the robot arrives at a split point exactly at its split time. 
For this purpose, when moving obstacles overlap, we move 
the robot also in the direction of the following auxiliary 
points on an edge. These points serve as subgoals, in the 
process of planning a motion. We use two types of subgoals 
depending on whether or not the split point is accessible. 
Note that when we discuss splits, we are speaking about 
edges rather than obstacles. 

Subgoal Type 1: Figure 4a shows two movements of 
edges AB and C D  that are about to split. Let S be the 
point at which the point-robot R is initially found, and let 
G denote the destination point. The split point P (Fig. 4b) 
is not accessible from S, because edge C D  lies between S 
and P .  Let X be the intersection point between AB and 
CD. As edge C D  moves, the intersection point X also 
moves towards the split point P (see Fig. 4b). In general, 
when an edge, say AB, crosses another edge, say CD in 
motion, their intersection point makes a straight motion 
(i.e., in a fixed direction with a fixed speed). We treat X 
as a subgoal; in other words, R aims at X. After it reaches 
X ,  the motion of R is identical with X until it reaches the 
split point. As X serves as a point to be aimed at, we call 
it a pseudo-vertex.  In order to avoid confusion, we use the 
term real-vertes to indicate a vertex of a polygon. 

Fig. 4. P denotes the split point. In (a) and (b), the 
split is not accessible from S. In (c) and (d), the split point 
is accessible from S. 
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Consider polygons ABCD and EFHJ in Fig. 5.  
ABCD and EFHJ are about to separate. Edges AD and 
FH,  and edges DC and FH split. Figure 5b shows the 
moment when these three edges split. At that moment, 
the split point V coincides with vertex D and lies on edge 
FH. Let us take the intersection point X of edges FH and 
AD as our subgoal. The intersection point of edges DC and 
FH is also a candidate for the subgoal, but this point is not 
accessible from S, the current location of the point-robot. 
(The procedure to determine accessible subgoals from the 
current robot location is described in the next section.) 
Intersection point X is chosen as a subgod because it 
converges to the split point V. In fact, any point that 
lies in the free space (i.e., outside any of the obstacles) and 
converges to the split point can serve as a subgoal. It can 
be shown that of all the points that converge to the subgoal 
when the split point is not accessible, X moves the slowest. 
This means that if subgoal X moves faster than the robot, 
then all other choices of a subgoal would move faster than 
the robot. 

E J 

(a) Two obstacles are about to split. 

E J 

+ I  
H 

(b) The moment of split. V is the split point. 

Fig. 5 

Note that this type of subgoal may chain, as shown 
by the example in Fig. 6. In this case, polygon ABC 
intersects with stationary polygon DEFHIJ.  Suppose 
that the robot (initially located at S in Fig. sa) needs to 
reach point G. In Fig. 6a, edges AC and BC intersect with 
edge DE.  The two intersection points can be considered 
as a subgoal. In this case, only one intersection (the 
intersection of AC and D E )  is directly accessible from S. 
This subgoal moves along edge D E  (Fig. 6b) until it reaches 
vertex E ,  where a split of edges AC and D E  takes place. 
Next, we consider the intersection between edges AD and 
EF.  The intersection point can then be considered as a 
subgoal (Fig. 6c) until a split of edges AC and EF occurs. 
Finally, the intersection point of edges AC and FH serves 
as a subgoal (Fig. 6d). In summary, we can consider this 
chain of intersection points as a path that eventually leads 
the robot to the split point of two obstacles at its split time. 

G 
0 

Fig. 6. A subgoal chain. 

Subgoal Type 2: Figures 4c and 4d show another 
type of split. A split occurs when edge CD passes through 
P. P in Fig. 4d is the split point, and Y is a point on 
edge AB that passes through P. In this case, the split 
point P is accessible from the current location of the robot. 
We consider Y as a subgoal, since it converges to the split 
point. Such a point on an edge is also termed a pseudo- 
vertex. We aim the robot at Y. Once it reaches Y, the 
motion of the robot is identical to that of Y until it reaches 
the split point. It is always possible to follow Y because 
the speed of Y is the same as that of the obstacle on which 
Y is found. In this case, the intersection point X could 
have also been used as a subgoal. However, it is possible 
that X moves faster than the maximum speed of the point 
(depending on the angles between the two edges), and in 
this case, X cannot serve as a subgoal. Note that in Fig. 4a, 
it is not possible for the robot to aim at point Y because 
the path would be obstructed by edge CD itself. 

