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A Hierarchical Strategy for Path Planning Among
Moving Obstacles

KIKUO FUJIMURA, sTUDENT MEMBER, IEEE, AND HANAN SAMET, SENIOR MEMBER, IEEE

Abstract—A method is presented for planning a path in the presence of
moving obstacles. Given a set of polygonal moving obstacles, we focus on
generating a path for a mobile robot that navigates in the two-
dimensional plane. Qur methodology is to include time as one of the
dimensions of the model world. This allows us to regard the moving
obstacles as being stationary in the extended world. For a solution to be
feasible, the robot must not collide with any other moving obstacles, and,
also, it must navigate without exceeding the predetermined range of
velocity, acceleration, and centrifugal force. We investigate an appropri-
ate model to represent the extended world for the path planning task, and
give a time-optimal solution using this model.

1. INTRODUCTION

ESEARCH ON and development of intelligent mobile

robots have attracted much interest recently [3], [13],
[14], [16]. To realize such an autonomous mobile robot, it is
necessary to synthesize many techniques including some
elements from artificial intelligence. Principal requirements
for a robot include:
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obtaining information from the outside world using

visual or auditory sensors;

matching the information with the internal database to

understand the environment;

3) designing an appropriate plan to execute a given task;

4) handling unexpected events, arriving either from the
outside world or from the robot itself;

5) learning from experience to improve its performance.
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Planning a collision-free path is one of the fundamental
requirements for a mobile robot to execute its tasks. Much of
the prior work on this topic is concerned with methods for
generating a path among stationary obstacles [3], [13], [14],
[16]. Realistically, however, obstacles are not always station-
ary. It should be clear that a robot that can deal with moving
obstacles will be capable of performing a much larger and
more complex class of tasks. Motivated in this manner, we
consider the situation where the obstacles are in motion. As an
example of path planning involving moving obstacles, con-
sider an airport, where an unmanned cart moves among
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taxiing airplanes, carrying their cargoes from one place to
another. Here, we can assume that the motion of each airplane
(i.e., obstacle) is known to the cart before it moves. The cart is
usually required to navigate in an environment which contains
several moving obstacles. Considering that the motion of most
of the obstacles is known beforehand and that a cart is not
required to be at work all the time, it will be acceptable that it
takes a while to plan a navigation path. On the other hand, in
relatively short range path planning, as is required in a vehicle
navigating an unexplored area [18], the situation can be
imminent. While a robot is exploring an area, its sensor may
suddenly perceive a moving object crossing its path. In such a
case, it should be able to generate and execute a movement to
safely avoid the object, e.g., by decelerating to let the object
pass by, or by accelerating to dodge the object. In this case,
although the size of the problem in terms of distance, time, and
the number of obstacles involved may be smaller than those of
the previous example, prompt judgement is a key factor in
successfully handling the situation.

The path planning problem is also crucial in a situation
where several robots operate together in a workspace. Issuing
a feasible navigation command for each robot in motion
without losing much efficiency is a nontrivial problem. With
the capability of handling moving objects, we will be able to
implement concurrent motion for muitiple robots. For exam-
ple, when planning a task for the second robot, we can regard
the first robot as one of the moving obstacles. This capability
can be instrumental in raising the productivity in an automated
factory.

As can be seen from these examples, the ability to deal with
moving obstacles will significantly increase the potential
capabilities and the range of applications of mobile robots.

From a research point of view, the presence of moving
obstacles gives rise to new aspects of the path planning
problem. For example, when moving obstacles are involved,
the shortest distance path is not always the minimum time
path. Therefore, more work is required to generate the optimal
path with respect to both the elapsed time and the distance
traveled. In addition, if our goal is to find an economical path,
that is, a path that requires the consumption of a minimum
amount of energy, then we must also pay attention to the speed
and acceleration of the mobile robot.