Figure 7 illustrates this type of subgod using two 
polygons. Rectangle ABCD moves in direction d and 
triangle EFH is a stationary obstacle. Vertex F is a split 
point whose split time is the instant at which edge BC 
passes vertex F .  Y is the pseudevertex on edge BC and 
y indicates Y’s trajectory. Suppose that S is the starting 
point of the robot R. Motion A, a straight-line motion 
from S to F ,  seems to be a natural choice for R’s motion 
in approaching the split point. Along SF, R moves at a 
constant speed such that R can reach the split point exactly 
at its split time. This motion A can also serve as a subgoal 
that R can aim at. Clearly, there may be many ways of 
moving a robot from a current position to a split point at 
its split time. Our strategy is first to move to a subgoal 
with a maximum speed, and then to follow the motion of 
the subgoal. This choice of motion for the robot makes it 
easier to design an algorithm. 

When polygonal obstacles do not overlap, the robot 
can reach the final destination without having to visit 
the same vertex of a polygonal obstacle more than once 
[Fuji89b]. However, in a situation that allows overlap 
among obstacles, the robot may have to visit the same 
vertex more than once. Figure 8 illustrates such a situation. 
Triangle ABC is an obstacle that is moving towards the 
right. DEF and H J K  are stationary obstacles. S is the 
starting point for the robot R. We assume that edge DE 
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is sufficiently far from S so that moving toward D E  is not 
an adequate solution. We assume that edge H J  is also 
sufficiently far from S. Figure 8a shows the moment when 
R arrives at vertex C. After leaving vertex C ,  R moves to 
F and meets with vertex C again (Fig. 8b). Next, R moves 
to vertex K (Fig. 8c). after which it meets with C again , v , I  

(Fig. 8d). 

e j-’ 
S 

H E 

L 

D 
.G 

Fig. 7. Example of an alternative motion. 

H J 

F \  

\ I  

Fig. 8. A scene where the robot visits the same vertex 
more than once. 

In general, a vertex of an obstacle can be treated as 
a new vertex after it has moved through the inside of an 
obstacle (e.g., vertex C in Fig. 8). Let us call a vertex l ive  
when it is not covered by any of the obstacles, and let a 
live-period of a vertex be a time interval during which the 
vertex is live. In Fig. 8, vertex C has the following three 
live-periods. The period before C intersects edge D F .  The 
period after C intersects edge E F ,  and before it intersects 
edge HI<. The period after C intersects edge J K .  The 
robot does not have to visit the same vertex more than 
once while the vertex is in the same live period. 

So far we have introduced two types of new subgoals 
and defined motions to be taken when a split occur. As  
noted in Fig. 7, there are other ways of moving the point to 
a split point at its split time. We treat the motion defined 
in Section 3 as a canonical form for motion planning. It 
can be shown that whenever there is a motion to reach the 
split point at its split time, there is a canonical motion to 
reach the same split point. 

In our approach, a motion from a given start point to 
a destination point takes place as follows. After the robot 
leaves its start point, it moves to one of the subgoals in 
a shortest time. After it reaches a subgod, it follows the 
motion of the subgoal to its split point. After the split time, 
the robot again moves to another subgoal in a shortest time. 
This process is repeated until the robot eventually reaches 
the final destination point. 

ALGORITHM 
We now describe an algorithm to find a collision-free 

motion and analyze its complexity. Let n be the total 
number of vertices in the original environment. The number 
of total vertices in the configuration space produced from 
the given environment is O(n) ,  assuming a bounded number 
of vertices of the robot [Kede85]. Let k be the total number 
of merges and splits that occur between a vertex and an 
edge. The value of k depends on the nature of the obstacles. 
It is zero when configuration space obstacles (i.e., enlarged 
obstacles) do not overlap at any instance of time. In the 
worst case, the size becomes O(n2) ,  since every obstacle 
can overlap every other obstacle. 

When 
obstacles do not overlap as in [Fuji89b], the robot need 
only move in the directions of the vertices of the polygonal 
obstacles along a straight line at its maximum speed. If 
obstacles do overlap, then the robot also needs to move 
in the direction of the two types of subgoals. After the 
robot reaches a subgoal, it moves along it until it comes 
to a split point. At a split point, it needs to change its 
direction towards its next objective (a vertex of an obstacle 
or another subgoal), until it reaches its final destination 
point. During this process, the robot may encounter the 
same vertex of a polygonal obstacle more than once, if 
necessary. 

DescriDtion 
(1) Create configuration space obstacles from the given set 

of physical polygonal obstacles and the given polygonal 
robot. See [Loza83, Whit861 for a detailed algorithm. It 
takes O(n ,  +m) time to create a configuration space for 
an input polygon of n, vertices and a polygonal robot 
with m vertices. Therefore, it takes O(nl  + ... ni + ml) 
time to create configuration space obstacles from a 
given environment with a total of 1 obstacles. Thus, 
it amounts to O(n)  time, assuming that the number of 
vertices of the robot is bounded. 

(2)  Enumerate all the pseudo-vertices. This can be done 
naively by checking each vertex against all the edges 
in the environment. By doing so, all the split points 
and split times are determined. From a split point 
and its split time, a pseudo-vertex and its motion are 
also determined. At the same time, determine the live- 
periods of each real-vertex. A real-vertex has up to 
O( n )  live-periods, since a real-vertex can be covered by 
obstacles at most O ( n )  times. Since the total number 
of live-periods of real-vertices does not exceed the total 
number of merges and splits, it is O(k). 
When a vertex of an obstacle intersects an edge, the 
intersection point on the edge becomes a pseudo-vertex. 

The idea behind our algorithm is as follows. 
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Since there are k such intersections, the number of 
pseudo-vertices is O(k).  It is also necessary to identify 
the trajectory of a pseudo-vertex. Since a pseudo-vertex 
is always coincident with a point on an edge, its motion 
is determined by that edge. However, it is necessary to 
determine when and where the pseudo-vertex starts. To 
determine the starting point, the trajectory is checked 
against all edges in the environment. This takes O(n) 
time. 

(3) There are n + k real and pseudo-vertices. Let N = 
n + k.  Sort the real and pseudo-vertices in a clock-wise 
manner with respect to the current point. This takes 
O( N log N )  time. 

(4) Rotate a ray emanating from the current point about 
the current point. The ray halts each time it intersects 
a vertex. At this time, check whether the vertex is 
accessible from the current point. This can be done by 
using a balanced binary tree (e.g., a 2-3 tree [Aho74]). 
After O(N1ogN) time, all accessible vertices from 
the current point are determined. If no vertices are 
accessible, then the current point is a dead end. 

(5) Maintain a priority queue of vertices, where the priority 
corresponds to the accessible time ofthe vertex. Choose 
the vertex whose associated time is the youngest, say 
Y .  If Y is the destination point, then stop. When y 
is a real-vertex, repeat steps (3) and (4) with y as the 
current point. When Y is a pseudo-vertex, pi& the 
split point 2, and time associated with 2, and repeat 
steps (3) and (4) with 2 as the current point. 

(6) Repeat steps (3), (4) and (5) at most N times. 
Figure 9 is a simple example of motion planning for a 

triangle robot R )  among two rectangular mavin obstacles 
( P  and Q). '!'he five parts of Fig. 9a show t i e  motion 
in CspaceR, and the five parts of Fig. 9b show the 
corresponding motion in physical space. R first moves to 
X (see Fig. 9a (ii), (iii)), a pseudo-vertex. After R reaches 
X ,  it stays on X until it reaches Y ,  which is a split point. 
After P and Q have separated, R moves in the direction 
of real-vertex in the scene until it reaches the destination 
point G. Note that in Fig. 9b (iii) and (iv), the robot R 
touches both of the obstacles P and Q. 