Thus the problem of path planning among moving objects is
in many ways different from, and usually more complex than,
that of path planning with stationary obstacles. In this paper,
we will discuss the fundamental issues relating to the
avoidance of moving obstacles, and present a basic solution to
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the problem. Section II defines the problem, surveys related
work, and describes our approach to solving the problem.
Section III discusses the representation of the obstacles. The
search strategy is described in Section IV. Section V contains
experimental results obtained by using the method described
here. Section VI contains some brief concluding remarks.

II. STATEMENT OF THE PROBLEM

Our objective is to navigate a mobile object from the start
position to the goal position in the presence of a given set of
moving polygonal obstacles on a two-dimensional plane. In
this paper, we will concentrate on the planning aspect of the
problem and will not discuss the important issue of how a
robot perceives moving objects, i.e., we assume that all the
information regarding obstacles (such as shapes, movement
directions, etc.) is somehow provided @ priori to the robot.
Although our approach is conceptually applicable to the
collision avoidance problem in three-dimensional space, for
the purpose of simplicity we will present our algorithm in the
context of obstacles in two dimensions. One of our principal
requirements is that the mobile object not collide with any of
the obstacles. There are other factors that we have to take into
consideration in the process of path generation. These factors
include physical constraints on the mobile object. For exam-
ple, the object cannot accelerate beyond some upper limit. In
more realistic applications, knowledge of the area in which the
mobile object navigates (e.g., slopes and ground conditions)
may also affect the choice of the path.

In this paper, we are interested in paths that satisfy three
fundamental factors in navigation: velocity, acceleration, and
centrifugal force on a curve. In other words, we require that
the mobile object move on a flat two-dimensional plane, avoid
obstacles, observe a predetermined range of velocity and
acceleration, and not negotiate any curve beyond a velocity
that exceeds a predetermined upper limit on the allowable
centrifugal force. Here we only discuss the case where the
mobile robot is considered to be a point. The general problem
in which a robot is a polygon can be transformed into a simpler
problem in which a robot is a point by expanding obstacies by
the size of the robot while shrinking the robot to a point {16].
This simpler problem is equivalent to the original problem
only when rotation of the robot is not allowed. In addition, we
assume that each obstacle is a polygon which moves at a
constant speed without rotation.

A. Related Work

Prior approaches at dealing with stationary objects are not
always compatible with the problem of moving obstacles. For
example, since visibility is constantly changing as obstacles
move, the visibility graph method [16] does not apply to the
situation involving moving obstacles. Various other methods
divide space into some type of smaller spaces [3], [14]. These
approaches are also based on the assumption that the geometry
is invariant during the path search process. Therefore,
applying these methods to our problem is generaily not
straightforward. Another characteristic of robot planning
among moving obstacles is that the curvature of the path plays
an important role in the choice of the path. As we discuss in

the next section, because of this aspect, some approaches using
free spaces [3] are not appropriate for our purposc.

The following papers address the collision detection prob-
lem among moving objects. Canny [S] formulates the motion
of polyhedra in three dimensions using a quaternion represen-
tation. Samet and Tamminen [23] describe a way to add the
time dimension to a CSG tree. By converting a CSG tree to the
bintree representation, dynamic collision detection can be
efficiently performed. The problem of collision detection is
also discussed by Esterling and Rosendale [11]. They divide
the time dimension as well as the other dimensions recursively
to quickly locate the collision point between two moving
objects. Regarding collision avoidance, Reif and Sharir [22
show that motion planning for a three-dimensional environ-
ment containing moving obstacles is PSPACE-hard given
bounds on the robot’s velocity, and NP-hard without such
bounds. Canny and Reif [6] show that motion planning for a
point in the plane with a bounded velocity is NP-hard. even
when the moving obstacles are convex polygons moving at
constant linear velocity without rotation. These results indicate
that the problem of motion planning in a time-varying
environment is essentially much harder than the problem with
stationary obstacles. Nevertheless, there are some approaches
at solving the problem of collision avoidance among moving
objects. These approaches are successful in a limited domain.
Kant and Zucker [15] decompose the probiem into two parts.
In the first part, they ignore the moving obstacles in planning a
path among the stationary obstacles. In the second part, a
graph is used to define regions through which the robot may
not pass when following the path computed in the first part.
The positions of these regions influence the choice of the
velocity. Erdmann and Lozano-Perez {10} describe a planner
for moving objects that constructs a configuration space cach
time some object in the scene changes its velocity. Their
method is based on stacking two-dimensional planes. where
each plane represents a configuration space at some time.
Then, two adjacent planes are inspected to see if a path exists
between these two planes. A path consists of a sequence of
vertex-to-vertex transitions between two adjacent planes.
O’Dunlaing [20] considers the problem of planning motion for
a point-robot in one dimension. Given start velocity/location
and goal velocity/location, the point-robot is to avoid collision
with two obstacles moving at both ends without exceeding
predetermined acceleration bound. Bolles and Baker [2]
construct a three-dimensional solid from an image sequence
for motion analysis.

B. Discretizing Space

As indicated in some studies [6], {22] on the complexity of
motion planning problems in a time-varying environment, it is
a nontrivial problem to find a path which satisfies all the
requirements as to acceleration and centrifugal force while still
avoiding the moving obstacles. We address this problem by
discretizing the search space. This discretization has two
aspects. First, we require that a path be represented as a
sequence of specific points in space-time. Second, the
acceleration of the robot takes on discretized value. In other
words, a trajectory of the robot in space-time is represented as
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a parabolic curve of specific parameters. This is discussed
further in Section IV-A.

Our approach to the problem is to use a three-dimensional
space in which time is the third dimension. This space is
usually called space-time. An object, say O, moving in a two-
dimensional plane can be regarded as a three-dimensional
stationary object whose volume is the trajectory that is swept
as itmoves. If a point (x, v, z) is inside that volume in space-
time, then the two-dimensional point (¥, ) was occupied by
object O at time z.

Now, our task becomes one of finding a collision-free path
in space~time. Given a start position, time, and goal position,
the search process generates a (space-time) path for the mobile
object that connects the start position to the goal position.
Minimizing the z value of the goal position will be a main
concern in the problem of time-optimal path generation. In
other cases. the z value is irrelevant as long as it leads the
object to the final position without collision. Since our third
dimension is time, the search should be carefully designed so
as not to choose an unrealistic path—e.g., traveling in the
negative time direction. Moreover, the path must satisfy the
predefined conditions regarding velocity, acceleration, and
curvature.

Note that paths and obstacles have to be specially repre-
sented to incorporate the space-time approach. In Section I1I,
we discuss the type of representation that will fit naturally into
our space-time formulation.

1II. SpacE REPRESENTATION

Both the mobile object and the obstacles are defined in a
world with bounded x, y, and ¢ values. A point in the space is
represented by (x, y, 1), where x; < x < x5, 5, <y < ¥», and
I, <t < 1. xand y are measured in terms of distance while ¢
corresponds to time. Usually, it is convenient to let x;, = y; =
fy = 0 and x; = y,. Note that time is also bounded. In this
world. every motion of an object on the two-dimensional plane
during the time period between ¢; and ¢, is represented as a
three-dimensional object. Every point on the path must also be
found inside this world.

The primary objectives of this section are to investigate
methods of representing an object in three dimensions and then
to determine the one that suits our purpose in path planning.
The following are requirements that the obstacle representa-
tion must satisfy for our purposes.

1) It must be easy to detect interference between the
obstacles and a path segment.

2) It must be computationally cheap to add and delete
obstacles. This is an important aspect when a path is generated
in a real-time environment. For example, an obstacle may
change its course, which means that the mobile robot must
update its obstacle representation.

Geometric models that are often used to represent three-
dimensional shapes are Constructive Solid Geometry (CSG)
and the boundary model [21]. Although the CSG representa-
tion is compact, it is not local, i.e., to identify what is in a
given location requires some computation. The boundary
model is useful for representing topologically connected
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information; however, it still requires some additional work to
get geometrical neighborhoods.