The execution time required for each step in the 
procedure is noted with each step. Altogether, it takes 
O(n2) + O(&) + O ( N Z  log N )  = O((n + k)' log(n + k ) )  to 
produce be as large as nz, 
and thus, the worst-case execution time is log 

motion. The value of k 

PRIOR WORK 
Dynamic motion planning has been shown to be 

ComPUtationallY harder than motion Planning in a 
stationary environment. canny and Reif [Cann871 Show 
that the problem is NP-hard when some obstacles can 
move faster than the robot. Reif and Sharir [Reif851 show 
that the problem is solvable in a polynomial time when 
the number of obstacles is bounded. Kant and Zucker 
[Kant86] use a two-step algorithm. They plan a path to 
avoid stationary obstacles in the first step, and determine 
a velocity profile along the path to avoid moving obstacles 
in the second step. Erdmann and Lozano-Perez Erdm861 

space-time. These slices represent configuration spaces at 
particular times. The times are those instants at which 
some moving obstacle changes its velocity. A path of the 
robot consists of a set of path-segments which Starts at 
a vertex of an obstacle in one slice and terminates at a 
vertex of an obstacle in the next slice. Their approach is 
successful when the t o p o b '  of the free space does not 
change (i.e., the obstacles are not allowed to merge or Split 
as opposed to our approach) and requires O ( m 3 )  time, 
where n is the total number of edges in the environment 
and T is the number of slices constructed. None of the above 
approaches consider splits and merges of moving obstacles. 

Kedem and Sharir [Kede85] have studied the 
complexity of motion planning among stationary obstacles 
with robot under translation. They developed an algorithm 
that runs in time O(n log' n), where n is the total number of 
corners in the obstacles. Bhattacharya and Zorbas [Bhat88] 
have proposed a new approach that takes O(n1ogn) to 
compute a translational motion among stationary convex 
polygons. Finding a shortest path among stationary 
obstacles for a point-robot takes O(n') time [Asan85, 
Gosh87, Welz851. 

represent the motions of the obstacles its a set o I slices in 

final position 

*S 

initial position (ii) (iii) (iv) (VI 

(a) configuration space 
(i) 

(0 (ii) (iii) ( iv )  
(b) physical space 

Fig. 9. A motion in a time-varying environment. Subfigures (i)-(v) in (a) show a motion in configuration space, while 
subfigures (i)-(v) in (b) show the corresponding motion in physical space. 
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CONCLUDING REMARKS 

Motion planning for a convex robot has been described. 
The concepts of configuration spaces and accessibility have 
been used to produce an algorithm to find a collision- 
free motion among moving polygons in a 2-dimensional 
plane. Our algorithm takes O ( ( n  + k)210g(n + k ) ) .  to 
determine a motion, where n is the number of total vertices 
and k is the number of occurrences of overlaps in the 
configuration space. In addition to vertices in the input 
obstacles, two types of pseudo-vertices are introduced to 
handle configuration space obstacles. We have assumed 
that the obstacles move in fixed directions at constants 
speed. Our approach can be extended to allow piecewise 
linear motions of the obstacles. See [FujiSSa] for more 
details. 

In our formulation, we permit arbitrary overlaps among 
moving obstacles. This situation is not allowed by the 
conventional approach to configuration space obstacles. 
Thus, we have solved a more general class of the problem. It 
is not clear yet whether it is possible to reduce the amount 
of computation for motion planning by examining the types 
of overlaps produced by configuration space obstacles. 

Our formulation, however, has another interpretation. 
We can view obstacles as search lights projected on the 
ground. The projections of the lights sweep the ground 
in a scheduled manner. Given the schedule of the search 
lights, our motion planning algorithms provide a way for 
a culprit to move from one place to another without being 
detected by any of the lights. 

It should be pointed out that our approach can be 
adapted to an environment with uncertainty. Such a 
situation arises due to errors in the measurement of the 
motion of the obstacles. Consider an obstacle that moves in 
a fixed direction at a speed v ,  where v1 5 v 5 v2 for some 
known v1 and v2. In such a case, collision fronts of two 
obstacles may overlap even when the obstacles themselves 
do not overlap. When we wish to plan a motion under such 
uncertainty, our approach can be used as it allows overlaps 
between obstacles. Note also that often the destination 
point is temporarily covered by some of the obstacles. Our 
algorithm could be extended to handle such a situation. 
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