We have adopted a quadtree-type hierarchical representa-
tion. In planning the motion of a robot, we may need to
generate a path that avoids obstacles with some safety margin.
In such a case, it is required to search the neighborhood to see
if any obstacle exists within some distance. Here a hierarchical
structure has an advantage over other representations, since
using a tree structure as an index to the model world, efficient
access to a location is possible. Thus requirement 1) is
satisfied by the tree structure. Some approaches use a tree
structure that is based on an irregular decomposition of the
space [17]. Considering requirement 2), efficient updating of a
tree is a desirable goal. Trees based on either a regular or an
irregular decomposition require some work to modify the
configuration when entities are added or deleted. Updates of a
tree based on a regular decomposition (e.g., an octree) tend to
be local; i.e., the part of the tree which does not involve the
change remains undisturbed. In this paper, we use a hierarchi-
cal structure which is based on a regular decomposition.

Recall that we have assumed that the motion of the obstacles
does not involve rotation. As long as a polygon moves at a
constant speed without rotation, the trajectory (i.e., the
volume swept by the polygon) becomes a polyhedron in three
dimensions. When a polygon rotates, the decomposition rules
described below are still valid; however, the trajectory it
makes is no longer a simple polyhedron. For this reason, we
restrict the motions of obstacles to be simple translations.

We represent the time dimension by the third dimension.
Thus the time dimension is also subdivided. Methods to store
polygonal and polyhedral shapes using quadtree-type decom-
positions have been studied in the context of computer
cartography [26] and computer-aided design [1], [7]. Our
representation is built by repeatedly subdividing three-dimen-
sional space-time into eight subspaces of equal size called
cells, until each cell satisfies either of the following condi-
tions:

a) A cell contains part of the trajectory of a vertex of an
obstacle.

b) A cell does not contain any part of the trajectory of a
vertex, but contains part of the trajectory of an edge of an
obstacle.

¢) A cell does not contain any part of the trajectory.

d) A cell is entirely contained in the trajectory.

The cells defined by these criteria are respectively called
vertex cells, edge cells, empty cells, and full cells. Note that
this terminology is not compatible with that used in [1], [7].
Here, we use terms based on a two-dimensional rather than a
three-dimensional viewpoint. For example, a cell created by
criterion b) is called a surface cell in the papers cited above.
However, we call it an edge cell to make it clear that a two-
dimensional edge has moved in the cell.

Unlike conventional octrees [27] in which objects are
approximated, the tree structure defined above stores polygo-
nal shapes exactly and requires less memory space [1]. Fig. 1
illustrates the concept described above. Suppose that an object
moves in the x direction (Fig. 1(a)). A solid line and a dashed
line depict the initial and final position, respectively, of the
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(a) An object moving in the x direction. (b) The time-space image of

Fig. 1.
the object in (a). (c) The cell numbering convention in the octree structure.
(d) A tree representation of the space (b). V and E represent a vertex cell
and an edge cell, respectively.

object. Fig. 1(b) shows the volume swept by the object in
space-time. A tree representation of this three-dimensional
image is shown in Fig. 1(d), where the cell numbering
convention of Fig. 1(c) is used.

Next, an octree is built corresponding to the volume swept
by the motion of objects along the given trajectories. This
conversion is performed in the following way. Initially, the
entire universe is treated as a single cell which is represented
by an octree containing one node. If any of conditions a)-d)
are violated by this cell, then the cell is subdivided and
resulting cells are checked for violation of conditions a)-d).
This process is applied recursively. For more details, see [1],
[12].

IV. PATH SEARCHING

This section describes how the search procedure generates a
collision-free path using the representation introduced in the
previous section.

A. Control Points

In much of the prior work, the path is represented by one of
the following techniques. One way to specify a path is to use a
sequence of points. The object follows these points as it
proceeds. Approaches making use of a visibility graph [16]
and medial axis transforms [23] fall in this category.

Another way which has frequently been used in recent work
is to represent a path by a sequence of empty spaces. Here, the

free
space

Fig. 3. The quadrant representation of free space can contain paths (¢) and
(b) with different curvatures.

free space is divided into possibly overlapping pieces of cmpty
space, and the path is constructed by connecting these empty
spaces. The use of generalized cylinders [3] and quadtrees [14]
are examples of this approach. Applying this idea in three-
dimensional space-time gives rise to one problem in our
situation—i.e., how the path is determined inside the free
space. For example, when using cylinders we see from Fig. 2
that two possible paths (@) and (b) can be chosen in the same
cylinder. However, considering the length and curvature of
the path, the difference between paths (@) and (b) is not
negligible. In other words, factors such as velocity, accelera-
tion, and curvature are highly susceptible to a slight change in
the trajectory.

The same comment also applies to the quadtree approach.
Quadrants are not sufficiently specific to nail down a particular
path. In Fig. 3, path (@) requires more time than path by,
which means that the next quadrant chosen by path (@) should
be different from that for path (b). This difference in time
must be explicitly expressed in the representation.

We define a point called a C-point (control point) in the
space. The sequence of these C-points forms a skeleton of the
final path. We consider a C-point as an ordered pair consisting
of an L-point and a T-point. An L-point represents (wo-
dimensional location (i.e., (x, »)) of the C-point, and a T-point
represents the time at which the mobile object passes that L-
point. The x and y values of an L-point take on discrete values.
Let a square denote the projection of a three-dimensional
space-time cell onto the x-y plane. We define the arrangement
of these L-points such that the x and y coordinates of L-points
lie only at the following nine locations in a square: one at the
center, one at each of its four corners (for a total of four), and
one at the middle of each edge (for a total of four); see Fig. 4.
The value of a T-point is assigned in the search stage. In other
words, the search procedure first chooses the next location to
go to from the nine types described above. Next, it determines
the appropriate velocity. This, in turn, determines the T-point.
Since we have a choice as to the velocity (or acceleration)
value, the T-point varies depending on velocity values that
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Fig. 4.

g A cell has nine L-points.

have been chosen. Thus two identical sequences of L-points
with different sets of T-points represent two different motions.
In other words, L-points {two-dimensional components of C-
points) are fixed when the obstacles are encoded in an octree,
while the T-point components of these C-points are not fixed.
T-points are only determined as a consequence of the T-point
component of the previous C-point on the path and of the
acceleration chosen at the L-point component of the previous
C-point.

In order to make our search feasible, we pose two
restrictions with respect to the choice of acceleration. The
mobile object can change its acceleration and direction only at
the L-points, while it retains the same acceleration between
two L-points. This is one constraint we impose on our path.
Another constraint is that we assume that acceleration takes on
discrete values. These restrictions are necessary, since other-
wise there can be infinite possibilities as to when and where to
change acceleration. Since we can let the acceleration be 0,
navigating at a constant speed is also allowed. As a result, the
velocity of the mobile object, which is a function of
acceleration, changes continuously throughout the entire path.
(In our implementation, gradual incrementing of the accelera-
tion is not required, which means that there is no restriction on
the choice of the acceleration value at an L-point as long as it
stays between the predetermined upper limit and lower limit.)
In fact, a mobile object will not pass directly through the L-
point. Instead, it follows a curved path that does not pass
through the L-point in order to avoid a sudden change of
movement direction. However, we will assume that the
distance traveled can be approximated by the sum of the
lengths of the two tangents to the curve that meet at the L-
point. For example, in Fig. 5. we approximate a path length
depicted by a dashed line by the two line segments AC and
BC.

Obviously, the greater the number of different L-points in
the plane, the more degrees of control we gain. At first
glance, a simple grid-type regular configuration of L-points
may seem sufficient. However, observing that having too
large a branching factor can easily lead to a combinatorial
explosion, a smaller number of L-points is desirable. On the
other hand, with too small a number of L-points, frequent
changes in direction and speed in a short range are not
realizable; hence, the search process may fail to find a feasible
path. Thus the L-point configuration is an important problem
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AedoC”

Fig. 5. A path (dashed line) is approximated by two line segments AC and
BC.

in this approach. The L-point configuration is adaptable so that
the area of importance (i.e., in the vicinity of obstacles) has a
higher density of points, while the area far from the obstacles
has a relatively sparse distribution of C-points. To embody this
principle, a hierarchical representation is appropriate as it
means that the space is organized using various sizes of cells.
Larger blocks of cells are used to represent areas having a
lower density of obstacles while an area with many obstacles is
subdivided further into smaller cells.

The main search procedure is as follows. We use a priority
queue of C-points where the T-point component of a C-point
serves as the point’s priority.

1) Push the start point onto the queue.

2) While the queue is not empty, recursively perform the

following:
Remove the lowest cost element from the queue. If it is the
goal point, then report the path and exit the procedure.
Generate all the neighboring L-points (described below) of the
L-point component of the removed element, and select an
acceleration value. Determine T-points corresponding to the
generated L-points. Put the C-points that satisfy the path
conditions (described in Section IV-B) into the queue.

3) Report that the procedure has not found the goal
(described in Section IV-C).

In the second step of the procedure, we need to inspect all
the neighboring candidate L-points. Neighboring L-points are
all the L-points in the cells that share an edge with the cell in
which the current L-point is found; see Fig. 6. A neighboring
L-point can be quite distant, like the one in cell D of Fig. 6(c),
so that we can move rapidly over an area where there are few
obstacles.

B. The Path Conditions

The path conditions to be satisfied in step 2) are defined as
follows. Suppose we are at some L-point, say P. The current
velocity of the mobile robot and the location of the previous L-
point are known. We now choose the acceleration and then the
L-point to which we proceed next. Once an acceleration value
has been chosen, we have to maintain it until the next L-point.
The choice of L-point must satisfy the following path
conditions:

1) The acceleration is not out of range.

2) The speed at the next L-point will not be out of range.

3) The angle made by P satisfies the conditions regarding
the centrifugal force and the velocity at P.

4) The path between P and the next L-point is collision-
free.
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(¢)

Fig. 6. Definition of neighborhood points. (a) L-point P is on an edge. Its
neighboring points are the L-points in the cells 4 and B. (b) L-point Pis ata
corner. Its neighboring points are the L-points in the cells 4, B, C, and D.
(c) L-point P is in the center of a cell. Its neighboring points are the L-
points in the cells A, B, C, D, E\, E,, -+, and E,.

Checking that conditions 1) and 2) are satisfied is straightfor-
ward. We can choose an acceleration within the range, and
then compute the velocity of the next L-point from the current
values of velocity and acceleration, and the distance between
the current and next L-points.

As for condition 3), the following formulation is used for
estimating the centrifugal force. We assume that the robot
negotiates a curve having a curvature which depends on the
angle formed by the two lines meeting at the L-point (C in Fig.
5). We also assume that the distance between an L-point and
the points where the robot begins to deviate from a trajectory
which would have taken it to the L-point is a small constant for
all curves. We denote this distance by d (Fig. 5). Then the

radius 7 is
[0
r=dXtan <v>
2

where « is the angle made by two line segments that meet at
the L-point. As mentioned earlier, we assume d to be
sufficiently small in comparison with the distance between the
two L-points. Then requirement 3) can be expressed as

my?
——< constant
-

where U is the current speed and m is the mass of the robot.
This means that on each curve we are required to satisfy the
inequality

for some constant C.

As to condition 4), cells containing the path segment
connecting the current point and the next point are inspected
for intersection points. If there is an intersection, the next
point is not qualified as a candidate point.

Regarding cost estimation in step 2) of the search proce-
dure, we can use different criteria depending on which aspects
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Fig. 7. An example of the process of computing a path.

we wish to optimize. Here, we describe an estimation function
used in our implementation that optimizes time. We define a
function f at the current control point, say CP, by

S(CPY=g(CP)+ h(CP)

where g is the T-point component of CP, i.e, the time elapsed
so far, and 4 is equal to the distance between the L-point
component of CP and the goal point. divided by the maximum
speed of the robot. The function g is the cost of the path so far
from the start point, and 4 represents the heuristic estimate of
the cost of the remaining path from CP to the goal. Since 4
never overestimates the actual time cost from CP to the goal
point, this A4* heuristic search process [19] having f as its
estimate is admissible, i.e., the procedure is guaranteed to
compute a time-optimal sclution in this search space. In the
next section, we will present some results obtained by using
this heuristic. As an alternative, it is possible to use estimation
functions based on distance traveled or consumed energy.
Fig. 7 is an example of path computation using an A*
algorithm. Let § and G denote the start and goal points.
Assume that the path conditions do not allow the robot to make
a turn of degree less than 90. Dotted lines are drawn from 5 to
the L-points that are reachable from the current L-point. The
numbers in the parentheses correspond to the values of the
function f at those L-points. The L-point with the minimum f
value is selected as the next L-point to which the robot moves
and this path is shown with a thick line in Fig. 7. The
following is a more detailed explanation. Starting at S, there
are nine candidate L-points from which to choose. They are all
nlaced in the queue. f is at a minimum at L-points / and B
(see Fig. 7(a)). We reject H since none of the L-points that are
reachable from H satisfy the path conditions. Thus we are left
with B. Continuing our search from B, we find that C is the
only L-point reachable from B (see Fig. 7(b)). However, at
this point we find that the minimum value of f is at K (i.e.,
JS(K) is smaller than f(C)) and hence K is the next node to be
processed in the search process. L-points C and L are
reachable from K while also satisfying the path conditions (see
Fig. 7(c)). At this point, the goal point G is reachable from C
(see Fig. 7(d)) and the path segment CG satisfies the path
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conditions. In this example, this is the optimal path. Of course,
in the more general situation, the search process continues to
check if a more minimal solution exists.

C. Search Failure

One drawback of our method is that it may not find a
solution in the search space. This can be interpreted as
indicating either that a feasible solution does not exist at all, or
that it does not exist in this search space. In the latter case,
some possible reasons are that the arrangement of L-points is
too coarse, the discretized acceleration values are not appro-
priate, etc.

One way to remedy this drawback is to note that when the
initial number of L-points is not enough to compute a solution,
we can gradually increase the number of L-points in the search
space, until a path is finally found or a predetermined
resolution limit is reached. Instead of increasing the L-points
uniformly over the universe, we can selectively expand the L-
points. For example, we can have more L-points in areas
which have more obstacles than a given threshold. This
scheme can be realized by deepening the tree by one level at
each search failure. This has an effect of dividing a cell into
eight smaller cells, resulting in more L-points. Since deepen-
ing a tree does not require much work in an octree structure,
this method is simple to implement. However, the granular
nature of time as well as distance requires us to have a
predefined resolution limit in our search space.

V. EXPERIMENTAL RESULTS

In this section we present some experimental results
obtained using the technique described in Sections IIT and IV.

Suppose that our testbed is a 512 (m) by 512 (m) world and
that the time dimension varies between 0 (s) and 512 (s). Fig. 8
illustrates this example for three different speeds of a robot.
Let A in the figures be an obstacle moving at 0.5 (m/s) in an
easterly direction. B is a stationary object. The start and goal
points are denoted by S and G, respectively. In the following
cases, acceleration is chosen among the values 1.0, 0.5, 0.0,
—0.5, and — 1.0 (m/s?). In addition, we require that the speed
at the start and goal points be 0.

(Case 1) If the mobile robot is fast enough, it will proceed to
the right of A, to the left of B, and get to the goal. Fig. 8(a)
shows the trajectory and its speed transition graph. The
maximum allowable speed in this case is 4 (m/s).

(Case 2) 1f the mobile robot is not fast enough, it will not be
able to proceed to the left side of B, and will have to go to the
right side of B. Fig. 8(b) shows the case where the maximum
speed of the robot is 3 (m/s).

(Case 3) If the mobile robot is much slower, it will let A go
by first. Fig. 8(c) shows the case where the maximum speed of
the robot is 2 (m/s).

Fig. 9 shows a solution dealing with three moving obstacles
at the same time. One obstacle, O;, moves in easterly direction
at 0.5 (m/s) as in the previous example. There are two more
triangular obstacles, O, and O3, whose speeds are 1.4 (m/s)
and 1.0 (m/s), respectively. S and I represent the start and goal
points. In this example, the maximum speed of the robot is 4.5
(m/s). Note that the robot starts decelerating at D to avoid a
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Fig. 8. One moving object heading in an easterly direction and one

stationary object. (a) The maximum allowable speed of the robot is 4 (m/s).
(b) The maximum allowable speed of the robot is 3 (m/s). The course the
robot takes is different from that in Fig. 9. () The maximum allowable
speed of the robot is 2 (m/s).

collision that would have occurred if it had proceeded at the
same speed. This has an effect of letting obstacle O, go by
first. The dashed lines show the position of obstacle O, at the
time F. This technique of avoiding obstacles characterizes path
planning among moving obstacles and can only be realized by
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Fig. 9. A robot with three moving obstacles. The robot starts decelerating at
D to avoid a collision. Broken lines show an obstacle at time F.

taking the speed and acceleration of the robot into consider-
ation.

V1. CoNCLUDING REMARKS

An approach has been proposed to solve the path planning
problem for a mobile robot within an environment that
contains moving obstacles. By adding time as an additional
dimension to the world, a simple formulation was obtained.
We have discussed representation methods which would make
good use of this formation and have adopted a quadtree-type
hierarchical structure to represent the obstacles. The represen-
tation is based on a cell decomposition scheme in which each
cell has a simple geometry, i.e., it contains at most one vertex
or one edge of an obstacle.

In this paper, we restricted our attention to the three most
fundamental factors in navigation; that is, speed, acceleration,
and centrifugal force. These factors are essential in any path
planning application for a vehicle that moves on land, on sea,
or in air. Also, these factors form the basis for further
considerations, such as optimization of the path with respect to
energy consumption, etc. To model these factors, we intro-
duce conditions which are imposed on a path in the search
procedure. We showed that a time-optimal path is easily
obtained using this formulation.

An important goal in path planning is to avoid being
concerned with details that do not affect the choice of the path.
In this aspect, hierarchical structures are promising in two-
dimensional path planning [14]. Since the search space in a
time-varying environment tends to become greater than that
for stationary path planning, this comment is even more
applicable to our problem. For this reason, we used a
hierarchical decomposition with respect to the time dimension
as well. In such a case, a large block means that it is located in
an area where there is not much motion within some time

period or within some distance. Hence the planner is not
affected by the motions of distant obstacles, thus facilitating
the planning procedure. If we simply stack two-dimensional
planes as in [10], then the path planner will miss this
computational aspect since it has to consider every motion of
the obstacles in the world, even though some of them are
relatively remote from the robot and would not have affected
the path planning operation.

Nevertheless, our approach still suffers from the large
search space size; the possible locations of L-points tend to
grow rapidly in size, as the number of obstacles in space
increases. For example, suppose that the world consists of 2/
X 2/ x 2/ octants of the same size. Then, the number of L-
point locations can be as large as O(2%). At each L-point, the
next location and the next acceleration are selected using the
path conditions. As this choice is made at each L-point in the
worst case, the worst case run time of our algorithm is
exponential in the number of the total number of nodes in an
input octree. Note that the closer two objects are in the world,
the deeper the level of subdivision becomes, resulting in more
nodes in the tree. For this reason, we observe that our
algorithm works better in an uncluttered environment.

Our approach indicates that we can incorporate other time-
varying factors into the path planning process. As a matter of
fact, navigation is also affected by various road or field
conditions. Although the method presented in this paper will
itself be useful in some applications such as an unmanned
carrier in a factory, more advanced and intelligent robot
planning will become possible if it is combined with the ability
to understand motion of moving objects in the outside world,
and to utilize knowledge as obtained through geographic
information systems.
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